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Abstract. We give a complete characterization of the uniform hyper-
bolicity and nonuniform hyperbolicity of a cocycle with values in the
space of bounded linear operators acting on a Hilbert space in terms
of the existence of appropriate quadratic forms. Our work unifies and
extends many results in the literature by considering the general case
of not necessarily invertible cocycles acting on a Hilbert space over an
arbitrary invertible dynamics. As a nontrivial application of, we study
the persistence of hyperbolicity under small linear perturbations.

1. Introduction

Our main objective is to give a complete characterization of the uniform
hyperbolicity and nonuniform hyperbolicity of a cocycle with values in the
space of bounded linear operators acting on a Hilbert space in terms of
the existence of appropriate quadratic forms. Our work unifies and extends
many results in the literature by considering the general case of not necessar-
ily invertible cocycles acting on a Hilbert space over an arbitrary invertible
dynamics f : M →M .

For example, when M = Z and f(n) = n+1, the concept of hyperbolicity
introduced in Section 3 reduces to the notion of a uniform exponential di-
chotomy. This notion was essentially introduced by Perron in [17] and plays
a central role in the qualitative theory of dynamical systems. We refer the
reader to [6, 9, 10, 21] for details and further references. In the same setting,
the concept of nonuniform hyperbolicity considered in Section 5 includes the
notion of a nonuniform exponential dichotomy as a particular case. We refer
to [4] for the discussion of many related developments.

Many works in the literature have been devoted to the characterization of
an exponential dichotomy in terms of the existence of appropriate quadratic
forms. For some early contributions, we refer to the work of Maizel [14],
Coppel [6, 7] and Papaschinopoulos [16]. For more recent work dealing with
nonuniform exponential dichotomies, see [5]. We emphasize that all these
works consider only the particular case of an invertible finite-dimensional
dynamics. Moreover, to the best of our understanding, the arguments in
those works cannot be extended to our setting. This forced us to develop
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a different approach that relies on the spectral characterization of the hy-
perbolic behavior (see Section 2) and on the characterization of hyperbolic
operators given in [8].

On the other hand, the generality of our setting enables to consider more
complicated forms of hyperbolicity. For example, when f is differentiable,
the notion of hyperbolicity considered in Section 3 reduces to the classical
concept of uniform hyperbolicity introduced and studied by Smale [22] and
Anosov [1]. The notion of uniform hyperbolicity was characterized in terms
of the existence of quadratic forms by Lewowicz [12, 13] but again only in the
finite-dimensional setting and in the particular case of derivative cocycles. In
the present work, we extend the results in [12] to an arbitrary noninvertible
cocycle acting on an infinite-dimensional Hilbert space.

Moreover, the notion of hyperbolicity considered in Section 5 includes the
concept of nonuniform hyperbolicity in the sense of Pesin [3, 18] in the par-
ticular case of a finite-dimensional setting when the function K is tempered
(see also [15, 20] for related work in the infinite-dimensional setting). See
[11] and the references therein for generalizations of the work of Lewow-
icz in this context. However, these works give characterizations of systems
with nonzero Lyapunov exponents rather then of nonuniformly hyperbolic
cocycles.

As a nontrivial application of our characterizations of the hyperbolic be-
havior, we study the persistence of hyperbolicity under small linear perturba-
tions. This problem has a long history, especially in relation to exponential
dichotomies. We refer the reader to [4, 19] for details and further references.

2. Preliminaries

We first introduce some notions and results related to hyperbolicity that
will be used throughout the paper.

2.1. Hyperbolic operators. Let B(X) be the set of all bounded linear
operators acting on a Hilbert space X. Given self-adjoint operators A,B ∈
B(X), we write A ≤ B if 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ X. Moreover, an
operator A ∈ B(X) is said to be hyperbolic if its spectrum does not intersect
the unit circle S1 = {λ ∈ C : |λ| = 1}.

We also recall two important results about hyperbolicity taken from [8].

Theorem 1. Assume that the spectrum of an operator T ∈ B(X) does not
cover the whole S1. Then every self-adjoint operator W ∈ B(X) with the
property that there exists δ > 0 satisfying

T ∗WT −W ≤ −δI (1)

is invertible.

The following result will be of particular importance.

Theorem 2. Let T ∈ B(X) and assume that there exists an invertible self-
adjoint operator W ∈ B(X) satisfying (1) for some δ > 0. Then T is
hyperbolic if and only if there exists δ′ > 0 satisfying

TW−1T ∗ −W−1 ≤ −δ′I.
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2.2. Hyperbolic sequences. Now let ‖·‖n, for n ∈ Z, be a sequence of
norms on X such that ‖·‖n is equivalent to the original norm ‖·‖ for each
n ∈ Z. Given a sequence (An)n∈Z ⊂ B(X), we define

A(n,m) =

{
An−1 · · ·Am, n > m,

I, n = m

for n,m ∈ Z with n ≥ m. We say that the sequence (An)n∈Z is hyperbolic
with respect to the norms ‖·‖n if:

1. there exist projections Pm ∈ B(X) for m ∈ Z satisfying

A(n,m)Pm = PnA(n,m) for n ≥ m

such that each map

A(n,m)|KerPm : KerPm → KerPn

is invertible;
2. there exist constants λ,D > 0 such that for n,m ∈ Z and x ∈ X we

have

‖A(n,m)Pmx‖n ≤ De−λ(n−m)‖x‖m for n ≥ m (2)

and

‖A(n,m)Qmx‖n ≤ De−λ(m−n)‖x‖m for n ≤ m, (3)

where Qm = I − Pm and

A(n,m) = (A(m,n)|KerPn)−1 : KerPm → KerPn

for n < m.

We also consider the space

Y =

{
x = (xn)n∈Z ⊂ X :

∑
n∈Z
‖xn‖2n <∞

}
.

One can easily verify that Y is a Hilbert space with the scalar product

〈x,y〉 =
∑
n∈Z
〈xn, yn〉n for x = (xn)n∈Z,y = (yn)n∈Z ∈ Y.

Now consider a sequence (An)n∈Z ⊂ B(X) and assume that there exists
C > 0 such that

‖Anx‖n+1 ≤ C‖x‖n for n ∈ Z and x ∈ X. (4)

Then the map T : Y → Y given by

(Tx)n = An−1xn−1 for x = (xn)n∈Z ∈ Y,

is a well-defined bounded linear operator. The following two results are
taken from [2].

Theorem 3. Assume that (An)n∈Z satisfies (4) and is hyperbolic with re-
spect to a sequence of norms ‖·‖n. Then I − T is invertible and

‖(I − T )−1‖ ≤ K (5)

for some constant K depending only on D and λ.
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Theorem 4. Given a sequence (An)n∈Z satisfying (4), if I−T is invertible,
then (An)n∈Z is hyperbolic with respect to a sequence of norms ‖·‖n. More-
over, the constants D,λ in (2) and (3) can be chosen so that they depend
only on the constant K in (5).

2.3. Hyperbolic cocycles. Given a map f : M →M , we say that a func-
tion A : M × N0 → B(X) is a cocycle (over f) if for every q ∈ M and
n,m ∈ N0 we have:

1. A(q, 0) = I;
2. A(q, n+m) = A(fn(q),m)A(q, n).

The map A : M → B(X) given by A(q) = A(q, 1) is called the generator of
the cocycle A.

Now assume that the map f is invertible and let ‖·‖q, for q ∈ M , be a
family of norms on X such that ‖·‖q is equivalent to ‖·‖ for each q ∈ M .
We say that the cocycle A is hyperbolic with respect to the norms ‖·‖q if:

1. there exists projections P (q), for q ∈M , satisfying

A(q)P (q) = P (f(q))A(q) for q ∈M, (6)

such that each map

A(q)|KerP (q) : KerP (q)→ KerP (f(q)) (7)

is invertible;
2. there exist constants λ,D > 0 such that for each q ∈ M , x ∈ X and
n ≥ 0 we have

‖A(q, n)P (q)x‖fn(q) ≤ De−λn‖x‖q (8)

and

‖A(q,−n)Q(q)‖f−n(q) ≤ De−λn‖x‖q, (9)

where Q(q) = I − P (p) and

A(q,−n) =
(
A(f−n(q), n)|KerP (f−n(q))

)−1
. (10)

For each q ∈M , we define

Yq =

{
x = (xn)n∈Z :

∞∑
n=−∞

‖xn‖2fn(q) < +∞
}
. (11)

One can easily verify that Yq is a Hilbert space with the scalar product

〈x,y〉 =
∑
n∈Z
〈xn, yn〉fn(q) for x = (xn)n∈Z,y = (yn)n∈Z ∈ Yq.

Now, assume that for a given cocycle A there exists C > 0 such that

‖A(q)x‖f(q) ≤ C‖x‖q for q ∈M and x ∈ X. (12)

Then the operator Tq : Yq → Yq given by

(Tqx)n = A(fn−1(q))xn−1 for n ∈ Z and x = (xn)n∈Z ∈ Yq (13)

is well-defined.
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Theorem 5. Assume that the cocycle A satisfies (12) and is hyperbolic with
respect to the norms ‖·‖q. Then I−Tq is invertible for each q ∈M and there
exists K > 0 such that

‖(I − Tq)−1‖ ≤ K for q ∈M. (14)

Proof. It follows easily from (8) and (9) that for each q ∈ M the se-
quence (An)n∈Z defined by An = A(fn(q)) is hyperbolic with respect to
the norms ‖·‖fn(q), for n ∈ Z. Moreover, the constants D,λ in (2) and (3)
are independent of q. The conclusion of the theorem follows now directly
from Theorem 3. �

Theorem 6. Given a cocycle A satisfying (12), assume that the operator
I − Tq is invertible for each q ∈ M and that there exists a constant K > 0
satisfying (14). Then A is hyperbolic with respect to the norms ‖·‖q.

Proof. It follows from Theorem 4 that the sequence (An)n∈Z in the proof
of Theorem 5 is hyperbolic with respect to the norms ‖·‖fn(q), for n ∈ Z.
Moreover, the constants D,λ in (2) and (3) can be chosen so that they
depend only on K (and not on q). This establishes (8) and (9). �

3. Hyperbolic cocycles

This section contains our mains results, concerning the characterization
of the hyperbolicity of a cocycle in terms of Lyapunov functions.

Let A be a cocycle. We say that A is hyperbolic if:

1. there exists a family of projections P (q), for q ∈ M , satisfying (6)
such that each map in (7) is invertible;

2. there exist constants λ,D > 0 such that for each q ∈ M and n ≥ 0
we have

‖A(q, n)P (q)‖ ≤ De−λn (15)

and

‖A(q,−n)Q(q)‖ ≤ De−λn, (16)

where Q(q) = I − P (p), with A(q,−n) as in (10).

An easy consequence of the definition of hyperbolicity is the following.

Proposition 1. Assume that the cocycle A is hyperbolic. Then

ImP (q) =

{
v ∈ X : sup

n≥0
‖A(q, n)v‖ < +∞

}
and KerP (q) consists of all vectors v ∈ X for which there exists a sequence
(vn)n≤0 satisfying v0 = v, supn≤0‖vn‖ < +∞ and vn = A(fm(q), n−m)vm
for 0 ≥ n ≥ m.

The following theorem is our first main result.

Theorem 7. Assume that the cocycle A is hyperbolic and that there exists
C > 0 such that

‖A(q)‖ ≤ C for q ∈M. (17)

Then there exist invertible self-adjoint operators S(q) ∈ B(X), for q ∈ M ,
and constants K, δ > 0 such that for each q ∈M :
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1.

‖S(q)‖ ≤ K and ‖S(q)−1‖ ≤ K; (18)

2.

A(q)∗S(f(q))A(q)− S(q) ≤ −δI; (19)

3.

A(q)S(q)−1A(q)∗ − S(f(q))−1 ≤ −δI. (20)

Proof. Take ρ ∈ (0, λ) and let

S(q) =
∑
n≥0

(A(q, n)P (q))∗A(q, n)P (q)e2(λ−ρ)n

−
∑
n>0

(A(q,−n)Q(q))∗A(q,−n)Q(q)e2(λ−ρ)n.

By (15) and (16), for each x ∈ X we have

|〈S(q)x, x〉| ≤
∑
n≥0

‖A(q, n)P (q)x‖2e2(λ−ρ)n +
∑
n>0

‖A(q,−n)Q(q)x‖2e2(λ−ρ)n

≤
∑
n≥0

D2e−2λne2(λ−ρ)n‖x‖2 +
∑
n>0

D2e−2λne2(λ−ρ)n‖x‖2

= D2

(∑
n≥0

e−2ρn +
∑
n>0

e−2ρn

)
‖x‖2 = K‖x‖2,

where

K = D2 1 + e−2ρ

1− e−2ρ
.

Since S(q) is self-adjoint, we conclude that

‖S(q)‖ = sup
‖x‖=1

|〈S(q)x, x〉| ≤ K.

This establishes the first inequality in (18).
On the other hand, using (6) we obtain

A(q)∗S(f(q))A(q) =

= A(q)∗
∑
n≥0

(A(f(q), n)P (f(q)))∗A(f(q), n)P (f(q))e2(λ−ρ)nA(q)

−A(q)∗
∑
n>0

(A(f(q),−n)Q(f(q)))∗A(f(q),−n)Q(f(q))e2(λ−ρ)nA(q)

=
∑
n≥0

(A(f(q), n)P (f(q))A(q))∗A(f(q), n)P (f(q))A(q)e2(λ−ρ)n

−
∑
n>0

(A(f(q),−n)Q(f(q))A(q))∗A(f(q),−n)Q(f(q))A(q)e2(λ−ρ)n

=
∑
n≥0

(A(f(q), n)A(q)P (q))∗A(f(q), n)A(q)P (q)e2(λ−ρ)n

−
∑
n>0

(A(f(q),−n)A(q)Q(q))∗A(f(q),−n)A(q)Q(q)e2(λ−ρ)n
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= e−2(λ−ρ)
∑
n≥0

(A(q, n+ 1)P (q))∗A(q, n+ 1)P (q)e2(λ−ρ)(n+1)

− e2(λ−ρ)
∑
n>0

(A(q,−(n− 1))Q(q))∗A(q,−(n− 1))Q(q)e2(λ−ρ)(n−1)

= e−2(λ−ρ)
∑
n≥1

(A(q, n)P (q))∗A(q, n)P (q)e2(λ−ρ)n

− e2(λ−ρ)
∑
n≥0

(A(q,−n)Q(q))∗A(q,−n)Q(q)e2(λ−ρ)n

= e−2(λ−ρ)
∑
n≥0

(A(q, n)P (q))∗A(q, n)P (q)e2(λ−ρ)n − e−2(λ−ρ)P (q)∗P (q)

− e2(λ−ρ)
∑
n>0

(A(q,−n)Q(q))∗A(q,−n)Q(q)e2(λ−ρ)n − e2(λ−ρ)Q(q)∗Q(q).

(21)

Thus,

A(q)∗S(f(q))A(q)− S(q) =

= (e−2(λ−ρ) − 1)
∑
n≥0

(A(q, n)P (q))∗A(q, n)P (q)e2(λ−ρ)n

+ (1− e2(λ−ρ))
∑
n>0

(A(q,−n)Q(q))∗A(q,−n)Q(q)e2(λ−ρ)n

− e−2(λ−ρ)P (q)∗P (q)− e2(λ−ρ)Q(q)∗Q(q).

(22)

Since e−2(λ−ρ) − 1 < 0 and 1− e2(λ−ρ) < 0, we obtain

A(q)∗S(f(q))A(q)− S(q) ≤ −e−2(λ−ρ)P (q)∗P (q)− e2(λ−ρ)Q(q)∗Q(q)

≤ −e−2(λ−ρ)(P (q)∗P (q) +Q(q)∗Q(q)).

Furthermore, we have

2〈(P (q)∗P (q) +Q(q)∗Q(q))x, x〉
= 2‖P (q)x‖2 + 2‖Q(q)x‖2

≥ ‖P (q)x‖2 + 2‖P (q)x‖ · ‖Q(q)x‖+ ‖Q(q)x‖2

= (‖P (q)x‖+ ‖Q(q)x‖)2 ≥ ‖x‖2

(23)

for each x ∈ X, which implies that

−e−2(λ−ρ)(P (q)∗P (q) +Q(q)∗Q(q)) ≤ −1

2
e−2(λ−ρ)I.

Hence, (19) holds taking δ = 1
2e
−2(λ−ρ) > 0.

In order to prove (20) we consider the space l2 = Y introduced in Sec-
tion 2.2 taking ‖·‖n = ‖·‖ for all n ∈ Z. For each q ∈ M , we define a map
Tq : l2 → l2 by

(Tqx)n = A(fn−1(q))xn−1 for n ∈ Z and x = (xn)n∈Z ∈ l2.

It follows from (17) that Tq is a well-defined bounded linear operator.

Lemma 1. The adjoint T ∗q : l2 → l2 is given by

(T ∗q x)n = A(fn(q))∗xn+1 for n ∈ Z and x = (xn)n∈Z ∈ l2.
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Proof of the lemma. We define a linear operator G : l2 → l2 by

(Gx)n = A(fn(q))∗xn+1 for n ∈ Z and x = (xn)n∈Z ∈ l2.
It follows from (17) that G is well-defined. For each x = (xn)n∈Z and
y = (yn)n∈Z ∈ l2 we have

〈Gx,y〉 =
∑
n∈Z
〈(Gx)n, yn〉

=
∑
n∈Z
〈A(fn(q))∗xn+1, yn〉 =

∑
n∈Z
〈xn+1, A(fn(q))yn〉

=
∑
n∈Z
〈xn+1, (Tqy)n+1〉 = 〈x, Tqy〉,

which implies that G = T ∗q . �

Finally, for each q ∈ X, we define a map Wq : l2 → l2 by

(Wqx)n = S(fn(q))xn for n ∈ Z and x = (xn)n∈Z ∈ l2.

Lemma 2. Wq is a well-defined invertible self-adjoint linear operator and
satisfies

T ∗qWqTq −Wq ≤ −δI (24)

for each q ∈M .

Proof of the lemma. It follows from the first inequality in (18) that Wq is
well-defined. Moreover, since S(fn(q)) is self-adjoint we have

〈Wqx,y〉 =
∑
n∈Z
〈S(fn(q))xn, yn〉 =

∑
n∈Z
〈xn, S(fn(q))yn〉 = 〈x,Wqy〉

and so Wq is also self-adjoint. Moreover, from (19) and Lemma 1, we con-
clude that (24) holds. Hence, applying Theorem 1 together with Theorems 5
and 6 in the particular case when ‖·‖q = ‖·‖ for all q ∈M , we conclude that
Wq is invertible for each q ∈M . �

Lemma 3. The map q 7→ ‖W−1
q ‖ is bounded on M .

Proof of the lemma. For each q ∈M , let

Hq = −T ∗qWqTq +Wq.

By (24) we have Hq ≥ δI. It is easy to verify that

(T ∗q − I)Wq(Tq + I) + (T ∗q + I)Wq(Tq − I) = 2T ∗qWqTq − 2Wq.

Hence,
(T ∗q − I)Wq(Tq + I) + (T ∗q + I)Wq(Tq − I) = −2Hq.

Multiplying this identity on the right by (Tq − I)−1 and on the left by
(T ∗q − I)−1, we obtain

Wq(Tq + I)(Tq− I)−1 + (T ∗q − I)−1(T ∗q + I)Wq = −2(T ∗q − I)−1Hq(Tq− I)−1.
(25)

Thus,

〈(T ∗q − I)−1Hq(Tq − I)−1x,x〉 ≤ 1

2
‖Wqx‖ · ‖Tq + I‖ · ‖(I − Tq)−1‖ · ‖x‖

for each x ∈ l2.
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On the other hand, we have

2〈(T ∗q − I)−1Hq(Tq − I)−1x,x〉 = 2〈Hq(Tq − I)−1x, (Tq − I)−1x〉
≥ 2δ〈(Tq − I)−1x, (Tq − I)−1x〉
≥ 2δ‖(Tq − I)−1x‖2

≥ 2δ
‖x‖2

‖I − Tq‖2

Combining these estimates, we obtain

2δ
‖x‖2

‖I − Tq‖2
≤ ‖Wqx‖ · ‖Tq + I‖ · ‖(I − Tq)−1‖ · ‖x‖

and thus,

‖x‖ ≤ 1

2δ
‖Wqx‖ · ‖Tq + I‖ · ‖(I − Tq)−1‖ · ‖I − Tq‖2,

for each x ∈ l2. It follows from (17) and Theorem 5, taking ‖·‖q = ‖·‖ for
all q ∈M , that there exists L > 0 such that

‖x‖ ≤ L‖Wqx‖ for x ∈ l2.
This implies that ‖W−1

q ‖ ≤ L for q ∈M . �

Lemma 4. For each q ∈ M the operator S(q) is invertible and the second
inequality in (18) holds.

Proof of the lemma. We first show that the operators S(q) are invertible.
Assume that S(q)v = 0 for some v ∈ X. Define x = (xn)n∈Z ∈ l2 by x0 = v
and xn = 0 for n 6= 0. Then Wqx = 0 and since Wq is invertible, we conclude
that x = 0. Hence, v = 0 and S(q) is injective for each q ∈M .

Now take v ∈ X and define y = (yn)n∈Z ∈ l2 by y0 = v and yn = 0 for
n 6= 0. Since Wq is invertible, there exists x ∈ l2 such that Wqx = y. Thus,
(Wqx)0 = y0, which shows that S(q)x0 = y0 = v and so S(q) is surjective.
Hence S(q) is invertible. Moreover, we have

(S(q))−1v = (W−1
q y)0

and so,

‖(S(q))−1v‖ = ‖(W−1
q y)0‖ ≤ ‖W−1

q y‖ ≤ ‖W−1
q ‖ · ‖y‖ = ‖W−1

q ‖ · ‖v‖.

Therefore, ‖(S(q))−1‖ ≤ ‖W−1
q ‖ for all q ∈ M and the second inequality

in (18) follows directly from Lemma 3. �

Now we establish (20). Let Hq be as in the proof of Lemma 3. Multiplying
identity (25) on the left and on the right by W−1

q , we obtain

−2W−1
q (T ∗q − I)−1Hq(Tq − I)−1W−1

q = (Tq + I)(Tq − I)−1W−1
q

+W−1
q (T ∗q − I)−1(T ∗q + I).

Moreover, multiplying this equality on the left by Tq − I and on the right
by T ∗q − I yields that

− 2(Tq − I)W−1
q (T ∗q − I)−1Hq(Tq − I)−1W−1

q (T ∗q − I)

= (Tq + I)W−1
q (T ∗q − I) + (Tq − I)W−1

q (T ∗q + I).
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Since

(Tq + I)W−1
q (T ∗q − I) + (Tq − I)W−1

q (T ∗q + I) = 2TqW
−1
q T ∗q − 2W−1

q ,

we obtain

TqW
−1
q T ∗q −W−1

q = −(Tq − I)W−1
q (T ∗q − I)−1Hq(Tq − I)−1W−1

q (T ∗q − I).

Finally, note that for every x ∈ l2 we have〈
(Tq − I)W−1

q (T ∗q − I)−1Hq(Tq − I)−1W−1
q (T ∗q − I)x,x

〉
≥

≥ δ‖(Tq − I)−1W−1
q (T ∗q − I)x‖2

≥ δ‖x‖2

‖Tq − I‖ · ‖Wq‖ · ‖(T ∗q − I)−1‖
.

Since there exists L > 0 such that

‖Tq − I‖ · ‖Wq‖ · ‖(T ∗q − I)−1‖ = ‖Tq − I‖ · ‖Wq‖ · ‖(Tq − I)−1‖ ≤ L

for every q ∈ X, we conclude that

TqW
−1
q T ∗q −W−1

q ≤ − δ
L
I (26)

for q ∈M , which establishes inequality (20). �

Now we establish the converse of Theorem 7.

Theorem 8. Assume that the cocycle A satisfies (17) for some C > 0
and that there exists a family S(q), for q ∈ M , of invertible self-adjoint
operators in B(X) and constants K, δ > 0 satisfying (18), (19) and (20) for
every q ∈ X. Then the cocycle A is hyperbolic.

Proof. For each q ∈ M , let Tq and Wq be as in the proof of Theorem 1. It
follows from (19) and (20) that (24) and (26) hold. Hence, by Theorem 2,
the operator Tq is hyperbolic and I − Tq is invertible for each q ∈M .

Lemma 5. The map q 7→ ‖(I − Tq)−1‖ is bounded on M .

Proof of the lemma. It follows from the proof of Lemma 3 that

δ‖(Tq − I)−1x‖2 ≤ ‖Wq‖ · ‖Tq + I‖ · ‖(I − Tq)−1x‖ · ‖x‖ (27)

for every q ∈ X and x ∈ l2. Moreover, by (17) and (18), there exists L > 0
such that

‖Wq‖ · ‖Tq + I‖ ≤ L for q ∈M. (28)

Hence, by (27) and (28), we obtain

‖(I − Tq)−1‖ ≤ L

δ
for q ∈M.

This completes the proof of the lemma. �

It follows from Theorem 6 taking ‖·‖q = ‖·‖ for all q ∈ M and Lemma 5
that the cocycle A is hyperbolic. �

As an application of the previous results, we establish in a simple manner
the robustness of hyperbolicity.
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Theorem 9. Let A be a hyperbolic cocycle satisfying (17) for some C > 0,
and let B be a cocycle with generator B such that there exists c > 0 satisfying

‖A(q)−B(q)‖ ≤ c for q ∈M. (29)

If c > 0 is sufficiently small, then B is also uniformly hyperbolic.

Proof. We first note that it follows from (17) and (29) that

‖B(q)‖ ≤ c+ C for q ∈M. (30)

By Theorem 7, there exists a family S(q), for q ∈M , of invertible self-adjoint
operators in B(X) and constants K, δ > 0 satisfying (18), (19) and (20). For
each q ∈M and x ∈ X we have

〈B(q)∗S(f(q))B(q)x, x〉 − 〈S(q)x, x〉
= 〈(B(q)−A(q))∗S(f(q))(B(q)−A(q))x, x〉

+ 〈(B(q)−A(q))∗S(f(q))A(q)x, x〉
+ 〈A(q)∗S(f(q))(B(q)−A(q))x, x〉
+ 〈A(q)∗S(f(q))A(q)x, x〉 − 〈S(q)x, x〉.

Using (18), (19), (29) and (30), we obtain

〈B(q)∗S(f(q))B(q)x, x〉 − 〈S(q)x, x〉 ≤ −δ〈x, x〉+ c2K〈x, x〉+ 2KcC〈x, x〉
= −(δ − c2K − 2KcC)〈x, x〉

for q ∈M and x ∈ X. Thus,

B(q)∗S(f(q))B(q)− S(q) ≤ −δ̃I, (31)

where δ̃ = δ−c2K−2KcC. Note that for c sufficiently small, we have δ̃ > 0.
Similarly,

B(q)S(q)−1B(q)∗ − S(f(q))−1 ≤ −δ̃′I (32)

for some δ̃′ > 0. It follows from (18), (30), (31), (32) and Theorem 8 that
the cocycle B is hyperbolic. �

4. Partially hyperbolic cocycles

In this section we consider briefly the notion of a partially hyperbolic
cocycle. Let A be a cocycle. We say that A is partially hyperbolic if:

1. there exist projections P i(q), for q ∈M and i = 1, 2, 3, satisfying

P 1(q) + P 2(q) + P 3(q) = I, A(q)P i(q) = P i(f(q))A(q)

for q ∈M and i = 1, 2, 3 such that the operator

A(q)| ImP i(q) : ImP i(q)→ ImP i(f(q))

is invertible for each q ∈M and i = 2, 3;
2. there exist constants

D > 0, 0 ≤ a < b and 0 ≤ c < d

such that for each q ∈M we have

‖A(q, n)P 1(q)‖ ≤ De−dn, ‖A(q, n)P 3(q)‖ ≤ Dean (33)

for n ≥ 0 and

‖A(q,−n)P 2(q)‖ ≤ De−bn, ‖A(q,−n)P 3(q)‖ ≤ Decn (34)
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for n ≥ 0, with A(q,−n)P i(q) in (34) given by(
A(f−n(q), n)| ImP i(f−n(q))

)−1
: ImP i(q)→ ImP i(f−n(q))

for i = 2, 3.

The following result is a version of Theorem 7 for partially hyperbolic
cocycles.

Theorem 10. Assume that the cocycle A is partially hyperbolic and that
there exists C > 0 satisfying (17). Then there exist families Si(q), for q ∈
M and i = 1, 2, of invertible self-adjoint operators in B(X) and constants
K, δ, ω1 > 0 and ω2 < 0 such that for each q ∈M and i = 1, 2:

1.
‖Si(q)‖ ≤ K and ‖Si(q)−1‖ ≤ K; (35)

2.
e2ωiA(q)∗S(f(q))A(q)− S(q) ≤ −δI; (36)

3.
e2ωiA(q)S(q)−1A(q)∗ − S(f(q))−1 ≤ −δI. (37)

Proof. Take ω1 ∈ (c, d) and consider the cocycle B with generator B(q) =
eω1A(q). We note that

B(q, n) = eω1nA(q, n) for q ∈M and n ≥ 0.

It follows from (33) and (34) that

‖B(q, n)P 1(q)‖ ≤ De−(d−ω1)n, (38)

‖B(q,−n)P 2(q)‖ ≤ De−(b+ω1)n (39)

and
‖B(q,−n)P 3(q)‖ ≤ De−(ω1−c)n (40)

for q ∈M and n ≥ 0. By (39) and (40), we obtain

‖B(q,−n)(P 2(q) + P 3(q))‖ ≤ 2De−min{b+ω1,ω1−c}n (41)

for q ∈M and n ≥ 0. In view of (38) and (41), the cocycle B is hyperbolic.
Hence, applying Theorem 7 we obtain a family S1(q), for q ∈M , of invertible
self-adjoint operators satisfying (35), (36) and (37) for i = 1.

Now take ω2 ∈ (−b,−a) and consider the cocycle C with generator C(q) =
eω2A(q). Then

C(q, n) = eω2nA(q, n) for n ≥ 0 and q ∈M .

It follows from (33) and (34) that

‖C(q, n)P 1(q)‖ ≤ De−(d−ω2)n, (42)

‖C(q, n)P 3(q)‖ ≤ De−(−a−ω2)n (43)

and
‖C(q,−n)P 2(q)‖ ≤ De−(b+ω2)n (44)

for q ∈M and n ≥ 0. By (42) and (43), we obtain

‖C(q, n)(P 1(q) + P 3(q))‖ ≤ 2De−min{d−ω2,−a−ω2}n (45)

for q ∈M and n ≥ 0. In view of (44) and (45), the cocycle C is hyperbolic.
Again applying Theorem 7 we obtain a family S2(q), for q ∈M , of invertible
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self-adjoint operators satisfying (35), (36) and (37) for i = 2. This completes
the proof of the theorem. �

The following result is a converse of Theorem 10.

Theorem 11. Assume that the cocycle A satisfies (17) for some C > 0
and that there exists families Si(q), for q ∈ M and i = 1, 2, of invert-
ible self-adjoint operators in B(X) and constants K, δ, ω1 > 0 and ω2 < 0
satisfying (35), (36) and (37) for q ∈ X. Then the cocycle A is partially
hyperbolic.

Proof. Let B be the cocycle with B(q) = eω1A(q) and let C be the cocycle
with generator C(q) = eω2A(q). It follows from Theorem 8 that the cocycles
B and C are hyperbolic. Hence, there exist families of projections Ri(q), for
q ∈M and i = 1, 2, satisfying

A(q)Ri(q) = Ri(f(q))A(q) for q ∈M and i = 1, 2,

such that each map

A(q)|KerRi(q) : KerRi(q)→ KerRi(f(q))

is invertible, and there exists constants D,λ > 0 such that for each q ∈ X
and n ≥ 0 we have

‖B(q, n)R1(q)‖ ≤ De−λn, (46)

‖C(q, n)R2(q)‖ ≤ De−λn, (47)

‖B(q,−n)(I −R1(q))‖ ≤ De−λn (48)

and
‖C(q,−n)(I −R2(q))‖ ≤ De−λn. (49)

Lemma 6. For each q ∈M , we have

ImR1(q) ⊂ ImR2(q) and KerR2(q) ⊂ KerR1(q).

Proof of the lemma. Take v ∈ ImR1(q). It follows from Proposition 1 that
supn≥0‖B(q, n)v‖ < +∞. Since ω2 < ω1, we have

‖C(q, n)v‖ = eω2n‖A(q, n)v‖ ≤ eω1n‖A(q, n)v‖ = ‖B(q, n)v‖.
Hence, supn≥0‖C(q, n)v‖ < +∞ and by Proposition 1, we conclude that

v ∈ ImR2(q). The proof of the second inclusion is analogous. �

Lemma 7. The map R2(q)−R1(q) is a projection for each q ∈M .

Proof of the lemma. It follows from Lemma 6 that

R1(q)R2(q) = R2(q)R1(q) = R1(q)

for q ∈M . Hence,

(R2(q)−R1(q))2 = (R2(q))2 −R2(q)R1(q)−R1(q)R2(q) + (R1(q))2

= R2(q)−R1(q)−R1(q) +R1(q)

= R2(q)−R1(q),

which establishes the desired property. �

Lemma 8. For each q ∈M , we have

Im(R2(q)−R1(q)) = ImR2(q) ∩KerR1(q).



14 LUIS BARREIRA, DAVOR DRAGIČEVIĆ, AND CLAUDIA VALLS

Proof of the lemma. Take v ∈ ImR2(q) ∩ KerR1(q). We have R2(q)v = v
and R1(q)v = 0, and thus,

(R2(q)−R1(q))v = v.

This implies that v ∈ Im(R2(q)−R1(q)). Now take v ∈ Im(R2(q)−R1(q)).
Then R2(q)v − R1(q)v = v. Since ImR1(q) ⊂ ImR2(q), we conclude that
v ∈ ImR2(q). Moreover,

R1(q)v = R1(q)R2(q)v −R1(q)v = R1(q)v −R1(q)v = 0,

which implies that v ∈ KerR1(q). �

We can now complete the proof of the theorem. It follows from (46) that

‖A(q, n)R1(q)‖ ≤ De−(λ+ω1)n for q ∈M and n ≥ 0. (50)

Similarly, by (49) we have

‖A(q,−n)(I −R2(q))‖ ≤ De−(λ−ω2)n for q ∈M and n ≥ 0. (51)

Moreover, it follows from (47), (48) and Lemma 8 that for every v ∈
Im(R2(q)−R1(q)), we have

‖A(q, n)v‖ ≤ De−(λ+ω2)n‖v‖

and

‖A(q,−n)v‖ ≤ De−(λ−ω1)n‖v‖
for q ∈M and n ≥ 0. On the other hand, it follows from (46) and (47) that
‖R2(q)−R1(q)‖ ≤ 2D. Hence,

‖A(q, n)(R2(q)−R1(q))‖ ≤ 2D2e−(λ+ω2)n (52)

and

‖A(q,−n)(R2(q)−R1(q))‖ ≤ 2D2De−(λ−ω1)n (53)

for q ∈M and n ≥ 0. Finally, it follows from (50), (51), (52) and (53) that
the cocycle A is partially hyperbolic. �

The following result is a version of Theorem 9 for partially hyperbolic
cocycles. The proof can be obtained repeating the arguments in the proof
of Theorem 9, using Theorems 10 and 11 instead of Theorems 7 and 8.

Theorem 12. Let A be a partially hyperbolic cocycle satisfying (17) for
some C > 0, and let B be a cocycle with generator B such that there exists
c > 0 satisfying (29). If c > 0 is sufficiently small, then the cocycle B is
also partially hyperbolic.

5. Nonuniformly hyperbolic cocycles

In this section we establish a version of the results in Section 3 for a
nonuniformly hyperbolic cocycle. Since some arguments are analogous, at
various places we refer to the corresponding arguments in Section 3.

Given an arbitrary function K : M → (1,∞), a cocycle A is said to be
K-nonuniformly hyperbolic if:

1. there exists a family of projections P (q), for q ∈ M , satisfying (6)
such that each map in (7) is invertible;
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2. there exist constants λ,D > 0 such that for each q ∈ M and n ≥ 0
we have

‖A(q, n)P (q)‖ ≤ DK(q)e−λn (54)

and

‖A(q,−n)Q(q)‖ ≤ DK(q)e−λn, (55)

where Q(q) = I − P (q), with A(q,−n) as in (10).

The following result is a version of Theorem 7 for nonuniform hyperbolic
cocycles.

Theorem 13. Assume that the cocycle A is K-nonuniformly hyperbolic and
that there exist C, µ > 0 such that

‖A(q, n)‖ ≤ Ceµn for q ∈M and n ≥ 0. (56)

Then there exist self-adjoint operators S1(q) ≥ 0 and S2(q) ≤ 0 for q ∈ M
and constants L, r,B > 0 such that S(q) = S1(q) + S2(q) and D(q) =
S1(q)− S2(q) are invertible and satisfy

I ≤ 2D(q) and ‖D(q)‖ ≤ LK(q)2, (57)

A(q)∗S(f(q))A(q)− S(q) ≤ −rD(q), (58)

D(q)A(f−1(q))S(f−1(q))−1A(f−1(q))∗D(q)−D(q)S(q)−1D(q) ≤ −rD(q),
(59)

A(q)∗D(f(q))A(q) ≤ BD(q), (60)

S(q)D(q)−1S(q) ≤ BD(q) (61)

and

D(q)S(q)−1D(q)S(q)−1D(q) ≤ BD(q). (62)

Proof. Without loss of generality, we may assume that λ ≤ µ and so one
can take ρ ∈ (0, λ) such that

λ− ρ < µ+ ρ. (63)

For each q ∈M , let

S1(q) =
∑
n≥0

(A(q, n)P (q))∗A(q, n)P (q)e2(λ−ρ)n.

It follows from (54) that

0 ≤ 〈S1(q)x, x〉 ≤
∑
n≥0

‖A(q, n)P (q)x‖2e2(λ−ρ)n

≤ D2K(q)2
∑
n≥0

e−2λne2(λ−ρ)n‖x‖2

≤ D′K(q)2‖x‖2

for some constant D′ > 0. Clearly, S1(q) is self-adjoint and so

‖S1(q)‖ = sup
‖x‖=1

〈S1(q)x, x〉 ≤ D′K(q)2. (64)

Lemma 9. For each q ∈M we have

A(q)∗S1(f(q))A(q)− S1(q) ≤ (e−2(λ−ρ) − 1)S1(q). (65)
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Proof of the lemma. By (6), we have

A(q)∗S1(f(q))A(q)− S1(q)

= e−2(λ−ρ)
∑
n≥1

(A(q, n)P (q))∗A(q, n)P (q)e2(λ−ρ)n

−
∑
n≥0

(A(q, n)P (q))∗A(q, n)P (q)e2(λ−ρ)n

= −e−2(λ−ρ)P (q)∗P (q) + (e−2(λ−ρ) − 1)S1(q)

≤ (e−2(λ−ρ) − 1)S1(q),

which establishes inequality (65). �

Before proceeding, we note that it follows from (55) and (56) that for
q ∈M and n ≥ 0 we have

‖A(q, n)Q(q)‖ ≤ CDK(q)eµn. (66)

For each q ∈M , let

S2(q) = −
∑
n>0

(A(q,−n)Q(q))∗A(q,−n)Q(q)e2(λ−ρ)n

−
∑
n≥0

(A(q, n)Q(q))∗A(q, n)Q(q)e−2(µ+ρ)n.

By (55) and (66), we have

0 ≤ 〈−S2(q)x, x〉 =
∑
n>0

‖A(q,−n)Q(q)x‖2e2(λ−ρ)n

+
∑
n≥0

‖A(q, n)Q(q)x‖2e−2(µ+ρ)n

≤ D2K(q)2
∑
n>0

e−2λne2(λ−ρ)n‖x‖2

+ C2D2K(q)2
∑
n≥0

e2µne−2(µ+ρ)n‖x‖2

≤ D′′K(q)2‖x‖2

for some constant D′′ > 0. Clearly, S(q)2 is self-adjoint and so

‖S2(q)‖ = sup
‖x‖=1

〈−S2(q)x, x〉 ≤ D′′K(q)2. (67)

Lemma 10. Each operator D(q) is invertible and the first inequality in (57)
holds.

Proof of the lemma. We have

‖D(q)x‖ · ‖x‖ ≥ 〈D(q)x, x〉 = 〈S1(q)x, x〉+ 〈(−S2(q))x, x〉

≥ ‖P (q)x‖2 + ‖Q(q)x‖2 ≥ 1

2
‖x‖2

(68)

(see (23)) and hence,

‖D(q)x‖ ≥ 1

2
‖x‖ for q ∈M and x ∈ X. (69)
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It follows from (69) that D(q) is injective and that ImD(q) is closed in X.
Indeed, assume that (D(q)xn)n is a sequence in ImD(q) that converges to
y ∈ X. By (69), we have

‖D(q)xn −D(q)xm‖ ≥
1

2
‖xn − xm‖

for m,n ∈ N, which readily implies that (xn)n is a Cauchy sequence in X.
Hence, it converges to some point x ∈ X. Since D(q) is continuous, we
conclude that D(q)xn converges to D(q)x and so y = D(q)x ∈ ImD(q).
Moreover, since D(q) is self-adjoint, we have

ImD(q) = ImD(q) = (KerD(q)∗)⊥ = (KerD(q))⊥ = {0}⊥ = X,

which implies that D(q) is onto. Therefore, D(q) is invertible. Moreover,
the first inequality in (57) follows directly from (68). �

By (64) and (67), the second inequality in (57) holds with L = D′ +D′′.

Lemma 11. For each q ∈M we have

A(q)∗S2(f(q))A(q)− S2(q) ≤ (1− e2(λ−ρ))(−S2(q)). (70)

Proof of the lemma. By (6), proceeding as in (21) and (22) we obtain

A(q)∗S2(f(q))A(q)− S2(q)

= −e2(λ−ρ)
∑
n≥0

(A(q,−n)Q(q))∗A(q, n)Q(q)e2(λ−ρ)n

+
∑
n>0

(A(q,−n)Q(q))∗A(q, n)Q(q)e2(λ−ρ)n

− e2(µ+ρ)
∑
n≥1

(A(q, n)Q(q))∗A(q, n)Q(q)e−2(µ+ρ)n

+
∑
n≥0

(A(q, n)Q(q))∗A(q, n)Q(q)e−2(µ+ρ)n

= −e2(λ−ρ)Q(q)∗Q(q) + e2(µ+ρ)Q(q)∗Q(q)

+ (1− e2(λ−ρ))
∑
n>0

(A(q,−n)Q(q))∗A(q, n)Q(q)e2(λ−ρ)n

+ (1− e2(µ+ρ))
∑
n≥0

(A(q, n)Q(q))∗A(q, n)Q(q)e−2(µ+ρ)n

= (1− e2(λ−ρ))(−S2(q))

+ (e2(λ−ρ) − e2(µ+ρ))
∑
n≥1

(A(q, n)Q(q))∗A(q, n)Q(q)e−2(µ+ρ)n

and the desired property follows from (63). �

It follows readily from (65) and (70) that (58) holds taking

r = min{e2(λ−ρ) − 1, 1− e−2(λ−ρ)} > 0.

For each q ∈M , we define a scalar product on X by

〈x, y〉q = 〈D(q)x, y〉 for x, y ∈ X, (71)

and we denote the corresponding norm by ‖·‖q.
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Lemma 12. For each q ∈M , x ∈ X and n ≥ 0, we have

‖A(q, n)P (q)x‖fn(q) ≤ e−(λ−ρ)n‖x‖q (72)

and
‖A(q,−n)Q(q)x‖f−n(q) ≤ e−(λ−ρ)n‖x‖q. (73)

Moreover, there exists B > 0 satisfying (60).

Proof of the lemma. We have

‖A(q)P (q)x‖2f(q) =
∑
n≥0

‖A(f(q), n)P (f(q))A(q)P (q)x‖2e2(λ−ρ)n

≤ e−2(λ−ρ)
∑
n≥1

‖A(q, n)P (q)x‖2e2(λ−ρ)n

≤ e−2(λ−ρ)‖x‖2q
for q ∈M . Iterating the procedure, we obtain (72). Similarly,

‖A(q)−1Q(f(q))x‖2q =
∑
n>0

‖A(f(q),−(n+ 1))Q(f(q))x‖2e2(λ−ρ)n

+
∑
n≥0

‖A(f(q), n− 1)Q(f(q))x‖2e−2(µ+ρ)n

= e−2(λ−ρ)
∑
n>0

‖A(f(q),−n)Q(f(q))x‖2e2(λ−ρ)n

+ e−2(µ+ρ)
∑
n≥0

‖A(f(q), n)Q(f(q))x‖2e−2(µ+ρ)n

− ‖A(q)−1Q(f(q))x‖2 + ‖A(q)−1Q(f(q))x‖2

≤ e−2(λ−ρ)‖x‖2f(q)

and hence inequality (73) holds.
Moreover,

‖A(q)Q(q)x‖2f(q) =
∑
n>0

‖A(q,−(n− 1))Q(q)x‖2e2(λ−ρ)n

+
∑
n≥0

‖A(q, n+ 1)Q(q)x‖2e−2(µ+ρ)n

= e2(λ−ρ)
∑
n>0

‖A(q,−n)Q(q)x‖2e2(λ−ρ)n

+ e2(µ+ρ)
∑
n≥0

‖A(q, n)Q(q)x‖2e−2(µ+ρ)n

+ e2(λ−ρ)‖Q(q)x‖2 − e2(µ+ρ)‖Q(q)x‖2

≤ e2(µ+ρ)‖x‖2q
and so,

‖A(q)Q(q)x‖f(q) ≤ eµ+ρ‖x‖q. (74)

By (72) and (74), we obtain

‖A(q)x‖f(q) ≤ ‖A(q)P (q)x‖f(q) + ‖A(q)Q(q)x‖f(q) ≤ 2eµ+ρ‖x‖q,

which shows that (60) holds with B = 4e2(µ+ρ). �
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Now let Yq and Tq be as in (11) and (13). It follows from (56) that Tq is
well-defined.

Lemma 13. The adjoint T ∗q : Yq → Yq is given by

(T ∗q x)n = D(fn(q))−1A(fn(q))∗D(fn+1(q))yn+1 (75)

for n ∈ Z and x = (xn)n∈Z ∈ Yq.

Proof of the lemma. For each x = (xn)n∈Z and y = (yn)n∈Z ∈ Yq, we have

〈Tqx,y〉 =
∑
n∈Z
〈(Tqx)n, yn〉fn(q) =

∑
n∈Z
〈A(fn−1(q))xn−1, yn〉fn(q)

=
∑
n∈Z
〈D(fn(q))A(fn−1(q))xn−1, yn〉

=
∑
n∈Z
〈xn−1, A(fn−1(q))∗D(fn(q))yn〉

=
∑
n∈Z
〈D(fn−1(q))xn−1, D(fn−1(q))−1A(fn−1(q))∗D(fn(q))yn〉

=
∑
n∈Z
〈xn−1, D(fn−1(q))−1A(fn−1(q))∗D(fn(q))yn〉fn−1(q),

which yields the desired result. �

Lemma 14. There exists B > 0 satisfying (61).

Proof of the lemma. We first note that

S(q)P (q)x = D(q)P (q)x = S1(q)x

and

S(q)Q(q)x = −D(q)Q(q)x = S2(q)x.

Hence,

‖D(q)−1S(q)x‖q ≤ ‖D(q)−1S(q)P (q)x‖q + ‖D(q)−1S(q)Q(q)x‖q
= ‖D(q)−1D(q)P (q)x‖q + ‖D(q)−1D(q)Q(q)x‖q
= ‖P (q)x‖q + ‖Q(q)x‖q ≤ 2‖x‖q.

Since

‖D(q)−1S(q)x‖2q = 〈S(q)D(q)−1S(q)x, x〉 and ‖x‖q = 〈D(q)x, x〉,

we conclude that (61) holds with B = 4. �

Now we define an operator Wq : Yq → Yq by

(Wqx)n = D(fn(q))−1S(fn(q))xn for n ∈ Z and x = (xn)n∈Z ∈ Yq. (76)

It follows from Lemma 14 that Wq is well defined.

Lemma 15. The operator Wq is self-adjoint.
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Proof of the lemma. For each x = (xn)n∈Z and y = (yn)n∈Z ∈ Yq, we have

〈Wqx,y〉 =
∑
n∈Z
〈D(fn(q))−1S(fn(q))xn, yn〉fn(q) =

∑
n∈Z
〈S(fn(q))xn, yn〉

=
∑
n∈Z
〈xn, S(fn(q))yn〉 =

∑
n∈Z
〈D(fn(q))xn, D(fn(q))−1S(fn(q))yn〉

=
∑
n∈Z
〈xn, D(fn(q))−1S(fn(q))yn〉fn(q) = 〈x,Wqy〉,

which shows that Wq is self-adjoint. �

It follows from (58) and (75) that

〈T ∗qWqTqx,x〉 − 〈Wqx,x〉

=
∑
n∈Z
〈D(fn(q))−1A(fn(q))∗S(fn+1(q))A(fn(q))xn, xn〉fn(q)

−
∑
n∈Z
〈D(fn(q))−1S(fn(q))xn, xn〉fn(q)

=
∑
n∈Z
〈(A(fn(q))∗S(fn+1(q))A(fn(q))− S(fn(q)))xn, xn〉

≤ −r
∑
n∈Z
〈D(fn(q))xn, xn〉

= −r
∑
n∈Z
〈xn, xn〉fn(q) = −r〈x,x〉

for x = (xn)n∈Z ∈ Yq. Hence,

T ∗qWqTq −Wq ≤ −rI on Yq.

It follows from Theorems 1 and 5 together with Lemma 15 that the operator
Wq is invertible. Proceeding as in the proof of Lemma 3, one can show that
the function q → ‖W−1

q ‖ is bounded. Moreover, proceeding as in the proof
of Lemma 4, one concludes that the operators S(q) are invertible.

Lemma 16. There exists B > 0 satisfying (62).

Proof of the lemma. We have that

(W−1
q x)n = S(fn(q))−1D(fn(q))xn for n ∈ Z and x = (xn)n∈Z ∈ Yq.

(77)
Given v ∈ X, define x = (xn)n∈Z ∈ Y by x0 = v and xn = 0 for n 6= 0.
Then

〈D(q)S(q)−1D(q)v, S(q)−1D(q)v〉 ≤ ‖W−1
q x‖2 ≤ ‖W−1

q ‖2 · ‖x‖2

≤ ‖W−1
q ‖2 · 〈D(q)v, v〉.

Hence, (62) holds with B = supq∈M‖W−1
q ‖. �

The remainder of the argument is analogous to that in the proof of The-
orem 7 leading to (26), and we conclude that there exists r′ > 0 such that

TqW
−1
q T ∗q −W−1

q ≤ −r′I on Yq

for every q ∈M . This establishes inequality (59). �
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Now we establish the converse of Theorem 13.

Theorem 14. Let A be a cocycle and assume that there exist self-adjoint
operators S1(q) ≥ 0 and S2(q) ≤ 0, for q ∈ M , and constants L, r,B > 0
such that S(q) = S1(q) +S2(q) and D(q) = S1(q)−S2(q) are invertible and
satisfy (57)–(62). Then A is K-nonuniformly hyperbolic.

Proof. Let Yq be as in (11), where ‖·‖q is the norm induced by the scalar
product in (71). Moreover, let Tq be the operator on Yq given by (13). It
follows from (60) that Tq is well-defined. Finally, let Wq be the operator
in (76). It follows from (61) that Wq is also well-defined. Moreover, by (62),
Wq is invertible and W−1

q is given by (77). It follows from (58) and (59)
that

T ∗qWqTq −Wq ≤ −rI and TqW
−1
q T ∗q −W−1

q ≤ −rI
for q ∈ M . Hence, by Theorem 2, the operator Tq is hyperbolic and so in
particular I − Tq is invertible. Proceeding as in the proof of Theorem 8,
we conclude that the map q 7→ ‖(I − Tq)

−1‖ is bounded on M . Hence,
by Theorem 6, there exist projections P (q), for q ∈ M , satisfying (6) and
constants D,λ > 0 such that

‖A(q, n)x‖fn(q) ≤ De−λn‖x‖q (78)

and

‖A(q,−n)x‖f−n(q) ≤ De−λn‖x‖q, (79)

for q ∈ M , n ≥ 0 and x ∈ X. It follows from (57), (78) and (79) that the
cocycle A is K-nonuniformly hyperbolic. �
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13. J. Lewowicz, Lyapunov functions and stability of geodesic flows, in Geometric Dynam-
ics (Rio de Janeiro, 1981), edited by J. Palis, Lect. Notes. in Math. 1007, Springer,
1983, pp. 463–479.

14. A. Maizel, On stability of solutions of systems of differential equations, Trudi Ural-
skogo Politekhnicheskogo Instituta, Mathematics 51 (1954), 20–50.
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