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Departamento de Matemática, Instituto Superior Técnico
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1. Introduction

Our main aim is to establish a Perron-type result for the perturbations of a linear
cocycle. This means showing that the Lyapunov exponents of the cocycle are pre-
served under sufficiently small nonautonomous perturbations. For example, for a
linear cocycle over a measure-preserving transformation satisfying a natural inte-
grability assumption, it follows from the Multiplicative Ergodic Theorem that the
dynamics admits what is sometimes called a tempered exponential dichotomy if
and only if all Lyapunov exponents are nonzero almost everywhere. In this par-
ticular case, our Perron-type result implies that all Lyapunov exponents are also
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nonzero under sufficiently small nonautonomous perturbations. We refer to [1] for
a detailed exposition of the smooth ergodic theory, which goes back to Oseledets [9]
and particularly Pesin [11]. More recently, Lian and Lu [7] considered cocycles with
values on the set of bounded linear operators acting on a separable Banach space.

In order to simplify the exposition, in the introduction we mention only the case
of ordinary differential equations. Consider the linear equation

x′ = A(t)x (1.1)

and its perturbations

x′ = A(t)x + f(t, x). (1.2)

It is shown in [2] that if the perturbation is so small that

lim
t→+∞ eδt sup

x �=0

‖f(t, x)‖
‖x‖ = 0

for some δ > 0 and all the Lyapunov exponents of the linear equation in (1.1)
are limits, then for any solution x(t) of the nonlinear equation in (1.2) that is not
eventually zero, the limit

λ = lim
t→+∞

1
t

log ‖x(t)‖
exists and coincides with a Lyapunov exponent of Eq. (1.1). In the particular case
of perturbations of a differential equation x′ = Ax with constant coefficients, the
corresponding result can be found in Coppel’s book [4]. Earlier work is due to
Perron [10], Lettenmeyer [6] and Hartman and Wintner [5]. Corresponding results
for perturbations of autonomous delay equations were obtained by Pituk [12, 13]
(for values in Cn and finite delay) and Matsui, Matsunaga and Murakami [8] (for
values in a Banach space and infinite delay). Related results for perturbations of
autonomous difference equations were first obtained by Coffman [3].

Our approach is based on the Lyapunov theory of regularity (see [1]), which
allows one to obtain exponential bounds for an evolution operator in terms of the
Lyapunov exponents and of the Lyapunov regularity coefficient. The remaining part
of the argument is inspired in work of Pituk [12] where he established a correspond-
ing result for perturbations of linear delay equations.

2. Basic Notions

We first introduce some basic notions. Let θ : Ω → Ω be a measurable map with
measurable inverse preserving a probability measure µ on Ω. Then µ(θ(A)) = µ(A)
for any measurable set A ⊂ Ω. Moreover, let GLd be the set of all invertible d × d

matrices. A measurable map Φ : Z × Ω → GLd is called a cocycle over θ or simply
a cocycle if:

(1) Φ(0, ω) = Id for ω ∈ Ω;
(2) Φ(n + m, ω) = Φ(n, θm(ω))Φ(m, ω) for m, n ∈ Z and ω ∈ Ω.

1550058-2

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 S
O

U
T

H
 W

A
L

E
S 

on
 0

5/
05

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

July 2, 2015 15:41 WSPC/S0219-1997 152-CCM 1550058

Tempered exponential dichotomies and Lyapunov exponents for perturbations

The measurable map A : Ω → GLd defined by A(ω) = Φ(1, ω) is called the generator
of Φ. On the other hand, given a measurable map A : Ω → GLd, we obtain a cocycle
by letting

Φ(n, ω) =




A(θn−1(ω)) · · ·A(ω), n > 0,

Id, n = 0,

A(θn(ω))−1 · · ·A(θ−1(ω))−1, n < 0

for n ∈ Z and ω ∈ Z.
We say that a cocycle Φ admits a tempered exponential dichotomy if there

exist projections P (ω) for ω ∈ Ω and measurable functions α : Ω → (0, +∞)
and K : Ω → [1, +∞) such that for µ-almost every ω ∈ Ω:

(1) α(θ(ω)) = α(ω) and

lim sup
n→±∞

1
|n| log K(θn(ω)) = 0; (2.1)

(2)

P (θn(ω))Φ(n, ω) = Φ(n, ω)P (ω) for n ∈ Z; (2.2)

(3)

‖Φ(n, ω)P (ω)‖ ≤ K(ω)e−α(ω)n for n ≥ 0

and

‖Φ(n, ω)(Id − P (ω))‖ ≤ K(ω)eα(ω)n for n ≤ 0.

We note that the notion of a tempered exponential dichotomy occurs naturally
in the context of ergodic theory. Namely, assume that the generator A of a cocycle
Φ satisfies the integrability condition

log+‖A‖, log+‖A−1‖ ∈ L1(Ω, µ), (2.3)

where log+ x = max{logx, 0} and L1(Ω, µ) is the set of all µ-integrable functions
on Ω. Then the Multiplicative Ergodic Theorem (see, for example, [1]) tells us that
µ-almost every point is Lyapunov regular. This means that for µ-almost every ω ∈ Ω
there exist numbers λ1(ω) < λ2(ω) < · · · < λs(ω)(ω), for some integer s(ω) ∈ [1, d],
and a decomposition

R
d = E1(ω) ⊕ E2(ω) ⊕ · · · ⊕ Es(ω)(ω)

such that

lim
n→±∞

1
|n| log‖Φ(n, ω)v‖ = λi(ω) (2.4)

for v ∈ Ei(ω)\{0} and i = 1, . . . , s(ω), and

lim
n→±∞

1
|n| log|det Φ(n, ω)| =

s(ω)∑
i=1

λi(ω) (2.5)
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(that is, the limits in (2.4) and (2.5) exist and are given by the respective right-
hand sides). The numbers λ1(ω), . . . , λs(ω)(ω) are called the Lyapunov exponents.
We notice that

s(θ(ω)) = s(ω) and λi(θ(ω)) = λi(ω)

for i = 1, . . . , s(ω) and for ω in a set of full µ-measure (that can be assumed to be
θ-invariant). The following well-known result shows that the notion of a tempered
exponential dichotomy occurs naturally (see, for example, [1]).

Proposition 2.1. Let Φ be a cocycle whose generator satisfies condition (2.3).
If for µ-almost every ω ∈ Ω the Lyapunov exponents are nonzero, that is, if
λi(ω) 	= 0 for i = 1, . . . , s(ω), then the cocycle Φ admits a tempered exponen-
tial dichotomy with the projections P (ω) obtained from the decomposition Rd =
Es(ω) ⊕ Eu(ω), where

Es(ω) =
⊕

λi(ω)<0

Ei(ω) and Eu(ω) =
⊕

λi(ω)>0

Ei(ω).

3. The Case of Discrete Time

3.1. Main result

This section contains our main result showing that under certain mild additional
assumptions the exponential growth rate of any solution of a nonlinear perturbation
of a cocycle Φ is a limit whose value is in fact a Lyapunov exponent of the cocycle. In
other words, the only possible exponential growth rates for a nonlinear perturbation
of a cocycle are those of the original linear dynamics determined by the cocycle.

More precisely, for each ω ∈ Ω, we consider the dynamics

xn+1 = A(θn(ω))xn + fn(ω, xn), n ∈ Z, (3.1)

for some continuous maps fn(ω, ·) : R
d → R

d. The following is our main result.

Theorem 3.1. Let Φ be a cocycle whose generator satisfies condition (2.3) and let
fn(ω, ·) be continuous functions such that

lim sup
n→+∞

1
n

log sup
x �=0

‖fn(ω, x)‖
‖x‖ < 0 (3.2)

for µ-almost every ω ∈ Ω. Then, for µ-almost every ω ∈ Ω, each solution (xn)n∈Z

of (3.1) satisfies one of the following alternatives:

(1) xn = 0 for any sufficiently large n;
(2) there exists i ∈ {1, . . . , s(ω)} such that

lim
n→+∞

1
n

log‖xn‖ = λi(ω). (3.3)

The proof of Theorem 3.1 is given in Sec. 5.
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3.2. Further results

In this section we obtain further results related to Theorem 3.1. We start by showing
that not only the Lyapunov exponents of a nonlinear perturbation are Lyapunov
exponents of the linear system, but also the components along the directions other
than the one selected by the perturbation are asymptotically smaller, in some pre-
cise sense. Namely, assume that (3.3) holds and consider the projections P (ω), Q(ω)
and R(ω) associated to the decomposition

R
d = F (ω) ⊕ G(ω) ⊕ Ei(ω),

where

F (ω) =
⊕

λj<λi

Ej(ω) and G(ω) =
⊕

λj>λi

Ej(ω).

For each n ∈ N, we write xn = yn + zn + wn, where

yn = P (θn(ω))xn, zn = Q(θn(ω))xn and wn = R(θn(ω))xn.

Theorem 3.2. Under the assumptions of Theorem 3.1, for µ-almost every ω ∈ Ω,

each solution (xm)m∈Z of (3.1) satisfying (3.3) also satisfies

lim
n→+∞

‖yn‖θn(ω)

‖wn‖θn(ω)
= 0 (3.4)

and

lim
n→+∞

‖zn‖θn(ω)

‖wn‖θn(ω)
= 0. (3.5)

The proof of Theorem 3.2 is given in Sec. 6.
By reversing the time direction we obtain similar results to those in Theorems 3.1

and 3.2 when the time goes backwards.

Theorem 3.3. Let Φ be a cocycle whose generator satisfies condition (2.3) and let
fn(ω, ·) be continuous functions such that

lim sup
n→−∞

1
|n| log sup

x �=0

‖fn(ω, x)‖
‖x‖ < 0

for µ-almost every ω ∈ Ω. Then, for µ-almost every ω ∈ Ω, each solution (xn)n∈Z

of (3.1) satisfies one of the following alternatives:

(1) xn = 0 for any sufficiently small n;
(2) there exists i ∈ {1, . . . , s(ω)} such that

lim
n→−∞

1
|n| log‖xn‖ = λi(ω).

Moreover, if the second alternative holds, then

lim
n→−∞

‖yn‖θn(ω)

‖wn‖θn(ω)
= 0 and lim

n→−∞
‖zn‖θn(ω)

‖wn‖θn(ω)
= 0.
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Now we describe a consequence of Theorem 3.1 for linear perturbations. One
could also obtain a corresponding result for negative time. For each ω ∈ Ω, consider
the dynamics

xn+1 = [A(θnω) + B(θnω)]xn, (3.6)

for some measurable map B : Ω → Md, where Md is the set of all d × d matrices.
This induces a cocycle Ψ whose generator is A + B.

Theorem 3.4. Let Φ be a cocycle whose generator satisfies condition (2.3) and let
B be a measurable map such that

lim sup
n→+∞

1
n

log‖B(θn(ω))‖ < 0

for µ-almost every ω ∈ Ω. Then, for µ-almost every ω ∈ Ω, the Lyapunov exponents
of the cocycles Φ and Ψ are the same.

Proof. The statement follows from the fact that the dynamics xn+1 = A(θnω)xn

can also be seen as a perturbation of (3.6), satisfying the same hypotheses.

In particular, if the dynamics defined by Φ admits a tempered exponential
dichotomy, then it follows from Theorem 3.4 that the same happens to the dynamics
defined by Ψ.

4. The Case of Continuous Time

In this section we describe how one can obtain corresponding results to those in
the former sections for a dynamics with continuous time.

A measurable map ϕ : R × Ω → Ω is said to be a flow on Ω if:

(1) ϕ(0, ω) = ω for ω ∈ Ω;
(2) ϕ(t + s, ω) = ϕ(t, ϕ(s, ω)) for t, s ∈ R and ω ∈ Ω.

We also consider the maps ϕt = ϕ(t, ·). A measurable map Φ : R × Ω → GLd is
said to be a cocycle over ϕ or simply a cocycle if:

(1) Φ(0, ω) = Id for ω ∈ Ω;
(2) Φ(t + s, ω) = Φ(t, ϕs(ω))Φ(s, ω) for t, s ∈ R and ω ∈ Ω.

One can easily verify that Φ is a cocycle over ϕ if and only if the map

(t, ω, x) 
→ (ϕt(x), Φ(t, ω)x)

is a flow on Ω × X .
We say that a cocycle Φ admits a tempered exponential dichotomy if there

exist projections P (ω) for ω ∈ Ω and measurable functions α : Ω → (0, +∞) and
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K : Ω → [1, +∞) such that for µ-almost every ω ∈ Ω:

(1) α(θ(ω)) = α(ω) and

lim sup
t→±∞

1
|t| log K(ϕt(ω)) = 0;

(2)

P (ϕt(ω))Φ(t, ω) = Φ(t, ω)P (ω) for t ∈ R;

(3)

‖Φ(t, ω)P (ω)‖ ≤ K(ω)e−α(ω)t for t ≥ 0

and

‖Φ(t, ω)(Id − P (ω))‖ ≤ K(ω)eα(ω)n for t ≤ 0.

By the Multiplicative Ergodic Theorem for flows (see, for example, [1]), if

log+ sup
−1≤t≤1

‖Φ(t, ·)‖ ∈ L1(Ω, µ), (4.1)

then for µ-almost every ω ∈ Ω there exist numbers λ1(ω) < λ2(ω) < · · · < λs(ω)(ω),
for some integer s(ω) ∈ [1, d], and a decomposition

R
d = E1(ω) ⊕ E2(ω) ⊕ · · · ⊕ Es(ω)(ω)

such that

lim
t→±∞

1
|t| log‖Φ(t, ω)v‖ = λi(ω) (4.2)

for v ∈ Ei(ω)\{0} and i = 1, . . . , s(ω), and

lim
t→±∞

1
|t| log|detΦ(t, ω)| =

s(ω)∑
i=1

λi(ω). (4.3)

Again we notice that s(θ(ω)) = s(ω) and λi(θ(ω)) = λi(ω) for i = 1, . . . , s(ω) and
for ω in a set of full µ-measure (that can be assumed to be θ-invariant).

Using the information given by (4.2) and (4.3) we can obtain a version of The-
orem 3.1 for flows. Namely, for each ω ∈ Ω, given a cocycle Φ over a flow ϕ and a
function f : R × Ω × Rd → Rd, with (t, x) 
→ f(t, ω, x) continuous for each ω ∈ Ω,
consider the unique map Ψ : R × Ω → Rd such that

Ψω(t, s) = Φω(t, s) +
∫ t

s

Φω(t, τ)f(τ, ω, Φω(τ, s))dτ

for ω ∈ Ω and t, s ∈ R, where

Φω(t, s) = Φ(t, ω)Φ(s, ω)−1 and Ψω(t, s) = Ψ(t, ω)Ψ(s, ω)−1.

The following result is a continuous time version of Theorem 3.1. The proof
follows along the same lines and thus it is omitted.
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Theorem 4.1. Let Φ be a cocycle over a flow satisfying condition (4.1) and let f

be a function such that

lim
t→+∞

1
t

log sup
x �=0

‖f(t, ω, x)‖
‖x‖ < 0

for µ-almost every ω ∈ Ω. Then, for µ almost every ω ∈ Ω, the function x(t) =
Ψω(t, 0)x satisfies one of the following alternatives:

(1) x(t) = 0 for any sufficiently large t;
(2) there exists i ∈ {1, . . . , s(ω)} such that

lim
t→+∞

1
t

log‖x(t)‖ = λi(ω).

5. Proof of Theorem 3.1

We define

γn(ω) = sup
x �=0

‖fn(ω, x)‖
‖x‖ .

Then

‖fn(ω, x)‖ ≤ γn(ω)‖x‖ for n ∈ Z and x ∈ X. (5.1)

Moreover, it follows from (3.2) that for µ-almost every ω ∈ Ω there exists δ(ω) > 0
such that

lim
n→+∞ eδ(ω)nγn(ω) = 0. (5.2)

We denote by Ω̃ ⊂ Ω the set of full µ-measure formed by all points ω ∈ Ω for which
properties (2.4), (2.5) and (5.2) hold. For simplicity of the notation, from now on we
shall always write s(ω) = s, λi(ω) = λi, γn = γn(ω), δ = δ(ω) and Kn = K(θn(ω)).

Lemma 5.1. For each ω ∈ Ω̃, we have

lim sup
k→+∞

1
k

log‖xk‖ ≤ λs.

Proof. Take d > λs. Then there exists a measurable function K : Ω → [1, +∞)
satisfying (2.1) such that

‖Φ(n, θm(ω))‖ ≤ K(θm(ω))edn for n ≥ 0 and m ∈ Z. (5.3)

It follows from (3.1) that

xm = Φ(m − n, θn(ω))xn +
m−1∑
k=n

Φ(m − k − 1, θk+1(ω))fk(ω, xk)

for m ≥ n. By (5.1) and (5.3), we obtain

‖xm‖ ≤ Kned(m−n)‖xn‖ +
m−1∑
k=n

Kk+1e
d(m−k−1)γk‖xk‖ (5.4)
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for m ≥ n. On the other hand, by (2.1), given ε < δ, there exists a constant
D = D(ω) > 0 such that

Kn = K(θn(ω)) ≤ Deεn for n ≥ 0. (5.5)

It follows from (5.1), (5.4) and (5.5) that

‖xm‖ ≤ Ded(m−n)+εn‖xn‖ + D

m−1∑
k=n

ed(m−k−1)+ε(k+1)γk‖xk‖

= De(d(m−n)+εn‖xn‖ + D′ed(m−n)
m−1∑
k=n

e−d(k−n)+εkγk‖xk‖

and so,

e−d(m−n)‖xm‖ ≤ Deεn‖xn‖ + D′
m−1∑
k=n

e−d(k−n)+εkγk‖xk‖

for m ≥ n, where D′ = Deε−d. One can now use induction to show that

‖xm‖ ≤ Ded(m−n)+εn‖xn‖e
Pm−1

k=n D′eεkγk (5.6)

for m ≥ n. By (5.2), given η > 0, there exists n ∈ N such that D′eεkγk < η for
k ≥ n. Hence,

‖xm‖ ≤ De(d+η)(m−n)+εn‖xn‖
for m ≥ n and so,

lim sup
m→+∞

1
m

log‖xm‖ ≤ d + η.

Letting η → 0 and d ↘ λs, we obtain the desired result.

Lemma 5.2. For each ω ∈ Ω̃ and any solution (xn)n∈Z of (3.1) not satisfying the
first alternative in the theorem, we have

lim inf
k→+∞

1
k

log‖xk‖ ≥ λ1.

Proof. We first note that x1 	= 0, since otherwise it would follow from (5.6) that
xn = 0 for all n ∈ N. Take d < λ1. Then there exists a measurable function
K : Ω → [1, +∞) satisfying (2.1) such that

‖Φ(n, θm(ω))‖ ≤ K(θm(ω))edn for n ≤ 0 and m ∈ Z.

Proceeding in a similar manner to that in the proof of Lemma 5.1, we find that

‖xm‖ ≤ D‖xn‖e−d(n−m)+εne
Pn−1

k=m D′eδkγk

for m ≤ n, where D′ = D′(ω) > 0 is a constant. Given η > 0, there exists m ∈ N

such that D′eεkγk < η for k ≥ m. Hence,

lim inf
k→+∞

1
k

log‖xk‖ ≥ d − ε − η.

Letting η, ε → 0 and d ↗ λ1, we obtain the desired result.
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Now take c = c(ω) 	= λi(ω) for i ∈ {1, . . . , s} and ω ∈ Ω̃. It follows from Propo-
sition 2.1 that the cocycle Ψ(n, ω) = e−c(ω)nΦ(n, ω) admits a tempered exponential
dichotomy with projections

P (ω) : R
d →

⊕
λi<c

Ei(ω) and Q(ω) : R
d →

⊕
λi>c

Ei(ω)

satisfying P (ω) + Q(ω) = Id. Hence, there exist α = α(ω) > 0 and a measurable
function K : Ω → [1, +∞) satisfying (2.1) such that

‖Φ(n, ω)P (ω)‖ ≤ K(ω)e(c−α)n, n ≥ 0, (5.7)

and

‖Φ(n, ω)Q(ω)‖ ≤ K(ω)e(c+α)n, n ≤ 0, (5.8)

for ω ∈ Ω̃. For each ω ∈ Ω̃, we consider the norm ‖·‖ω on Rd defined by

‖x‖ω = sup
n≥0

(‖Φ(n, ω)P (ω)‖e−(c−α)n) + sup
n≤0

(‖Φ(n, ω)Q(ω)‖)e−(c+α)n) (5.9)

(writing c = c(ω) and α = α(ω) for simplicity of the notation).
It follows from (5.7) and (5.8) that

‖x‖ ≤ ‖x‖ω ≤ 2K(ω)‖x‖ for ω ∈ Ω̃ and x ∈ R
d. (5.10)

Lemma 5.3. For each ω ∈ Ω̃ and x ∈ Rd, we have

‖Φ(n, ω)P (ω)x‖θn(ω) ≤ e(c−α)n‖x‖ω for n ≥ 0 (5.11)

and

‖Φ(n, ω)Q(ω)x‖θn(ω) ≤ e(c+α)n‖x‖ω for n ≤ 0. (5.12)

Proof. We have

‖Φ(m, ω)P (ω)x‖θm(ω) = sup
n≥0

(‖Φ(n, θm(ω))P (θm(ω))Φ(m, ω)P (ω)x‖e−(c−α)n)

= e(c−α)m sup
n≥0

(‖Φ(n + m, ω)P (ω)x‖e−(c−α)(n+m))

≤ e(c−α)m‖x‖ω

for x ∈ Rd and so (5.11) holds. One can establish (5.12) in a similar manner.

Now let

yk = P (θk(ω))xk and zk = Q(θk(ω))xk

for k ∈ Z. It follows from (2.2) and (3.1) that

yk+1 = A(θk(ω))yk + P (θk+1(ω))fk(ω, xk)

and

zk+1 = A(θk(ω))zk + Q(θk+1(ω))fk(ω, xk)

1550058-10
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for k ∈ Z and ω ∈ Ω̃. Hence, by (5.1), (5.7), (5.10) and (5.11), we obtain

‖yk+1‖θk+1(ω) ≤ ec−α‖yk‖θk(ω) + ‖P (θk+1(ω))fk(ω, xk)‖θk+1(ω)

≤ ec−α‖yk‖θk(ω) + 2Kk+1‖P (θk+1(ω))fk(ω, xk)‖
≤ ec−α‖yk‖θk(ω) + 2K2

k+1‖fk(ω, xk)‖
≤ ec−α‖yk‖θk(ω) + 2K2

k+1γk‖xk‖
≤ ec−α‖yk‖θk(ω) + 2K2

k+1γk(‖yk‖θk(ω) + ‖zk‖θk(ω)) (5.13)

for k ∈ Z and ω ∈ Ω̃. Similarly, it follows from (5.1), (5.8), (5.10) and (5.12) that

‖zk+1‖θk+1(ω) ≥ ec+α‖zk‖θk(ω) − 2K2
k+1γk(‖yk‖θk(ω) + ‖zk‖θk(ω)) (5.14)

for k ∈ Z and ω ∈ Ω̃.

Lemma 5.4. For each ω ∈ Ω̃, we have either

‖zk‖θk(ω) ≤ ‖yk‖θk(ω) for all sufficiently large k (5.15)

or

‖yk‖θk(ω) < ‖zk‖θk(ω) for all sufficiently large k. (5.16)

Proof. It follows from (5.13) and (5.14) that

‖yk+1‖θk+1(ω) ≤ (ec−α + 2K2
k+1γk)‖yk‖θk(ω) + 2K2

k+1γk‖zk‖θk(ω) (5.17)

and

‖zk+1‖θk+1(ω) ≥ (ec+α − 2K2
k+1γk)‖zk‖θk(ω) − 2K2

k+1γk‖yk‖θk(ω). (5.18)

Now we assume that (5.15) does not hold. Take k0 ∈ N arbitrarily large such that

‖yk0‖θk0(ω) < ‖zk0‖θk0(ω).

We prove by induction on k that if k0 is sufficiently large, then ‖yk‖θk(ω) < ‖zk‖θk(ω)

for k ≥ k0. So, let us assume that ‖yk‖θk(ω) < ‖zk‖θk(ω) for some k ≥ k0. It follows
from (5.17) and (5.18) that

‖yk+1‖θk+1(ω) ≤ (ec−α + 4K2
k+1γk)‖zk‖θk(ω)

and

‖zk+1‖θk+1(ω) ≥ (ec+α − 4K2
k+1γk)‖zk‖θk(ω).

Combining these inequalities, we obtain

‖yk+1‖θk+1(ω) ≤
ec−α + 4K2

k+1γk

ec+α − 4K2
k+1γk

‖zk+1‖θk+1(ω).
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It follows from (2.1) and (5.2) that 4K2
k+1γk → 0 when k → ∞ and thus,

ec−α + 4K2
k+1γk

ec+α − 4K2
k+1γk

→ ec−α

ec+α
< 1.

Hence, if k0 is sufficiently large, then

‖yk+1‖θk+1(ω) < ‖zk+1‖θk+1(ω).

This completes the proof of the lemma.

Lemma 5.5. Assume that the first alternative in the theorem does not hold. Then
one of the following alternatives holds:

(1)

lim sup
k→+∞

1
k

log‖xk‖ < c (5.19)

and

lim
k→+∞

‖zk‖θk(ω)

‖yk‖θk(ω)

= 0; (5.20)

(2)

lim inf
k→+∞

1
k

log‖xk‖ > c (5.21)

and

lim
k→+∞

‖yk‖θk(ω)

‖zk‖θk(ω)

= 0. (5.22)

Proof. Assume first that (5.15) holds and let

S = lim sup
k→+∞

‖zk‖θk(ω)

‖yk‖θk(ω)

.

It follows from (5.15) that 0 ≤ S ≤ 1. On the other hand, by (5.13) and (5.15), we
have

‖yk+1‖θk+1(ω) ≤ (ec−α + 4K2
k+1γk)‖yk‖θk(ω) (5.23)

for all sufficiently large k ∈ N. It follows from (5.14) that

‖zk+1‖θk+1(ω)

‖yk+1‖θk+1(ω)

≥ ec+α − 2K2
k+1γk

ec−α + 4K2
k+1γk

· ‖zk‖θk(ω)

‖yk‖θk(ω)

− 2K2
k+1γk

ec−α + 4K2
k+1γk

,

for all sufficiently large k ∈ N. On the other hand, by (2.1) and (5.2) we have

ec+α − 2K2
k+1γk

ec−α + 4K2
k+1γk

→ ec+α

ec−α
> 1 and

2K2
k+1γk

ec−α + 4K2
k+1γk

→ 0

1550058-12
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when k → ∞ and so, S = 0. This establishes (5.20). In order to prove (5.19), take
k0 such that (5.23) holds for all k ≥ k0. By (5.23), we obtain

‖yk‖θk(ω) ≤ ‖yk0‖θk0(ω)e
(c−α)(k−k0)

k∏
j=k0

(1 + 4K2
j+1γje

α−c)

for k ≥ k0. It follows from (2.1) and (5.2) that

1
k

k∑
j=k0

log(1 + 4K2
j+1γje

α−c) ≤ 1
k

k∑
j=k0

4K2
j+1γje

α−c → 0

when k → ∞ and so,

lim sup
k→+∞

1
k

log‖yk‖θk(ω) ≤ c − α < c.

Finally, by (5.10) and (5.15), we obtain

lim sup
k→+∞

1
k

log‖xk‖ ≤ lim sup
k→+∞

1
k

log(2‖yk‖θk(ω)) = lim sup
k→+∞

1
k

log‖yk‖θk(ω)

and so inequality (5.19) holds.
Now assume that (5.16) holds. Let

S = lim sup
k→+∞

‖yk‖θk(ω)

‖zk‖θk(ω)

.

By (5.16), we have 0 ≤ S ≤ 1. It follows from (5.14) and (5.16) that

‖zk+1‖θk+1(ω) ≥ (ec+α − 4K2
k+1γk)‖zk‖θk(ω) (5.24)

for all sufficiently large k ∈ N. By (5.13) and (5.24), we have

‖yk+1‖θk+1(ω)

‖zk+1‖θk+1(ω)

≤ ec−α + 2K2
k+1γk

ec+α − 4K2
k+1γk

· ‖yk‖θk(ω)

‖zk‖θk(ω)

+
2K2

k+1γk

ec+α − 4K2
k+1γk

for all sufficiently large k ∈ N. It follows from (2.1) and (5.2) that

ec−α + 2K2
k+1γk

ec+α − 4K2
k+1γk

→ ec−α

ec+α
< 1 and

2K2
k+1γk

ec+α − 4K2
k+1γk

→ 0,

when k → ∞ and so, S = 0. This establishes (5.22). Now take k0 such that (5.24)
holds for all k ≥ k0. Iterating (5.24), we conclude that

‖zk‖θk(ω) ≥ ‖zk0‖θk0(ω)e
(c+α)(k−k0)

k∏
j=k0

(1 − 4K2
j+1γje

−c−α)

for k ≥ k0. It follows from (2.1) and (5.2) that

1
k

k∑
j=k0

log
1

1 − 4K2
j+1γje−c−α

≤ 1
k

k∑
j=k0

4K2
j+1γje

−c−α

1 − 4K2
j+1γje−c−α

→ 0
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when k → ∞ and so,

lim inf
k→+∞

1
k

log‖zk‖θk(ω) ≥ c + α > c.

Finally, by (2.1) and (5.10), we obtain

lim inf
k→+∞

1
k

log‖xk‖ ≥ lim inf
k→+∞

1
k

log
(

1
2Kk

‖zk‖θk(ω)

)
> c

and so inequality (5.21) holds.

In order to complete the proof of the theorem, assume that the first alternative
does not hold. Take

c0 < λ1 < c1 < · · · < cs−1 < λs < cs.

It follows from Lemma 5.5 that for each i ∈ {0, . . . , s}, we have

lim sup
k→+∞

1
k

log‖xk‖ < ci or lim inf
k→+∞

1
k

log‖xk‖ > ci.

Together with Lemmas 5.1 and 5.2, this implies that there exists i ∈ {1, . . . , s} such
that

lim sup
k→+∞

1
k

log‖xk‖ < ci and lim inf
k→+∞

1
k

log‖xk‖ > ci−1.

Finally, letting ci−1 ↗ λi and ci ↘ λi, we conclude that

lim
k→+∞

1
k

log‖xk‖ = λi.

The proof of the theorem is complete.

6. Proof of Theorem 3.2

Take numbers a < c such that [a, c] ⊂ (λi−1, λi). Then

lim
m→+∞

1
m

log‖xm‖ = λi >
a + c

2
and it follows from Lemma 5.5 that

lim
k→+∞

‖yk‖θk(ω)

‖zk + wk‖θk(ω)

= 0, (6.1)

with the norms ‖·‖k defined as in (5.9) but with the numbers c − α and c + α

replaced, respectively, by a and c.
Now take numbers a′ < c′ such that [a′, c′] ⊂ (λi, λi+1). Then

lim
m→+∞

1
m

log‖xm‖ = λi <
a′ + c′

2
and it follows from Lemma 5.5 that

lim
k→+∞

‖zk‖′θk(ω)

‖yk + wk‖′θk(ω)

= 0, (6.2)
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with the norms ‖·‖′k defined as in (5.9) but with the numbers c−α and c+α replaced,
respectively, by a′ and c′. Given δ > 0, take η ∈ (0, 1) such that 4K(ω)η/(1−η) < δ.
By (6.2), for all sufficiently large k, we have

‖zk‖′θk(ω) ≤ η‖yk + wk‖′θk(ω). (6.3)

Similarly, by (6.1), for all sufficiently large k we have

‖yk‖θk(ω) ≤ η‖zk + wk‖θk(ω). (6.4)

On the other hand, by (5.9) (with c − α replaced by a and c + α replaced by c),
since a′ > a we obtain

‖yk‖θk(ω) = sup
n≥k

(‖Φ(n − k, θk(ω))P (θk(ω))xk‖e−a(n−k))

= sup
n≥k

(e−(a−a′)(n−k)e−a′(n−k)‖Φ(n − k, θk(ω))P (θk(ω))xk‖)

≥ sup
n≥k

(e−a′(n−k)‖Φ(n − k, θk(ω))P (θk(ω))xk‖) = ‖yk‖′θk(ω). (6.5)

Analogously, by (5.9) since c′ > c we obtain

‖zk‖θk(ω) = sup
n≤k

(‖Φ(n − k, θk(ω))Q(θk(ω))xk‖e−c(n−k))

= sup
n≤k

(e−(c−c′)(n−k)e−c′(n−k)‖Φ(n − k, θk(ω))Q(θk(ω))xk‖)

≤ sup
n≤k

(e−c′(n−k)‖Φ(n − k, θk(ω))Q(θk(ω))xk‖) = ‖zk‖′θk(ω). (6.6)

Using (6.5) and (6.6), we deduce from (6.4) that

‖yk‖′θk(ω) ≤ ‖yk‖θk(ω) ≤ η‖zk + wk‖θk(ω)

≤ η‖zk‖′θk(ω) + η‖wk‖θk(ω). (6.7)

Therefore, it follows from (6.3) together with (6.7) that

‖zk‖′θk(ω) ≤ η2‖zk‖′θk(ω) + η2‖wk‖θk(ω) + η‖wk‖′θk(ω)

and

‖zk‖′θk(ω) ≤ η(1 − η2)−1(η‖wk‖θk(ω) + ‖wk‖′θk(ω)).

Hence, using (5.10),

‖zk‖θk(ω) ≤ ‖zk‖′θk(ω) ≤ 4K(θk(ω))η(1 + η)(1 − η2)−1‖wk‖θk(ω)

≤ δ‖wk‖θk(ω).

Since δ is arbitrary, we obtain

lim
k→+∞

‖zk‖θk(ω)

‖wk‖θk(ω)

= 0,

which establishes identity (3.5). Identity (3.4) can be obtained in a similar manner
interchanging the roles of yk and zk.
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