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INVARIANT MEASURES OF SCALAR SEMILINEAR PARABOLIC

DIFFERENTIAL EQUATIONS

SINIŠA SLIJEPČEVIĆ, ZAGREB

Abstract. Our goal is to describe ergodic-theoretical properties of scalar semilinear parabolic
differential equations on the circle, and on the entire R without decay to zero at infinity (the ex-
tended case), with either autonomous or time-periodic nonlinearity, and implications to dynamics.
In all these cases, we show that the union of supports of all the measures on the appropriate space
of functions, invariant with respect to evolution of solutions, projects one-to-one to R2. This holds
also in the extended case, if one considers spatially invariant measures with a technical condition
of finite density of zeroes. Furthermore, we give general sufficient conditions for uniqueness of
the invariant measure, generalizing the results by Sinai for the periodically-forced viscous Burgers
equation, and then establish a relatively complete description of asymptotics of dynamics in these
cases in both the bounded and the extended case.

The main technique is the zero function lifted to the space of Borel probability measures on
the space of functions, which is a Lyapunov function with respect to the evolution of measures
induced by two ”replicas” of the equation. The approach seems to extend to other monotone
scalar dynamical systems either without or with a random force, thus is relevant for questions on
existence of physical and SRB measures (the non-random case) and phase transitions (the random
case).

1. Introduction

We consider the following equation in various settings:

(1.1) ut = uxx + g(t, x, u, ux),

where g satisfies the usual conditions (A1-3) guaranteeing local existence of solutions, given below.
We consider separately the case when g is independent of t (the DC case) and the case when
g is 1-periodic in t (the AC case). Furthermore, we consider (1.1) on the bounded domain S1

parametrized with [0, 1), i.e. with periodic boundary conditions. In that case, the phase space is
Xα = H2α(S1), where X = L2(S1), and 3/4 < α < 1 is such that Xα is continuously imbedded
in C1(S1). Alternatively, we consider (1.1) in the extended case, where the domain is the entire R

without assuming decay to zero at infinity. The phase space is then the fractional uniformly local
space Xα = H2α

ul (R), where X = L2
ul(R), α is as above (see Appendix for key facts on uniformly

local spaces), and then H2α
ul (R) is continuously imbedded in C1(R). The bounded case may be

considered as an invariant subset of the extended case, as H2α(S1) embeds naturally in H2α
ul (R), as

the invariant set of spatially periodic solutions.
The asymptotics of (1.1) on the bounded domain with separated boundary conditions has been

studied in detail (see [18, 24] and references therein) and is reasonably well-understood. In particular,
under assumptions (A1-3), for any global, uniformly bounded orbit, the ω-limit set contains a single
orbit (equilibria in the DC or a periodic orbit in the AC case) ([24], Theorem 4.2 and references
therein). With periodic boundary conditions, i.e. in our setting in the B/DC case and assuming
(A1-3), Fiedler and Mallet-Paret [10] have shown that the ω-limit set of any global, bounded solution
projects to a plane, and then has the structure in accordance to the Poincaré-Bendixson theorem.
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That means that it consists of a single periodic orbits, or of equilibria and connecting (homoclinic
and heteroclinic) orbits. Tereščák [37] has shown that in the B/AC case, assuming (A1-3), the
ω-limit set of any global, bounded orbit also projects injectively and continuously into R2. The
structure of the ω-limit set can then be much more complex, as shown by Fiedler and Sandstede
[11, 27].

The structure of the attractor of (1.1) on the bounded domain with separated or periodic boundary
conditions in the DC case is as follows: the attractor is then generically Morse-Smale, and can in
many cases be classified by the graph structure of the equilibria and their connections ([12, 13, 18, 24]
and references therein). Similar questions in the B/AC case, and the extended case seem to be
currently beyond reach. When assuming decay to 0 at infinity, the dynamics in some cases (for
example for g not depending on x, ux [9]) is similar to the dynamics on the bounded domain with
separated boundary conditions, i.e. uniformly bounded orbits then converge to a single periodic
solution. If there is no decay to zero at infinity, the attractor seems to be typically infinite dimensional
(assuming sufficiently weak topology so that uniformly locally bounded orbits are relatively compact,
see Section 2), and the asymptotics can be very complex even in the ”extended gradient case” (see
[25] and references therein, also Subsection 10.4).

We propose here a different focus: to describe invariant measures of (1.1), and the union of
supports of all the invariant measures, which we propose to call ergodic attractor. Prior to stating
the results, we want to make three points: that this area of research is fertile, that the results are
dynamically relevant, and that they are related to some other important areas of research.

First, we will show that in all four considered cases (B or E / AC or DC), the description of the
ergodic attractor seems to be within reach even in the cases when the topological attractor is very
complex. In all these cases, the ergodic attractor projects one-to-one to R2 (subject to a technical
restriction of finite average density of zeroes in the extended case, which we believe to be generically
true and likely redundant), and that in many cases (generalizing the viscous periodically forced
Burgers equation), it is one-dimensional.

Secondly, the dynamical relevance is as follows: in the bounded case, the ergodic attractor con-
tains all ω-limit sets on average of all relatively compact orbits (Subsection 3.2). The ω-limit set
on average has been proposed in the context of partial differential equations in [15], and contains
accumulation points of a relatively compact orbit for non-zero density of times. We argue that
physically only these orbits are ”observable” (Lemma 3.5), thus the description of the ergodic at-
tractor reasonably completely describes ”observable” dynamics. In particular, the ergodic attractor
contains any ”chaos” if present [34]. In the extended case, the ergodic attractor consists of ”space-
time observable” orbits (Subsection 3.3), the space-time chaos as constructed in [22, 39] if present
[34], and frequently describes asymptotics of µ-a.e. u ∈ Xα with respect to any S-invariant Borel
probability measure µ on Xα, where Su(x) = u(x − 1) is the spatial shift (see results for Burgers
like equation below; also Subsections 10.3 and 11.2).

Thirdly, we argue that the techniques developed here also extend to the equations (1.1) with an
additional random force term such as for example considered in [7, 30], and also to discrete-space
continuous-time, or discrete-space discrete-time 1d monotone systems without and with random
force, as further discussed in Section 11. In particular, we hope that the main technique of the
paper: the zero-function as a Lyapunov function with respect to evolution of measures induced
by the dynamical system, can be useful in characterizing uniqueness of invariant measures, thus
questions related to existence of physical and SRB measures in the deterministic case, and phase
transitions in the random case of these models.

1.1. Statements of results: the support of invariant measures. The standing assumptions
on the nonlinearity g : (t, x, u, ξ) 7→ g(t, x, u, ξ) are as follows:

(A1) g is continuous in all the variables.
(A2) g is locally Hölder continuous in t and locally Lipschitz continuous in (u, ξ).
(A3) g is 1-periodic in x and t.
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It is well-known that (A1-3) suffice for local existence of solutions in bounded and extended case
(Section 2). In addition, in the first part of the paper, we also assume:

(A4) There exists a set B, closed and bounded in Xα-norm, S-invariant in the extended case,
such that if u(t0) ∈ B, t0 ∈ R, then for all t ≥ t0, the solution of (1.1) exists and we have
that u(t) ∈ B.

As recalled in Section 2, conditions (A1-4) suffice for (1.1) to generate a continuous semiflow on

B, non-autonomous and denoted by T̂ (t, s), t ≥ s in the AC case, where T̂ (t, s)u(s) = u(t); and

autonomous and denoted by T (t) = T̂ (s + t, s) in the DC case. Sufficient conditions in various
contexts for (A4) to hold are given in [19], Section 7 (see also [24] and references therein). These
results also apply in the extended case, in the view of comments in the Appendix.

We write shortly T = T̂ (n, n+1) (independent of n ∈ Z; T = T (1) in the DC case). Note that S
is continuous, and that S and T (t), resp. T by (A3) commute. The notion of invariance throughout
the paper will depend on the considered case: unless otherwise specified, an invariant set will be
any set invariant with respect to all the actions in the Table 1.2:

(1.2)
Actions: DC AC
Bounded (B) T (t), t ≥ 0; T
Extended (E) T (t), t ≥ 0; S T ;S.

We always consider ω-limit sets for the semiflow T (t), t ≥ 0 in the DC case, and for the sequence of
maps T n, n ∈ N in the AC case. In the extended case, we will equip Xα with a coarser topology, to
ensure that all the orbits bounded in Xα are relatively compact, so that we can consider asymptotics
and invariant measures (see Section 2 for the choice of topology and a discussion). We define an
invariant measure to be a Borel probability measure on B, invariant with respect to all the actions
in Table 1.2.

Denote by E the ergodic attractor, i.e. the union of supports of all the invariant measures. As E
depends on the choice of B in (A4), we may occasionally write E(B); the argument B will be omitted
when the chosen B is clear from the context. The main result in the bounded case is that the set E
is not too large, i.e. that it is at most two dimensional:

Theorem 1.1. Ergodic Poincaré-Bendixson Theorem. Assume (A1-4) holds in the bounded
case. Then E projects continuously and one-to-one to R

2, with the projection π : E → R
2 given with

(1.3) π(u) = (u(0), ux(0)).

In the bounded, DC case, this already follows from Fiedler and Mallet-Paret Poincaré-Bendixson
theorem [10] (see Subsection 10.1 for further comments). In the bounded, AC case, it seems new,
and is complementary to the results of Poláčik and Tereščak [37].

To establish an analogous result in the extended case, we require a technical condition of non-
degeneracy of E , by which we mean that the average density of zeroes on E is bounded. It is
rigorously given in Definition 6.1; we note here that it suffices that for any two u, v ∈ E ,

(1.4) lim inf
n→∞

1

2n
z[−n,n)(u − v) < ∞,

where z[−a,b) is the number of zeroes of u(x) − v(x) for x ∈ [−a, b), a < b (we set z[−a,b)(0) = 0 by
definition).

Theorem 1.2. Extended Ergodic Poincaré-Bendixson Theorem. Assume (A1-4) holds in
the extended case, and assume that E is non-degenerate. Then E projects continuously and one-to-
one to R2, with the projection π : E → R2 given with (1.3)

Remark 1.1. Non-degeneracy of E is expected to hold generically, and possibly always. This follows
from the results of Angenent and Chen [1, 4]: as E consists of entire solutions (Lemma 3.2), we have
that for any two u, v ∈ E , z[−n,n](u − v) is finite. We characterize non-degeneracy in Subsection
6.2 and give further sufficient conditions for it to hold in Subsection 11.1. For example, we show in
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Example 7.1 that non-degeneracy of E holds for non-linearities g = −∂V (x, u)/∂u, with V ∈ C2(R2)
and bounded from below.

The main technique in proving Theorems 1.1 and 1.2 is the zero number lifted to the space
of measures. The zero-number has been established as a tool to study dynamics of (1.1) mainly
due to Matano’s work [21] (see [24] and references therein for an overview). We write shortly
z(u− v) := z[0,1)(u− v), and say that a zero u(x)− v(x) = 0 is multiple, if ux(x)− vx(x) = 0. (We
also say that u and v intersect transversally at x if it is a single, and non-transversally if it is a
multiple zero.) In the bounded case, if µ is a Borel probability measure on Xα, we define the zero
of µ as

(1.5) Z(µ) =

∫

Xα

z(u− v)dµ(u)dµ(v).

We will show that Z on the space of Borel probability measures on Xα has analogous properties
to the zero-function z on Xα ([10, 24] and references therein): for any t > 0, Z(µ(t)) is essentially
finite1 (where µ(t) is the evolution of µ(0) = µ induced by (1.1) on the space of measures); it is
non-increasing; and if there is a multiple zero u−v for some u, v in the support of µ(t), then Z(µ(t))
is strictly decreasing.

Importantly, the same technique applies also in the extended case, if we consider S-invariant
measures. First, we note that there are many S-invariant measures on Xα which are not supported
only on periodic functions: e.g. consider the Bernoulli measure on the space of bi-infinite sequences
of 0, 1, and associate to each sequence a function u by combining two arbitrary smooth profiles
u0, u1 : [0, 1] → R, u0(0) = u0(1) = u1(0) = u1(1), as in Example 7.1.

We again define the zero function as in (1.5), i.e. by considering only zeroes in [0, 1) (thus Z(µ)
is typically finite). As the measure is S-invariant, it is the same as considering only zeroes in any
[y, y + 1), y ∈ R. The Z(µ) can be interpreted, and indeed for ergodic2 µ is the same for µ-a.e. u, v
as the average density of zeroes

lim
n→∞

1

2n
z[−n,n)(u − v)

(this follows from the Birkhoff ergodic theorem and measurability of z established in Lemma 4.6).
Now, Z(µ(t)) is non-increasing in t, as the flux of zeroes through x = 0 and x = 1 by the S-invariance
of the measure cancels out. Finally, it may be somewhat counter-intuitive that a single multiple zero
for some x ∈ [0, 1) causes the entire density of zeroes on the infinite line to decrease. The rationale
for this is that by the local structure of zeroes (Lemma 4.1), a multiple zero of u(t) − v(t) persists
in an open neighborhod U × V × (t− δ, t+ δ) of (u, v, t). By Poincaré recurrence, if u, v are in the
support of a S-invariant measure, one can find a positive measure subset of W ⊂ U × V for which
a positive density of S × S-translates visit W , thus a single multiple zero implies existence of a set
of positive measure with a positive density of multiple zeroes along the real line for times close to t.
We make this ad-hoc argument rigorous by using standard ergodic-theoretical tools, combined with
the well-established local and global structure of zeroes [1, 4].

Considering S-invariant measures and the ergodic attractor in the extended case is related to
analysing asymptotics for µ-a.e. initial condition with respect to any S-invariant measure µ. This
approach was already taken by Sinai [28] in his study of the forced viscous Burgers equation, as we
discuss below. We establish in Proposition 7.1 an example of a general result in this direction used
later: for S-invariant µ and µ-a.e. u, ω(u) consists of orbits which do not intersect non-transversally
a given S, T -invariant solution v (i.e. a spatially and temporally periodic orbit). Note that then by
definition v ∈ E , as the Dirac measure δv is S, T -invariant.

1We can always adjust the ”weights” in the ergodic decomposition to make it finite, see Lemma 5.3.
2This holds if µ× µ is S × S-ergodic; see Subsection 6.2.
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1.2. Statements of results: uniqueness of invariant measures. The second part of the paper
is concerned with establishing sufficient conditions for uniqueness of an invariant measure, and with
implications of such uniqueness to dynamics. It is motivated by the result by Sinai [28] for the
viscous, forced Burgers equation:

(1.6) ut = uxx − u ux + ĝ(x, t),

where ĝ is sufficiently smooth, satisfies (A3), and for all t ∈ R,
∫ 1

0
ĝ(x, t)dx = 0.

Recall the results from [28] (extended to quasi-periodic forcing in [30], higher dimensions on
bounded domain and stochastic forcing in [29], and to inviscid limit on bounded domain and sto-
chastic forcing in [7]):

(i) Firstly, it was established that there is a unique, S, T -periodic solution of (1.6) v0(t), such that

for any initial condition u ∈ H2α(S1),
∫ 1

0
u(x)dx = 0, we have that limt→∞ |u(x, t)− v0(x, t)| = 0 (a

pointwise convergence) (a special case of [28], Theorem 1).
(ii) Secondly, such asymptotics is shown to hold also on the extended domain for a.e. initial

condition with respect to some probability measure on the phase space, as long as the probability
measure satisfies certain conditions (see Subsection 10.5 for details).

(iii) Thirdly, each probability measure from (ii) converges in weak∗ topology with respect to the
induced semiflow on the space of measures to the Dirac measure concentrated on v0.

The main technique in [7, 28, 29] is the Cole-Hopf transformation, and the integral representation
of the transformed solutions. As already noted in [29], p347, the key property of (1.6) is that
∫ 1

0
u(x)dx is the invariant. We show here that such invariance (B3) below in essence suffices to

establish (i), and modified versions of (ii) and (iii). We assume in addition only certain weak
dissipativity conditions (B1-2) ensuring global existence and boundedness of solutions. Generalized
versions of (i)-(iii) are established in Corollaries 1.4, 1.5 and 1.6 below. The main tools in the proof
are Theorem 1.1 and the zero function on the space of probability measures.

We say that an equation is Burgers-like, if the following holds:

(B1) Sub-quadratic growth of non-linearity in ux: There exists an ε > 0 and a continuous function
c : R+ → R

+ such that

|f(t, x, u, ξ)| ≤ c(ρ)
(

1 + |ξ|2−ε
)

(ρ > 0, (t, x, u, ξ) ∈ [0, 1]× [0, 1]× [−ρ, ρ]× R).

(B2) Weak dissipation: There exists an upper semi-continuous function d : R → R+ such that: if

u ∈ H2α(S1),
∫ 1

0
u(x)dx = y and ||u−y||L∞(S1) ≤ d(y); and if the solution of (1.1), u(t0) = u

exists on [t0, t1) for some t1 > t0, then for every t ∈ [t0, t1) we have ||u(t)− y||L∞(S1) ≤ d(y).
Furthermore, the function d satisfies

(1.7) lim
y→∞

(y − d(y)) = +∞, lim
y→−∞

(y + d(y)) = −∞.

(B3) Invariance: For every u ∈ H2α(S1), if the solution of (1.1), u(t0) = u exists on [t0, t1) for

some t1 > t0, then for every t ∈ [t0, t1), we have that
∫ 1

0
u(t, x)dx =

∫ 1

0
u(t0, x)dx.

We show in Subsection 10.5 that a generalization of the Burgers equation (1.6) satisfies (B1-3).
Recall the ordering on Xα: we write u ≤ v if u(x) ≤ v(x) for all x ∈ S1, resp. x ∈ R; u ≪ v if

u(x) < v(x) for all x ∈ S1, resp. x ∈ R; and u < v if u ≤ v but u 6= v. A family in Xα is strongly
totally ordered, if for all u, v in the family, we have either u = v or u ≪ v.

We state results only for the more general AC case; modifications for the DC case are straight-
forward.

Theorem 1.3. Assume (A1-3) and (B1-3) in the AC case.
(i) There exists a set V = {vy, y ∈ R}, vy ∈ H2α(S1), satisfying that y 7→ vy is continuous

in H2α(S1), strictly increasing, and that for all y ∈ R, vy is T -invariant and
∫ 1

0
vy(x)dx = y.

Furthermore, it is a unique family with these properties.
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(ii) In the bounded case, and in the extended case if E is non-degenerate, we have that E = V.
(iii) In the bounded case, there is a unique invariant measure on By := {u ∈ Xα,

∫ 1

0 u(x)dx = y},
concentrated on a single vy ∈ By.

We can now recover the conclusion (i) by Sinai on asymptotics of the Burgers equation in the
bounded case, by applying general techniques of the order-preserving dynamics (in particular the
Nonorderedness principle, see e.g. [24], Section 3):

Corollary 1.4. Assume (A1-3) and (B1-3) in the bounded, AC case. Then for each u ∈ Xα,

ω(u) = {vy0}, where y0 =
∫ 1

0 u(x)dx and vy is as in Theorem 1.3, (i).

Let V be as in Theorem 1.3, (i). To establish conclusions in the extended case, we again require
a technical condition of finite density of zeroes:

(N1) Assume in the extended case that µ is a S-invariant Borel probability measure on Xα,
supported on a set bounded in Xα, such that for every v ∈ V , and µ-a.e. u, (1.4) holds.

We give examples of many non-trivial measures satisfying (N1) without any a-priori knowledge
of V in Example 7.1.

We denote by H the family (possibly empty) of all spatially heteroclinic solutions associated to
V , i.e. such that for h ∈ H, the solution of (1.1), h(0) = h exists for all t ∈ R, such that h
intersect each vy ∈ V at most once, transversally, and such that for some y1 6= y2, and for all t ∈ R,
limx→−∞ |u(x, t)− vy1(x, t)| = 0, limx→∞ |u(x, t)− vy2(x, t)| = 0.

We establish below a weaker form of Sinai’s conclusions (ii), (iii) by assuming (N1). To recover
full results, we also require an additional control of the average of the quantity conserved in the
bounded case:

(N2) Assume in the extended case that µ is a S-invariant Borel-probability measure with y0 :=

Eµ[
∫ 1

0 u(x)dx], such that for µ-a.e. u, and for each w ∈ ω(u),

lim
x→∞

1

x

∫ x

0

w(z)dz = lim
x→∞

1

x

∫ 0

−x

w(z)dz = y0.

Corollary 1.5. Assume (A1-3), (B1-3), in the extended, AC case, and let µ satisfy (N1).
(i) For µ-a.e. u, we have that ω(u) ⊂ V ∪H.
(ii) If µ also satisfies (N2), then for µ-a.e. u, we have ω(u) = {vy0}.

Corollary 1.6. Assume (A1-3), (B1-3), in the extended, AC case, and let µ satisfy (N1).
(i) ω-limit set of µ in the weak∗-topology consists of measures supported on V.
(ii) If µ also satisfies (N2), then the ω-limit set of µ is δvy0 , i.e. the Dirac measure concentrated

on vy0 ∈ V.
We give an example of a family of measures satisfying (N2) in Example 10.2, and compare our

assumptions (N1), (N2) with the ones by Sinai [28].
We actually show in Section 8 that (A1-3), (B1) and existence of a family V as in Theorem 1.3,(i)

suffices for conclusions in Corollaries 1.4, 1.5 and 1.6 to hold without the assumptions (B2) and
(B3).

The paper is structured as follows: in Section 2 we give required background on existence of
solutions of (1.1), the choice of topologies, and introduce the notation. We introduce the ergodic
attractor in Section 3 and summarize how it relates to dynamics. In Section 4 we recall the key
properties of the zero number as the key tool, introduce the balance law of zeroes, and show that
the zero, zero flux and zero dissipation functions are measurable. We prove Theorem 1.1 in Section
5, and Theorem 1.2 in Section 6. In Sections 7-9 we prove results for Burgers-like equations and
extensions, then give a number of examples illustrating general results and discuss open problems.
Some required notions on uniformly local spaces are summarized in the Appendix.

Remark 1.2. All the results also hold for the equations ut = εuxx + g(t, x, u, ux), ε > 0.
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Remark 1.3. Theorems 1.1 and 1.2 were already announced in [35], with derived further implications
to the entropy of (1.1) in all four cases considered here. All the results in [35] in the extended case
hold under an additional assumption of non-degeneracy of E .

2. Preliminaries and notation

It is well-known that the equation (1.1) with assumptions (A1-4) generates a continuous semiflow

on Xα, 3/4 < α < 1 in the bounded case [17, 19, 24], non-autonomous and denoted by T̂ (t, s) in

the AC case, and by T (t) = T̂ (s + t, s) in the DC case. The same holds in the extended case, as

discussed in the Appendix. Consider the set T̂ (0,−δ0)B for some 0 < δ0 ≤ 1 fixed throughout the
paper, where B is as in (A4). In both bounded and extended case, the standard application of the

variations of constants formula implies that T̂ (0,−δ0)B is bounded in X γ for any α < γ < 1 (see
[17], Section 3 in the bounded case, Appendix in the extended case).

We always use the graph norm on Xα, 0 < α < 1:

||u||Xα := ||Aα
1u||X ,

where Au = −uxx is the linear operator on X with the domain D(A) = H2(S1), resp. D(A) =
H2

ul(R), with A1 = A + I, and Aα
1 is the standard fractional power (see [17], Section 1.4, and the

Appendix).

Consider the bounded case first, with Xα = H2α(S1), and let B̃ = Cl
(

T̂ (0,−δ0)B
)

, where the

closure is in Xα. Then by (A4) and the compact imbedding of Xγ in Xα in the bounded case, we

have that B̃ is invariant and compact, thus we can consider dynamics and Borel probability invariant
measures on B̃.

In the extended case, with Xα = H2α
ul (R), to establish compactness, we need to consider a coarser

topology on B and C := T̂ (0,−δ0)B ⊂ B. Typical choices are: the topology of locally uniform
convergence, i.e. induced by L∞

loc(R); C
1
loc(R); or H2δ

loc(R) for 1/2 ≤ δ ≤ α (defined as topology of
convergence in H2γ([−n, n]) for all n ∈ N). As we have already established that C is bounded in X γ ,
one can easily verify that for all these choices of topologies induced on C, C is relatively compact as
a subset of the space whose topology it inherits. The following elementary observation shows that
all these choices of topologies are the same:

Lemma 2.1. Consider a subset Z ⊂ Y0 ⊂ Y1, where Y0 and Y1 are metrizable and complete
topological spaces with respective topologies τ0, τ1, such that τ1|Y0

⊂ τ0. Furthermore, assume that
Z is relatively compact in both Y0 and Y1. Then the closure of Z in Y0 and Y1 is the same, and the
topologies τ0 and τ1 induced on Cl(Z) are the same.

(We denote by τ1|Y0
the induced topology τ1 on Y0).

Proof. We first show that a sequence un ∈ Z converges in Y0 if and only if it converges in Y1. As
τ1|Y0

⊂ τ0, the non-trivial direction is that convergence in Y1 implies convergence in Y0. Assume the
contrary, and let v ∈ Y1 be a limit of un ∈ Z in Y1. By the assumptions and relative compactness,
there exists a subsequence unk

converging to some ṽ ∈ Y0 in Y0. But then unk
also converges to ṽ

in Y1, thus ṽ = v. We deduce that the closure of Z in both topologies is the same. As the topology
in metric spaces is entirely determined by convergence, it suffices to repeat the argument above for
any sequence in un ∈ Cl(Z). �

We apply Lemma 2.1 by setting Z = C, Y0 = B with the induced H2α
loc(R) topology, and Y1

be the space of any of the aforementioned ”coarser” topologies. We conclude that the closure
B̃ := Cl(C) = Cl(T̂ (0,−δ0)B) does not depend of the choice of the coarser topology, and that B̃ is
invariant and compact. We always implicitly assume such a coarser topology, called also a localized
topology, on B̃ in the extended case, and consider asymptotics and Borel probability measures on
B̃. Finally we note that that by using the variations of constants formula, that the solutions (1.1)
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depends continuously on initial conditions in the localized topology, thus T̂ (t, s) is continuous, T (t)

is a continuous semi-flow in the DC case and T = T (1) a continuous map in the AC case on B̃.
We frequently use the fact that (1.1) is strongly monotone, i.e. that if u(t0) < v(t0), then for all

t ≥ t0 for which both solutions exist, u(t) ≫ v(t).
Assuming (A1-4), from this discussion follows that the equation (1.1) admits an attractor A on

B̃ ([26], Section 2.3), which is unique, characterized as the set of all global solutions on B̃ (or B),
and compact. The attractor A depends on the choice of B, thus we write A(B) when the choice of
a set B satisfying (A4) is not clear from the context.

Remark 2.1. Note that we do not assume strong dissipativity conditions on g, such as e.g. (G1-3) in
[24], as they would not cover the Burgers-like equations considered in the second part of the paper.

Finally, we note the properties essential for considerations involving the zero number.

Lemma 2.2. (i) For any t > t0, x, y ∈ R, x < y, the mapping B̃ 7→ C1([x, y]) defined with
u(t0) 7→ u(., t)|[x,y] is continuous.

(ii) For any t > s > t0, x ∈ R, the mapping B̃ 7→ C1([s, t]) defined with u(t0) 7→ u(x, .)|[s,t] is
continuous.

(iii) The claims (i), (ii) hold on A for all t ∈ R, resp. t > s, t, s ∈ R.

(In the bounded case, we implicitly assume the natural imbedding of H2α(S1) in H2α
ul (R) in the

statements.)

Proof. The claim (i), as well as continuity of u(t0) 7→ u(x, .)|[s,t] as B̃ → C0([s, t]), follows from

continuous imbedding of H2α(S1) in C1(S), respectively H2α
loc(R) in C1

loc(R), continuous dependence

on initial conditions in B̃, and continuity of t 7→ u(t) in B̃ for the latter claim. To complete (ii), it

suffices to show continuity of u(t0) 7→ ut(x, .) as B̃ → C0([s, t]). This follows from e.g. [17], Theorem
3.5.3, with the choice of the spaces as in the proof of local existence of solutions (in the extended

case, we in addition apply continuous dependence on initial conditions in B̃). We deduce (iii) from
the fact that T is a homeomorphism on A, as it suffices to consider first u(t0) 7→ ũ(t0) := T−nu(t0)
for an integer n > |s|, and then apply (i),(ii) to ũ(t0). �

Remark 2.2. For an alternative argument enabling applying zero-number techniques for even less
smooth g than those satisfying (A1-3), refer to [25], Section 2.

3. Invariant measures and ergodic attractor

In this section we fix A ⊂ B̃ ⊂ B as in the previous section. Denote by M(B) all Borel probability
measures on B, invariant with respect to the actions in Table 1.2. We first define and list key
properties of an ergodic attractor, and then relate it to asymptotics of dynamics in the bounded,
and in the extended case.

3.1. Ergodic attractor. As in the introduction, define the ergodic attractor with

E = ∪µ∈M(B) suppµ.

As in the introduction, define the ergodic attractor with

E = ∪µ∈M(B) suppµ.

We first show that E is not empty.

Lemma 3.1. The set M(B) is non-empty.

Proof. Existence of the invariant measure in the bounded case is the classical Krylov - Bogolioubov
theorem for continous maps, resp. continuous semiflows on compact metrizable sets [40]. To show
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it in the E/AC case, i.e. for commuting S, T , it suffices to find a weak∗-convergent subsequence of
the sequence of Borel probability measures

L−1
∑

m=−L

L
∑

n=1

1

2L2
(Sm)∗(T n)∗δ(u),

where f∗µ is the standard pull of a measure, and δ(u) is the (Dirac) probability measure concetrated
on a single, fixed u ∈ A. Analogously we prove the claim in the E/DC case by replacing summing
T n from 0 to L with integrating T (t) from 0 to L. �

Lemma 3.2. (i) E ⊂ A, thus it consists of entire orbits,
(ii) E is closed and compact,
(iii) E is invariant,
(iii) In the DC case T (t)|E is a continuous flow, and T |E , S|E are homeomorphisms.

Proof. Let ν ∈ M(B). Consider the sequence of sets Bn := T n(B). As by (A4), T (B) ⊂ B, the
sequence Bn is decreasing. By the characterization of the attractor as the set of entire orbits,
A = ∩∞

k=1Bk. As for n ≥ 1, Bn ⊂ B̃ is compact, and by T -invariance of µ, all of Bn are of full
measure, thus ∩∞

k=1Bk is of full measure and closed, so by definition supp ν ⊂ ∩∞
k=1Bk = A, which

completes (i).
Now consider a convergent sequence un ∈ E ⊂ A converging to some u ∈ A, and the associated

invariant measures µn ∈ M(B) such that un ∈ suppµn. The measure

µ =

∞
∑

n=1

2−nµn

is by definition in M(B), and also by definition the support of µ contains supports of µn for all
n ≥ 1, thus un ∈ suppµ. As suppµ is by definition closed, we deduce that u ∈ suppµ, thus E is
closed. As it is a subset of a compact set, it is compact. The claim (iii) follows from the invariance
of every µ ∈ M(B) and the definition of support, and (iv) follows from (i),(iii) and the properties of
T (t), T and S on B. �

3.2. Asymptotics and the ergodic attractor in the bounded case. We now show relationship
of the ergodic attractor, and the asymtpotics of the dynamics with respect to (1.1), focusing in this
subsection only on the bounded case. All the results in this subsection actually hold for any compact
metric space B̃ and a continuous map T or a continuous semiflow T (t) on B̃.

In [15] we introduced the notion of the ω-limit set on average, denoted by ω̄(u), as the set of

x ∈ B̃ such that u(t) converges to x for non-zero density of times t. The physical meaning of ω̄(u)
is as follows: if we start from u and wait long enough, we are going to observe only v ∈ ω̄(u). Even
though there may be v ∈ ω(u) \ ω̄(u), any neighborhood of such v is visited only for zero density of
times, thus effectively non-observable (see Lemma 3.5). More precisely, in the AC case (i.e. for the
map T ), we set

ω̄(u) =

{

v : lim sup
n→∞

1

n

n−1
∑

k=0

1U(T
ku) > 0 for all open neigborhoods U of x

}

,

and in the DC case (i.e. for a semiflow T (t)), we have (using the notation T (t)u = u(t)):

ω̄(u) =

{

v : lim sup
T→∞

1

T

∫ T

0

1U (T (t)u)dt > 0 for all open neigborhoods U of x

}

.

The following lemma shows that the properties of ω̄(u) reflect those of ω(u):

Lemma 3.3. The set ω̄(u) is non-empty, compact, T - (resp. T (t)-) invariant, and ω̄(u) ⊂ ω(u).
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The proof is in [15], Proposition 5.4 (for the semiflow case, the map case is analogous). We also
give in [15] an example of (1.1) for which ω(u)\ω̄(u) 6= ∅ (for example, consider u whose ω(u) consists
of exactly two equilibria and their two heteroclinic connections. Then ω̄(u) is the two equilibria).

Lemma 3.4. We have that E = Cl
(

∪u∈B̃ω̄(u)
)

.

Proof. We first show that ω̄(u) ⊂ E . We give the proof only in the AC case, as the DC case is
analogous. Let v ∈ ω̄(u), and let Um be a 1/m-open ball around v. By definition of ω̄(u), we can
find a subsequence nj such that

(3.1) lim
j→∞

1

nj

nj
∑

k=1

1Um
(T ku) = κ > 0.

Consider Borel probability measures µn = 1
n

∑n
k=1 δTku, where δu is the Dirac probability measure

concentrated at u. By compactness, we can find a weak∗-convergent subsequence n′
j of nj such that

µn′
j
weak∗-converges to µ, which is then T -invariant. By (3.1) we have limj→∞ µn′

j
(Um) = κ, thus

by the well-known property of weak∗ convergence [40], µ(U2m) ≥ µ(Ūm) ≥ κ > 0. We can thus
find vm ∈ suppµ ⊂ E which is in U2m. We repeat this for all m ∈ N and obtain vm ∈ E such that
limm→∞ vm = v. However, by Lemma 3.2, (ii), E is closed, thus v ∈ E .

To show the other direction, note that by the Birkhoff ergodic theorem applied to 1U for each
open set U in a chosen countable basis of open sets, we obtain that for any T -ergodic measure, the
set of u such that u ∈ ω̄(u) has full measure, thus it must be dense in E . �

In particular, E contains all uniformly recurrent u (see [14]), as for uniformly recurrent u, by
definition u ∈ ω̄(u).

We conclude the subsection with a statement on ”observability” of E .

Lemma 3.5. Let U be an open neighbourhood of E in the AC (resp. DC) case. Then for any u ∈ B̃,
we have limn→∞

1
n

∑n−1
k=0 1U (T

ku) = 1 (resp. limT→∞
1
T

∫ T

0
1U (T (t)u)dt = 1).

Proof. In [15], Proposition 5.3, this was shown for any open neighborhood U of ω̄(u). The claim
now follows from Lemma 3.4. �

3.3. Asymptotics and the ergodic attractor in the extended case. We now consider the
unbounded AC or DC case, or more generally a compact, metric B̃, and two commuting continuous
maps T, S on B̃ (respectively a commuting continuous semiflow T (t) and a continuous map S), where
E is the union of supports of all T, S-invariant (resp. T (t), S-invariant) Borel probability measures.
Then E contains ”space-time observable” orbits in the following sense:

Lemma 3.6. Let U be an open neighbourhood of E in the AC (resp. DC) case. Then for any u ∈ B̃,
we have that limn→∞

1
n2

∑n−1
j,k=0 1U (S

jT ku) = 1 (resp. limn→∞
1
n2

∑n−1
j=0

∫ n

0 1U (S
jT (t)u)dt = 1).

Proof. See [36], Proposition 4. �

4. Preliminaries on the set of zeroes

We first recall the well-known properties of the set of zeroes of u(t) − v(t), where u, v are two

solutions of (1.1) on B̃. In particular, we define the functions z, f, d on B̃2 denoting the number of
zeroes in [0, 1), the ”flux” of zeroes through x = 0, and the ”dissipation” of zeroes in [0, 1). The
main results are the balance law for the flux of zeroes, the key fact that d > 0 persists for small
perturbations, and that z, f, d are Borel-measurable.

In this section, assume (A1-4). We fix u, v ∈ B̃ for which the solution of (1.1), u(0) = u, resp.
v(0) = v exists on (t̂,∞), where t̂ ∈ [−∞, 0) is fixed throughout the section. Denote by w = u − v
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and w(t) = u(t)− v(t), t ∈ (t̂,∞). Let Zw be the set of zeroes (or the nodal set), and Sw the set of
multiple (or singular) zeroes associated to w 6= 0, defined with

Zw := {(x, t) ∈ R× (t̂,∞) : w(x, t) = 0},
Sw := {(x, t) ∈ R× (t̂,∞) : w(x, t) = wx(x, t) = 0}.

For u = v, i.e. w = 0, we set Sw = Zw = ∅.

4.1. Local, global structure of zeroes and the balance law. The following local and global
structure of zeroes is well-known, proved by Chen [4] (for earlier, less complete description by
Angenent and Chen and Poláčik see [1, 3]):

Lemma 4.1. Local structure of zeroes. If (x0, t0) ∈ Zw, then there is a neighborhood Q =
[x0 − ε, x0 + ε]× [t0 − δ, t0 + δ], ε, δ > 0 of (x0, t0) such that the following properties hold:

(a) If (t0, v0) /∈ Sw, then Q ∩ Zw equals a single curve {(γ(t), t) : t ∈ [t0 − δ, t0 + δ]}, where
γ : [t0 − δ, t0 + δ] → R is of class C1 and γ(t0) = x0.

(b) If (t0, v0) ∈ Sw, then there is an integer m ≥ 2 (the degree of the zero) such that the following
holds:
(b1) For even m, there exist m curves γ1, ..., γm : [t0 − δ, t0) → R of class C1, such that

(4.1) γ1(t) < γ2(t) < ... < γm(t) for all t ∈ [t0 − δ, t0),

such that limt→t−
0
γk(t) = x0, k = 1, ...,m and such that Q ∩ Zw equals union of

{(γj(t), t) : t ∈ [t0 − δ, t0)}, j = 1, ...,m, and {(x0, t0)}.
(b2) For odd m, there exist m curves γ1, ..., γ(m−1)/2, γ(m+3)/2, ..., γm : [t0 − δ, t0) → R,

γ(m+1)/2 : [t0−δ, t0+δ] → R of class C1, satisfying (4.1), such that limt→t−
0
γj(t) = x0,

j = 1, ..., (m−1)/2, (m+3)/2, ...,m, such that γ(m+1)/2(t0) = x0, and such that Q∩Zw

equals union of {(γj(t), t) : t ∈ [t0 − δ, t0)}, j = 1, ..., (m − 1)/2, (m + 3)/2, ...,m and
{(γ(m+1)/2)(t), t) : t ∈ [t0 − δ, t0 + δ]}.

In both cases, {(t0, v0)} is equal to Q ∩ Sw.

From this we can deduce the following global structure of zeroes.

Lemma 4.2. Global structure of zeroes. There exist an at most countable family of curves
γi : (t̂, di) → R of class C1 associated to w, di ∈ (t̂,∞], i ∈ Iw, Iw a finite set or N, satisfying the
following:

(i) The sets {(γi(t), t), t ∈ (t̂, di)}, i ∈ I are disjoint,
(ii) Sw = ∪i∈Iw,di<∞{(limt→d−

i
γi(t), di)},

(iii) Zw = ∪i∈Iw
{(γi(t), t), t ∈ (t̂, di)} ∪ Sw,

(iv) For each compact Q ⊂ R2, there exist at most finite i ∈ I such that {(γi(t), t), t ∈ (t̂, di)}
intersects Q. Specifically, there are at most finitely many multiple zeroes in Q.

For the proof, see the proof of Lemma 2.3 in [9], taking into account adjustments of the statement
fitting our purposes (see Remark 4.1 below).

Note that for simplicity of notation, we drop the dependency on w in the notation of curves of
zeroes γ. For i ∈ Iw such that di < ∞, denote by xi = limt→d−

i
γi(t), and then Sw = {(xi, di), di <

∞, i ∈ Iw}. For di < ∞, let γi : (−∞, di] → R be the unique continous extension of γi (i.e. such
that γi(di) = xi), and for di = ∞ let γi = γi.

We define the number of zeroes Zw in [x, y)×{t}, the flux Fw of zeroes through {x} × [s, t), and
the dissipation Dw of zeroes in [x, y) × (s, t], defined for s < t, x < y, s, t, x, y ∈ R, associated to
w 6= 0, as follows:
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Zw(x, y, s) =
∑

i

(1({γi(t) ≥ y})− 1({γi(s) ≥ x)})) ,

Fw(x, s, t) =
∑

i,di>s

1({γi(min(t, di)) ≥ x})−
∑

i,di>s

1({γi(s) ≥ x}),

Dw(x, y, s, t) =
∑

i

1 ({(xi, di) ∈ [x, y)× (s, t]}) .

where the sums go only over by Lemma 4.2, (iv) only finitely many i ∈ Iw such that the intersection
{(t, γi(t)), t ∈ (t̂, di)} and Q = [x, y] × [s, t] is nonempty, and 1 is the characteristic function. For
w = 0, we set Zw = Fw = Dw = 0 independently of the arguments. Note that the function Dw

counts multiple zeroes in [x, y)× [s, t) with their multiplicity (m times for even, m− 1 times for odd
m).

We frequently use the following abbreviated notation

z(w) = Zw(0, 1, 1), f(w) = Fw(0, 0, 1), d(w) = Dw(0, 1, 0, 1).

Remark 4.1. For technical reasons, our definition of the curves of zeroes γi slightly differs from e.g.
[9, 10], as the even, multiple zeroes are not in the union of images (t, γi(t)). Also the zero functions
Zw, z, do not ”count” even, multiple zeroes. This simplifies definition of the flux and dissipation of
zeroes, as the images of γi are disjoint. Note that all the multiple zeroes are properly ”counted” by
the dissipation functions Dw, d.

We now obtain the following balance law:

Lemma 4.3. The balance law for the flux of zeroes. Let x, y, s, t ∈ R such that 0 ≤ s < t.
Then

Zw(x, y, t)− Zw(x, y, s) = Fw(y, s, t)− Fw(x, s, t)−Dw(x, y, s, t).(4.2)

Specifically,

z(Tv − Tu)− z(v − u) = f(Sv − Su)− f(v − u)− d(v − u).(4.3)

Proof. If w = 0, the claim is trivial. For w 6= 0, we first note that
∑

i,di>s

1({γi(min(t, di)) ≥ x}) =
∑

i,di>t

1({γi(t) ≥ x}+
∑

i

1 ({(xi, di) ∈ [x,∞)× (s, t]}) ,

where we sum over finitely many i ∈ I as in the definition of Fw. It suffices to insert that in the
definition of Fw, and to note that in the definition of Zw(x, y, t) we sum only over i, di > t, to obtain
(4.2). The relation (4.3) is a special case of (4.2), for (x, y, s, t) = (0, 1, 0, 1). �

4.2. Continuity and measurability of zero, zero flux and zero dissipation. We first establish
continuity of z, f, d under certain ”no singular zero on the boundary” assumptions, then persistence
of d ≥ 1 for small perturbations, and finally prove Borel-measurability of z, f, d.

Lemma 4.4. Continuity of zero functions. Let x, y, s, t ∈ R such that 0 ≤ s < t. Then

(i) If all zeroes in [x, y) × {t} are regular, and there are no zeroes in {(x, t), (y, t)}, then there

is an open neighborhood U of (u, v) in B̃2 such that for all ũ, ṽ ∈ U , w̃ = ũ − ṽ, we have
Zw(x, y, t) = Zw̃(x, y, t).

(ii) If all zeroes in {x} × [s, t) are regular, and there are no zeroes in {(x, s), (x, t)}, then there

is an open neighborhood U of (u, v) in B̃2 such that for all ũ, ṽ ∈ U , w̃ = ũ− ṽ, Fw(x, s, t) =
Fw̃(x, s, t).

(iii) Assume all the zeroes in ∂Q, where Q = [x, y] × [s, t], are regular. Then there is an open

neighborhood U of (u, v) in B̃2 such that for all ũ, ṽ ∈ U , w̃ = ũ − ṽ, Dw(x, y, s, t) =
Dw̃(x, y, s, t).
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Proof. By embedding of Xα in C1(R) and continuous dependence on initial conditions of (1.1), we
can find an open neighborhood of U of (u, v) such that for each (ũ, ṽ) ∈ U , for w̃ = ũ − ṽ the
assumptions (i) hold. Under the assumptions (i), Zw(x, y, t) = |w(., t)−1(0) ∩ (x, y)|, |.| the cardinal
number, and whenever w(z, t) = 0, we have wx(z, t) 6= 0. By the implicit function theorem and
compactness of [x, y], we see that |w̃(., t)−1(0)∩ (x, y)| is constant in a C1(R) neighborhood of w̃(., t)
on which assumptions (i) hold, thus Zw(x, y, t) is constant on U .

To prove (ii), consider an open neighborhood U1 of (u, v), such that for some δ0 > 0 small enough,
(ũ, ṽ) ∈ U1, for w̃ = ũ− ṽ we have Zw̃(x− δ0, x, s) = 0, Zw̃(x− δ0, x, t) = 0 and Dw̃(x− δ, x, s, t) = 0
(such an U1 exists by the assumptions (ii)). Now for all 0 < δ ≤ δ0, by definition of Zw, Dw, the
assumptions (ii) hold on {x − δ} × [s, t). We claim that we can find 0 < δ1 ≤ δ0 such that, in
addition, for all the zeroes in {x − δ1} × [s, t), expressed as (τ, γi(τ)), γi(τ) = x − δ1, s < τ < t,
we have that (γi)x(τ) 6= 0. We apply the Morse-Sard Lemma to every C1 function γi, and establish
that the set of critical values x, i.e. x for which γi(τ) = x and (γi)x(τ) = 0 for some τ ∈ [s, t],
has the Lebesgue measure 0. As there are at most countably many curves of zeroes γi, i ∈ Iw, this
completes the proof of existence of such δ1. It is easy to verify that now

Fw(x− δ1, s, t) =
∑

τ∈(s,t),w(x−δ1,τ)=0

sgn (−wt(x− δ1, τ)),(4.4)

as sgn(γi)x(τ) = −wt(x̃, τ) for regular zeroes (x̃, τ), where i ∈ Iw is such that γi(τ) = x̃. We now
find an open neighborhood U ⊂ U1 of (u, v) such that for each (ũ, ṽ) ∈ U , w̃ = ũ − ṽ, for all the
zeroes of w̃ in (x− δ1, τ) in {x− δ1} × (s, t), we have that w̃t(x − δ1, τ) 6= 0. Applying the implicit
function theorem analogously as for z, but now for the function τ 7→ w(x − δ1, τ), τ ∈ [s, t], we
deduce that Fw̃(x − δ1, s, t) is constant on U . By the balance law (4.2) and the construction of U1

we see that Fw̃(x, s, t) = Fw̃(x− δ1, s, t) on U , which completes (ii).
To show (iii), note first that for any δ1, δ2, ε1, ε2 > 0 small enough, we have

Dw(x, y, s, t) = Dw(x+ δ1, y − δ1, s+ ε1, t− ε1) = Dw(x− δ2, y + δ2, s− ε2, t+ ε2)

(this follows from the finiteness of the number of multiple zeroes in any compact Q and the assump-
tions (iii)). In addition, by the local structure of zeroes we can choose δ1, δ2, ε1, ε2 > 0 such that
there are no zeroes in the ”corners” {x+δ1, y−δ1}×{s+ε1, t−ε1} and {x−δ2, y+δ2}×{s−ε2, t+ε2}.
Now applying twice the balance law (4.2) and (i), (ii) (i.e. on [x + δ1, y − δ1]× [s+ ε1, t− ε1] and
[x− δ2, y + δ2]× [s− ε2, t+ ε2]), we can find a neighborhood U such that

Dw(x, y, s, t) = Dw̃(x+ δ1, y − δ1, s+ ε1, t− ε1) = Dw̃(x− δ2, y + δ2, s− ε2, t+ ε2)

for (ũ, ṽ) ∈ U , w̃ = ũ− ṽ. To establish Dw̃(x, y, s, t) = Dw(x, y, s, t) on U , it suffices to note that by
the definition of Dw,

Dw̃(x+ δ1, y − δ1, s+ ε1, t− ε1) ≤ Dw̃(x, y, s, t) ≤ Dw̃(x− δ2, y + δ2, s− ε2, t+ ε2).

�

We will frequently use the notation d̂(u, v) = d(u − v), f̂(u, v) = f(u − v), d̂(u, v) = d(u − v),

where d̂, û, v̂ : B̃2 → Z, and let Ŝ, T̂ : B̃2 → B̃2, Ŝ(u, v) = (Su, Sv), T̂ (u, v) = (Tu, T v). The balance
law of zeroes (4.3) can now be written as

(4.5) ẑ ◦ T̂ − ẑ = f̂ ◦ Ŝ − f̂ − d̂.

Lemma 4.5. If u, v ∈ B̃ are such that d̂(u, v) > 0, then there exists an open neighbourhood U of

(u, v) in B̃2 such that for each (ũ, ṽ) ∈ U , we have

(4.6) d̂(ũ, ṽ) + d̂(Ŝ−1(ũ, ṽ)) + d̂(T̂ (ũ, ṽ)) + d̂(Ŝ−1T̂ (ũ, ṽ)) ≥ 1.

Proof. By finiteness of the number zeroes in a compact set, we can find 0 < δ, ε < 1 small enough
such that for Q̃ = [−δ, 1−δ]× [ε, 1+ε], there are no multiple zeroes in ∂Q, and such that Dw(−δ, 1−
δ, ε, 1+ε) = Dw(0, 1, 0, 1) = d(w). Now we apply Lemma 4.4, (iii), and find an open neighborhood U
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of (u, v) such that for each (ũ, ṽ) ∈ U , w̃ = ũ−ṽ, we haveDw(−δ, 1−δ, ε, 1+ε) = Dw̃(−δ, 1−δ, ε, 1+ε).
Finally it suffices to note that

d̂(ũ, ṽ) + d̂(Ŝ−1(ũ, ṽ)) + d̂(T̂ (ũ, ṽ)) + d̂(Ŝ−1T̂ (ũ, ṽ)) = Dw̃(−1, 1, 0, 2)

≥ Dw̃(−δ, 1− δ, ε, 1 + ε)

= d(w) ≥ 1.

where the second inequality follows from the definition of Dw. �

Lemma 4.6. The functions ẑ, d̂, f̂ : B̃2 → Z are Borel-measurable. Specifically, d̂, ẑ ≥ 0.

Proof. The functions ẑ, d̂, f̂ have values in Z and d̂, ẑ ≥ 0 by definition and Lemma 4.2, (iv).
Let w = u − v. To show measurability of ẑ, we first show the following: for n ∈ N, n ≥ n0(w),

n0(w) large enough, we have that xn := −1/
√
n, yn := 1− 1/

√
n, tn := 1/n satisfy the assumptions

in Lemma 4.4, (i), and that z(w) = Zw(xn, yn, tn). Firstly, by finiteness of the number of multiple
zeroes in a compact set, there are no multiple zeroes in [xn, yn) × {tn} for n large enough. Now if
(0, 0) and (1, 0) are not zeroes, or are even, multiple zeroes, the assumptions in Lemma 4.4, (i) hold
for n large enough by the local structure of zeroes. Assume (0, 0) is a regular or odd multiple zero,
thus lying on a C1 curve of zeroes γi, γi(0) = 0. By the local structure of zeroes, (xn, tn) can be a
zero for n large enough only if xn = γi(tn). However, it is impossible for n large enough, whenever√
n ≫ |(γi)t(0)| (which is well-defined as γi is C

1 and defined on an open set). Analogously we show
that (yn, tn) can not be a zero for n large enough. By an analogous consideration, we see that for
all i ∈ I, 1({γi(tn) ≥ xn}) = 1({γi(0) ≥ 0}), 1({γi(tn) ≥ yn}) = 1({γi(0) ≥ 1}) for n ≥ n0(w),
n0(w) large enough, thus by definition and finiteness of the number of relevant i ∈ I, we have
z(w) = Zw(xn, yn, tn) for n ≥ n0(w) for n0(w) large enough.

Denote by Un ⊂ B̃2 such that xn, yn, tn satisfy assumptions in Lemma 4.4, (i). Clearly, Un is

measurable (as an intersection of a closed B̃2 and an open set for which the assumptions hold).

Thus by Lemma 4.4, (i), and separability of B̃2, the set Vn,k = {Zu−v(xn, yn, tn) = k, (u, v) ∈ Un}
is measurable for any integers n ≥ 1, k ≥ 0. By the previous paragraph,

{z(u− v) = k} = ∩n∈NVn,k

thus ẑ(u, v) = z(u−v) is measurable. The proof for f̂ is analogous by considering Fw on (xn, sn, tn) =

(−1/n, 0, 1). Measurability of d̂ follows from (4.5). �

5. The proof of Theorem 1.1 (the bounded case)

In this section we consider only the bounded case, and then show:

Proposition 5.1. For any (u, v) ∈ E2, we have that d(u − v) = 0.

This will trivially imply Theorem 1.1. We prove Proposition 5.1 in the AC case only; the DC
case is analogous (by taking the semiflow T (t) instead of the map T ). Extending the ideas from the

introduction, we define the zero function Ẑ of two Borel probability measures on B̃ (by also using
the notation from the previous section) as

Ẑ(µ1, µ2) :=

∫

B̃2

z(u− v)dµ1(u)µ2(v) =

∫

B̃2

ẑdµ1dµ2.

More generally, Ẑ is well-defined for any Borel probability measure on B̃2. Now Z(µ) = Ẑ(µ2). We
prove Proposition 5.1 as follows. We first deal with the possibility that Z(µ) = ∞. In the bounded
case this is not a difficulty, as we first show in Lemma 5.2 that if µ is T -ergodic, Z is always finite.
We actually prove a more general statement for measures on B̃2. In the non-ergodic case, we show
in Lemma 5.3 that we can always modify ”weights” in the ergodic decomposition to make Ẑ finite.
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The claim will then follow from integrating the balance law of zeroes (4.5), which by S-periodicity
in the bounded case reduces to

(5.1) ẑ ◦ T̂ − ẑ = −d̂.

Lemma 5.2. Let ν be a Borel-probability measure on B̃2. If ν is T̂ -ergodic, then Ẑ(ν) < ∞.

Proof. By ergodicity, any T̂ -invariant set is of ν-measure 0 or 1. The balance law (5.1) implies that

ẑ is non-increasing on B̃2 with respect to T̂ , thus the sets Bn = {ẑ(u, v) ≤ n, (u, v) ∈ B̃2}, n ≥ 0

an integer, are T̂ -invariant, and by finiteness of ẑ, B̃2 = ∪∞
n=0Bn. As ν(B̃2) = 1, by continuity of

probability we have that there exists n0 ≥ 0 such that µ(Bn0
) = 1, thus Ẑ(ν) ≤ n0. �

Lemma 5.3. Assume ν is T̂ -invariant, and (u, v) ∈ supp ν. Then there exists a T̂ -invariant ν̃ such

that Ẑ(ν̃) < ∞ and (u, v) ∈ supp ν̃.

Proof. First we find a sequence of T̂ -ergodic measures νk such that (u, v) is in the closure of
∪∞
k=1 supp νk. We do it e.g. by choosing any ergodic measure νk such that the νk-measure of

the 1/k-ball Bk around (u, v) is > 0 (it must exist by the ergodic decomposition theorem [40]). Let

ν̃ = κ

∞
∑

k=1

1

max{Ẑ(νk), 2k}
νk,

where κ is uniquely chosen so that ν̃ is a probability measure. Indeed, it is possible to choose κ ≥ 1,
as by Lemma 5.2, the sum of the factors is

0 <
∞
∑

k=1

1/max{Ẑ(νk), 2k} ≤ 1.

Also by definition, Ẑ(ν̃) ≤ 1/κ < ∞. We see that (u, v) ∈ supp ν̃ by choosing any wk ∈ Bk ⊂
supp ν̃k ⊂ supp ν̃. Then wk converges to (u, v), so (u, v) must be in supp ν̃ as the support of a
measure is always closed. �

Proof of Proposition 5.1. Assume (u, v) ∈ E2, i.e. that u ∈ suppµ1, v ∈ suppµ2 for some T -

invariant µ1, µ2. Let ν = µ1 × µ2, and let ν̃ be a T̂ -invariant measure constructed in Lemma 5.3.
We can write (5.1) twice to obtain

ẑ ◦ T̂ 2 − ẑ = −d̂− d̂ ◦ T̂ .
Integrating it with respect to ν̃, and using T̂ -invariance of ν̃ and integrability of Ẑ (and thus

integrability of Ẑ ◦ T̂ , Ẑ ◦ T̂ 2), we see that

(5.2)

∫

B̃2

d̂ dν̃ +

∫

B̃2

d̂ ◦ T̂ dν̃ = 0.

Now, assume that d(u − v) = d̂(u, v) > 0. We now find an open neighborhood U of (u, v) such

that (4.6) holds, i.e. by S-invariance of all u in the bounded case, such that d̂(ũ, ṽ) + d̂ ◦ T̂ (ũ, ṽ). As
(u, v) is in the support of ν̃, we have that ν̃(U) ≥ ε for some ε > 0, thus as always d̂ ≥ 0,

∫

B̃2

d̂ dν̃ +

∫

B̃2

d̂ ◦ T̂ dν̃ ≥ ε,

which contradicts (5.2). �

Proof of Theorem 1.1. By definition, if (u(0), ux(0)) = (v(0), vx(0)), then by definition of d, we have
d(T−1u − T−1v) ≥ 1, and by T -invariance of E , (T−1u, T−1v) ∈ E . This is by Proposition 5.1
impossible. �
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6. The proof of Theorem 1.2 (the extended case)

In this section, we consider only the extended, AC case (the DC case is analogous). The main

difficulty in the proof of Theorem 1.2 is possible non-integrability of the zero and flux functions ẑ, f̂ .

For integrable ẑ, f̂ , by integrating (4.5) with respect to a product of any two S, T -invariant measures
µ1, µ2, we see that d = 0, µ1 × µ2-a.e.. The claim then follows analogously as in the bounded
case. To address it in the extended case, we apply ergodic-theoretical tools for two commuting
transformations Ŝ, T̂ , on the product B̃2 with the Borel σ-algebra. In other words, we consider
ergodic properties of two ”replicas” of elements in B̃ with associated actions induced by (1.1) and
the spatial shift S.

Given a Ŝ-invariant measure ν on B̃2 , the zero function is defined with

Ẑ(ν) =

∫

B̃2

ẑ dν

(ν is now an arbitrary Ŝ-invariant measure, not necessarily a product of two measures on B̃). In the
first sub-section we prove a balance law of zeroes on average, i.e. that the flux in (4.5) cancels out

when (4.5) is integrated with respect to a Ŝ-invariant measure. In the second subsection we consider
properties of the average density of zeroes defined as

ζ̂(u, v) = lim inf
n→∞

1

2n
z[−n,n)(u− v).

By the Birkhoff ergodic theorem, for any Ŝ-invariant measure ν on B̃2, for ν-a.e. (u, v), the lim inf

in the definition of ζ̂ can be replaced with lim, though we can not exclude the possibility that the

value of ζ̂ is +∞. We then characterize the case of ζ̂ being ν-a.e. finite. We use these tools to
complete the proof of Theorem 1.2 analogously as in the bounded case.

6.1. The balance law of zeroes on average. We prove the following:

Proposition 6.1. The balance law of zeroes on average. Assume ν = ν(0) is a Ŝ-invariant

measure on B̃2, such that Ẑ(µ) < ∞. Then

(6.1) Ẑ(ν(0)) = Ẑ(ν(1)) +

∫

B̃2

d̂ dν(0).

Here ν(t) denotes the induced evolution of ν(0) on B̃2 with respect to two ”replicas” of (1.1). The
proposition will follow from a general ergodic theoretical argument, which is needed to show that
the flux f in (4.5) cancels out when integrated with respect to a Ŝ-invariant measure, even in the
case when f is not integrable:

Proposition 6.2. Assume (Ω,F , ν) is a probability space, and that σ̂ : Ω → Ω is a measurable,
ν-invariant map. Assume that ϕ, ζ : Ω → R are measurable, and that ζ is ν-integrable. Furthermore,
assume that ν-a.e.,

(6.2) ϕ ◦ σ̂ − ϕ ≥ −ζ.

Then (ϕ ◦ σ̂ − ϕ) is integrable and
∫

Ω
(ϕ ◦ σ̂ − ϕ)dν = 0.

Proof. Let Um be the set of all u ∈ Ω such that ϕ(σ̂n(u)) ≤ m for infinitely many n ∈ N. Then
it is easy to see that Um is σ̂-invariant, and by the Poincaré recurrence theorem applied to sets
{u : ϕ(u) ≤ m}, that

(6.3) ν{
∞
⋃

m=1

Um} = 1.

Consider functions

u 7→h(u) := ϕ(σ̂(u))− ϕ(u) + ζ(u),

u 7→hm(u) := 1Um
(u){ϕ(σ̂(u))− ϕ(u) + ζ(u)} ∧m,
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where 1Um
is the characteristic function and ∧ the minimum. By the assumptions, h ≥ 0, thus

hm ≥ 0, and by construction and (6.3), hm is an increasing sequence of functions converging ν-a.e.
to h.

We will first show that E[hm] ≤ E[ζ], where E[.] denotes the expectation, i.e. the Lebesgue
integral with respect to ν. Let S be the σ-algebra of σ̂-invariant sets. It suffices to show that for all
m ≥ 0,

(6.4) E[hm|S] ≤ E[ζ|S], ν − a.e.,

where E[.|S] denotes the conditional expectation [6]. As 0 ≤ hm ≤ m, hm is integrable, thus by the
Birkoff ergodic theorem, we have that ν-a.e.,

(6.5) lim
n→∞

1

n

n−1
∑

k=0

hm ◦ σ̂k = E[hm|S].

Without loss of generality ν(Um) > 0 (otherwise hm = 0 ν-a.e.). Choose u ∈ Um, and one of
infinitely nj such that ϕ(σ̂nj (u)) ≤ m. Then it is easy to see that

1

nj

nj−1
∑

k=0

hm(σ̂k(u)) ≤ 1

nj

nj−1
∑

k=0

h(σ̂(u)) =
1

nj
(ϕ(σ̂nj (u))− ϕ(u)) +

1

nj

nj−1
∑

k=0

ζ(σ̂k(u))

≤ 1

nj
(m− ϕ(u)) +

1

nj

nj−1
∑

k=0

ζ(σ̂k(u)).(6.6)

Now by the Birkhoff ergodic theorem applied to ζ, we see that the right-hand side of (6.6) converges
to E[ζ|S] as nj → ∞. Combined with (6.5), we deduce that for ν-a.e. u ∈ Um, we have that
E[hm|S] ≤ E[ζ|S]. As for u ∈ Uc

m, hm(u) = 0 and Uc
m is σ̂-invariant, we conclude that (6.4) holds

also for ν-a.e. u ∈ Uc
m.

Now, by the definition of the conditional expectation, (6.4) implies that for all m ∈ N, E[hm] ≤
E[ζ], thus by the Lebesgue monotone convergence theorem, h is integrable and E[h] ≤ E[ζ]. As we
can now apply the Birkhoff ergodic theorem also to h, we repeat the argument as in (6.5) and (6.6)
applied to h instead of hm to conclude that E[h] = E[ζ]. As now h− ζ is integrable and E[h− ζ] = 0,
the proof is complete. �

Proof of Proposition 6.1. We insert in Proposition 6.2 the following: Ω = B̃2 with the Borel σ-

algebra, σ̂ = Ŝ, ϕ = f̂ and ζ = ẑ. By (4.5), the assumptions of Proposition 6.2 hold, thus (f̂ ◦ Ŝ− f̂)
is ν-integrable and

∫

B̃2

(

f̂ ◦ Ŝ − f̂
)

dν = 0.

Inserting it into (4.5) integrated with respect to ν, we obtain (6.1), where by non-negativity of ẑ, d̂,

we have that ẑ ◦ T̂ and d̂ are also ν-integrable. �

6.2. Density of zeroes and non-degeneracy of invariant measures. First we establish that
density of zeroes is a.e. non-decreasing, and then define and characterize non-degeneracy of invariant
measures.

Lemma 6.3. Assume ν is a Ŝ-invariant measure. Then for ν-a.e. (u, v),

(6.7) ζ̂(Tu, T v) ≤ ζ̂(u, v).

Proof. It suffices to prove that (6.7) holds a.e. with respect to every Ŝ-ergodic measure ν0, as the
claim then follows by the ergodic decomposition theorem. This follows from the Birkhoff ergodic

theorem and (6.1) if Ẑ(ν0) < ∞, and trivially if Ẑ(ν0) = ∞, as then ζ̂(u, v) = ∞ ν0-a.e. �
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Definition 6.1. We say that a Ŝ-invariant measure on B̃2 is non-degenerate, if for ν-a.e. (u, v),

ζ̂(u, v) < ∞. We say that a pair (µ1, µ2) of S-invariant measures on B̃ is non-degenerate, if µ1 × µ2

is non-degenerate. An S-invariant measure µ on B̃ is non-degenerate, if the pair (µ, µ) is non-

degenerate. A family of S-invariant measures N on B̃ is non-degenerate, if every µ ∈ N is non-
degenerate. The ergodic attractor E is non-degenerate, if M(B) is non-degenerate.

We note that we do not know of any examples of degenerate measures on B̃2. We discuss it
further in Section 11.

In the following lemma, we use the ergodic decomposition of a measure with respect to two
commuting transformations. We say that a measure is ergodic with respect to two commuting
transformations Ŝ, T̂ , if any Ŝ, T̂ -invariant measurable set has measure 0 or 1. We can decompose a
Ŝ, T̂ -invariant measure on B̃2 into Ŝ, T̂ -ergodic measures, with the standard decomposition formula
[40], Section 6.2, as the Choquet theorem applies. We will require the following generalization of
Lemma 5.2 to the extended case.

Lemma 6.4. Let ν be a Ŝ-invariant measure on B̃2.
(i) ν is non-degenerate, if and only if for a.e. measure ν0 in its ergodic decomposition into

Ŝ-ergodic measures, Ẑ(ν0) < ∞.

(ii) Assume ν is Ŝ, T̂ -invariant. Then ν is non-degenerate, if and only if for a.e. measure ν0 in

its ergodic decomposition into Ŝ, T̂ -ergodic measures, Ẑ(ν0) < ∞.

Proof. Assume ν is non-degenerate, and take any measure ν0 from its Ŝ-ergodic decomposition such

that ζ̂ < ∞ ν0-a.e. (it holds for a.e. measure in the ergodic decomposition.) As for each n, the

set {(u, v), ζ̂(u, v) ≤ n} is Ŝ-invariant, it has ν0-measure 0 or 1, thus we can find n0 large enough

such that ν0(ζ̂(u, v) ≤ n0) = 1, so Ẑ(ν0) ≤ n0. The other implication in (i) follows from the ergodic
decomposition theorem.

To show (ii), it suffices to note that by Lemma 6.3, for every Ŝ, T̂ -ergodic measure ν0, the sets

{(u, v), ζ̂(u, v) ≤ n} are ν0-a.e. Ŝ, T̂ -invariant. The rest of the proof is analogous to the case (i). �

6.3. Proof of Theorem 1.2. We prove the following slightly generalized version of Theorem 1.2:

Proposition 6.5. Assume M0(B) is a non-degenerate family of measures, closed for finite or
countable convex combinations, and let E0 = ∪µ∈M0(B) suppµ. Then for any (u, v) ∈ E0, we have
that d(u− v) = 0.

Proof. Let u ∈ suppµ1, v ∈ suppµ2, and let ν = 1
4 (µ1 + µ2)

2 be a Ŝ, T̂ -invariant measure on B̃2,
by assumptions non-degenerate. Analogously as in Lemma 5.3, by applying Lemma 6.4, we can
construct a Ŝ, T̂ -invariant ν̃ such that Ẑ(ν) < ∞, and such that (u, v) ∈ supp ν̃. As ν̃ is Ŝ, T̂ -

invariant, (6.1) implies that d̂ = 0, ν̃-a.e. The rest of the argument is analogous to the proof of
Proposition 5.1. �

Example 6.1. Assume M0(B̃) consists of measures µ, such that for µ-a.e. (u, v) ∈ B̃2 there exists

an integer k such that (Sku, Skv) = (u, v). Then M0(B̃) is non-degenerate and closed for finite or
countable convex combinations.

Proof of Theorem 1.2. It is analogous to the proof of Theorem 1.1, by inserting M(B) = M0(B) in
Proposition 6.5. �

7. Non-transversal intersections of an equilibrium in the extended case

Prior to discussing uniqueness of an invariant measure, we demonstrate here a universal property
of non-transversality of intersections of ω-limit set and a S, T -equilibrium (i.e. a spatially and
temporally periodic solution). We consider only extended, AC case in this section, assume (A1-4),

where B is as in (A4), and B̃ = T̂ (0,−δ0)B for some δ0 > 0 as in Section 2. Let v ∈ B such that
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v = S(v) = T (v), thus v ∈ B̃. Recall that the pair (µ, δv) is non-degenerate, if for µ-a.e. u, (6.1)
holds. We first give examples of µ such that non-degeneracy holds.

Example 7.1. (i) Let u0, u1 ∈ B̃, S-invariant (i.e. spatially periodic), such that they intersect for
some x0 ∈ [0, 1) (and then they intersect for all x0 + k, k ∈ Z); without loss of generality let
x0 = 0. We can obtain them by taking any S-periodic ũ0, ũ1 with a non-transversal intersection
and choosing δ0 small enough, uj = T̂ (0,−δ0)ũj , j = 0, 1. Let Ω = {(ωk)k∈Z, ωk ∈ {0, 1}}, be the
Bernoulli space with the standard σ-algebra and the Bernoulli measure µ0. We embed µ0 into B
with ι : ω 7→ uω(x) := uω⌊x⌋

(x), where ⌊x⌋ is the largest integer ≤ x, and defining µ = ι∗µ0, ι
∗ the

standard pull of measures. Then as ζ̂(u1, v) < ∞, ζ̂(u2, v) < ∞, it is easy to check that ζ̂(u, v) is
finite, uniformly bounded for u ∈ suppµ.

(ii) Further examples can easily be constructed by using the sufficient conditions for non-degeneracy
in Lemma 11.1 and Remark 11.1.

Proposition 7.1. Assume that µ is an S-invariant measure on B̃ such that (µ, δv) is non-degenerate.
Then for µ-a.e. u, ω(u) consists of z such that z(t) − v(t) can not have a multiple zero for any
(x, t) ∈ R2.

Proof. First note that it suffices to prove the claim for S-ergodic µ, as by Lemma 6.4, every measure
ν0 in the Ŝ-ergodic decomposition of µ × δv is non-degenerate, and a.e. measures in the Ŝ-ergodic
decomposition of µ × δv are of the form µ0 × δv, µ0 S-ergodic. Thus assume µ is S-ergodic, so by
the non-degeneracy assumption Ẑ(µ× δv) < ∞.

We will first show that there exists an open set U ⊂ B̃ satisfying

(7.1) {ũ, d̂(ũ, v) ≥ 1} ⊂ U ⊂ {ũ, d̂(ũ, v) + d̂(S−1ũ, v) + d̂(T ũ, v) + d̂(S−1T ũ, v) ≥ 1}.

Then we show that

(7.2)

∞
∑

k=1

µ(T k(u) ∈ U) < ∞,

and finally we complete the proof by an application of the first Borel-Cantelli lemma.

To prove the first claim, for any z such that d̂(z, v) ≥ 1 we can by an application of Lemma 4.5

find an open neighborhood Ũ(z) ⊂ B̃ such that for each ũ ∈ Ũ(z), and for ṽ = v, (4.6) holds, thus
as v = Tv = S−1v,

(7.3) d̂(ũ, v) + d̂(S−1ũ, v) + d̂(T ũ, v) + d̂(S−1T ũ, v) ≥ 1.

The set U = ∪z∈B̃,d̂(z,v)≥1Ũ(z) now satisfies (7.1).

Applying (6.1) for all ν(k), k ≥ 0 an integer, where ν = µ× δv, ν(0) = ν, thus ν(k) = µ(k)× δv,
we obtain that the left-hand sum below is convergent and that

(7.4)

∞
∑

k=0

∫

B̃

d̂(T k(u), v)dµ(u) ≤ Ẑ(µ× δv) < ∞.

However, by definition of d̂ and the right-hand side of (7.1), we have that

ν(T k(u) ∈ U) ≤
∫

B̃

(

d̂(T kũ, v) + d̂(S−1T kũ, v) + d̂(T k+1ũ, v) + d̂(S−1T k+1ũ, v)
)

dµ

= 2

∫

B̃

(

d̂(T kũ, v) + d̂(T k+1ũ, v)
)

dµ,(7.5)

where in the second row we applied the S-invariance of µ. Inserting (7.5) into (7.4) we obtain (7.2).
By the Borel-Cantelli lemma [6], (6.1), the set of u such that T k(u) ∈ U for infinitely many k ∈ N
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has µ-measure 0, thus by openness of U , µ({u, ω(u) ∩ U = ∅}) = 1. Now by S-invariance of µ we
have

µ

(

⋂

k∈Z

{

u, ω(Sk(u)) ∩ U = ∅
}

)

= 1.

By T -invariance of ω-limit set and (7.1), this completes the proof.
�

8. A 1d family of equilibria as an ergodic attractor and asymptotics

Here we give a more general condition (C1), sufficient for the conclusions of Theorem 1.3 and
Corollaries 1.4, 1.5 and 1.6 to hold. Specifically, we assume existence of a 1D family of periodic
solutions as follows:

(C1) (i) There exists a set V = {vy, y ∈ R, vy ∈ H2α(S1), satisfying that y 7→ vy is continuous in

H2α(S1), strictly increasing, and that for all y ∈ R, vy is T -invariant,
∫ 1

0
vy(x)dx = y.

(ii) The functions

y 7→ v(y) := min{vy(t, x), (x, t) ∈ S
1 × [0, 1]},

y 7→ v(y) := max{vy(t, x), (x, t) ∈ S
1 × [0, 1]}

are onto R.

(Here vy(t, x) denotes the solution of (1.1), u(0) = vy.)
The standing assumptions in this section are (A1-3), (B1) and (C1), with α > 1 − ε/2, where

ε is as in (B1). We prove results in the AC case only (both bounded and extended), the DC case
is analogous. Under these assumptions we establish all the claims of Subsection 1.2 in a series of
Lemmas. We first establish that Xα can be decomposed into an increasing union of sets on which
(A4) holds.

Lemma 8.1. Assume u ∈ Xα in either bounded or extended case, such that ||u||Xα ≤ c0. Then
there exists a constant c1 > 0 (depending on c0, non-linearity g and family V), such that for any
t0 ∈ R, the solution of (1.1), u(t0) = u, exists for all t ≥ t0 and ||u(t)||Xα ≤ c1.

Proof. By (C1),(ii), we can find y1 < y2 such that v(y1) ≤ u ≤ v(y2). By the maximum principle,
if the solution of (1.1) exists on the interval [t0, t1), then for each t ∈ [t0, t1), we have that v(y1) ≤
u(t) ≤ v(y2), thus u(t) is uniformly bounded in the L∞(S1), resp. L∞(R) norm. This and (C1) imply
the claim by the standard argument, e.g. [19], Proposition 7.2.2. (alternatively, see [24], Section 2),
which is in the view of the comments in the Appendix also valid in the extended case. �

Let B̃k be the set of all u ∈ T̂ (0,−δ0)Xα such that for all t ≥ 0, ||u(t)||Xα ≤ k. Then by Lemma

8.1, T̂ (0,−δ0)Xα = ∪∞
k=1B̃k, and by the discussion in Section 2, B̃k is compact and invariant. In

this section we write E = ∪∞
k=1E(B̃k).

Lemma 8.2. In the bounded case, and in the extended case if E is non-degenerate, we have that
E = V.
Proof. Consider first the bounded case. Fix k ∈ N, and consider

B̃ := B̃k ∪ {vy, y ∈ [y−, y+]},
B̃ ⊂ H2α(S1), where y− < y+ were chosen so that for all u ∈ B̃k, v

y−

< u < vy
+

(this is possible,

as by definition, B̃k is uniformly bounded in L∞(R), and by (C1),(ii)). Clearly {vy, y ∈ [y−, y+]} ⊂
E(B̃k), as the Dirac measure δvy is T -invariant. Assume µ is any T -invariant measure on B̃, and let
u ∈ suppµ. Let y1 < y2 be chosen so that y1 = max{y, vy ≤ u}, and y2 = min{y, u ≤ vy} (such
minimum and maximum exist by the compactness of the domain S1). If y1 6= y2, we easily see that
both u − vy1 and u − vy2 have a multiple zero, which is impossible by Proposition 5.1 applied to
(T−1u, T−1vy1) or (T−1u, T−1vy2). The only possibility is u = vy1 = vy2 , thus u ∈ V .



INVARIANT MEASURES OF PARABOLIC DIFFERENTIAL EQUATIONS 21

Consider now the extended case with the non-degeneracy assumption, with B̃ as above, but
now B̃ ⊂ H2α

ul (R). Again we see that {vy, y ∈ [y−, y+]} ⊂ E(B̃k), as the Dirac measure δvy is

S, T -invariant. Let µ be any S, T -invariant measure on B̃, and let u ∈ suppµ. Now suppose that
u intersects some vy0 twice at x1 < x2. Find y1 < y2 so that y1 = max{y, vy(x) ≤ u(x), x ∈
[x1, x2]}, and y2 = min{y, u(x) ≤ vy(x), x ∈ [x1, x2]} (again such minimum and maximum exist by
compactness of [x1, x2]). Thus by Proposition 6.5, we deduce analogously as in the bounded case
that the only possibility is u|[x1,x2] = vy1 |[x1,x2] = vy2 |[x1,x2], thus by the local structure of zeroes,
u = vy1 = uy2 , i.e. u ∈ E . We conclude that u can intersect every v ∈ V at most once, transversally,
so it is easy to see that the only alternative to u ∈ V is u ∈ H, H the set of spatially heteroclinic
solutions defined in the Introduction. By definition, no h ∈ H is S-recurrent, thus by the Poincaré
recurrence theorem, µ(H) = 0, thus µ(V) = 1. As V is a closed set, µ must be supported on V ,
which eliminates the possibility u ∈ H and concludes the proof also in the extended case. �

Lemma 8.3. For each u ∈ Xα in the bounded case, there exists y0 ∈ R such that ω(u) = {vy0}.
Proof. As ω̄(u) is by Lemma 3.3 non-empty, by Lemma 3.4 and Lemma 8.2, there exists some y0 ∈ R

such that vy0 ∈ E ∩ ω̄(u), thus vy0 ∈ ω(u). Now by (C1), for each δ > 0 there exists a sufficiently
large k0 ∈ N such that vy0−δ ≤ T k0(u) ≤ vy0+δ. As all vy are T -invariant, by the maximum principle
we have that for all k ≥ k0, v

y0−δ ≤ T k(u) ≤ vy0+δ, thus ω(u) contains only vy0 . �

Lemma 8.4. Assume in the extended case that µ satisfies (N1). Then there exists a set U of full
measure such that for u ∈ U and for any z ∈ ω(u), z(t)− vy(t) can not have a multiple zero for any
y, x, t ∈ R.

Proof. By Proposition 7.1, for a given y ∈ R, there exists a set of full measure Uy such that if u ∈ Uy

and z ∈ ω(u), z(t)− vy(t) can not have a multiple zero for any x, t ∈ R. Now the set U = ∩y∈QUy

also satisfies µ(U) = 1. Assume there is u ∈ U such that for some z ∈ ω(u) and some y0 ∈ R,
z(t) − vy0(t) have a multiple zero for some t, x ∈ R. However, by an analogous argument as in
Lemma 4.5, we can find δ0 such that for each y ∈ (y0− δ, y0+ δ), there exists t̃ such that z(t̃)− vy(t̃)
has a multiple zero, which is impossible for rational y, thus a contradiction. �

Lemma 8.5. Assume in the extended case that µ satisfies (N1). For µ-a.e. u, we have that
ω(u) ⊂ V ∪H.

Proof. To show (i), we show analogously as in the proof of Lemma 8.2 in the extended case, by
applying Lemma 8.4, that there exists a set of full measure U so that for any u ∈ U and any
z ∈ ω(u), z − vy can not have a multiple zero for any y ∈ R. Analogously as in the same proof, we
obtain ω(u) ⊂ V ∪H (the possibility that u ∈ H can not be eliminated). �

Lemma 8.6. Assume in the extended case that µ satisfies (N1). Then ω-limit set of µ in the
weak∗-topology consists of measures supported on V.
Proof. It is a standard ergodic theoretical fact that if ν ∈ ω(µ) (ω-limit set with respect to the weak∗

topology of iterations of µ induced by T ), then supp ν ⊂ ∪u∈suppµω(u) [40], thus ν is by Lemma 8.5
supported on V ∪ H. It is easy to see that ν must be S-invariant, thus as no h ∈ H is S-recurrent,
by Poincaré recurrence theorem, ν(H) = 0. Now ν(V) = 1, and as V is closed, supp ν ⊂ V . �

9. Burgers-like equations

We now complete the proofs of all the theorems stated in Subsection 1.2, by establishing that (C1)
holds under the invariance assumption (B3). This will follow from an application of the Schauder
fixed point theorem, assisted by standard interpolation estimates to establish equicontinuity, thus
compactness by the Arzelà-Ascoli theorem. Without loss of generality, we set the fixed α > 1− ε/2,
where ε is as in (B1).

Lemma 9.1. If (A1-3) and (B1-3) hold, then (C1) holds.
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Proof. Throughout the proof, we consider the dynamics of (1.1) in the bounded case X = L2(S1)
only, and assume (A1-3), (B1-3). Fix n ∈ N and a function c : [α, 1) → (n,∞), and consider the
family Vn,c of continuous functions w : [−n, n] → Xα, y 7→ wy , satisfying the following properties
for all y, z ∈ [−n, n]:

∫ 1

0

wy(x)dx = y,(9.1a)

||wy − y||L∞(R) ≤ d(y),(9.1b)

y ≤ z ⇒ wy ≤ wz ,(9.1c)

||wy ||X γ ≤ c(γ) for all γ ∈ [α, 1).(9.1d)

Clearly Vn,c is convex. We first show it is closed in C([−n, n],Xα). The only non-trivial claim that
it is closed with respect to (9.1d), for α < γ < 1. It suffices to show that if for some y ∈ [−n, n], a
sequence wy

n satisfying (9.1d) converges in Xα to zy ∈ Xα, that then zy ∈ X γ and ||zy||X γ ≤ c(γ).

By taking some γ′ > γ, by compact imbedding of X γ′

in X γ we deduce that the family wy
n, n ∈ N is

relatively compact in X γ . As its every convergent subsequence in X γ converges also in Xα, it must
converge to zy, thus zy ∈ X γ , wy

n converges to zy in X γ and (9.1d) holds in the limit.
We now show that for each n ∈ N, there exists a function c as above such that Vn,c is non-

empty, and such that the function τ : Vn,c → Vn,c given with (τ(w))y = T (wy) is well defined, i.e.
that τ(w) ∈ Vn,c. The properties (9.1a) and (9.1b) are preserved by (B2), (B3) respectively; and
(9.1c) by the order-preserving property of (1.1). To show τ -invariance of (9.1d), consider c∞ :=
maxy∈[−n,n](|y| + d(y)) (which exists by the upper semi-continuity of d). Then by (B1), (B2) and
[19], Proposition 7.2.2, the solution of (1.1), u(0) = wy exists for all t ≥ 0 as long as wy satisfies
(9.1b), and for all t ≥ 0, ||u(t)||L∞(R) ≤ c∞. Furthermore, by [19], Lemma 7.0.3 and Proposition
7.2.2, we can find c(α) > n large enough, such that if ||wy ||Xα ≤ c(α), then ||T (wy)||Xα ≤ c(α).
Finally, we obtain the required c(γ) > n for each α < γ < 1 by integrating the variation of constants
formula over t ∈ [0, 1] while applying (B1) and a-priori bounds on the solution in Xα for t ∈ [0, 1]
obtained in [19], Proposition 7.2.2. Clearly now for wy ≡ y we have that w ∈ Vn,c, thus Vn,c is
non-empty. We fix the constructed c.

Finally, we show that Vn,c is compact in C([−n, n],Xα). First note that by (9.1a) and (9.1c), for
y < z we have that ||wz − wy ||L1(S1) = z − y, thus

(9.2) ||wz − wy ||L2(S1) ≤ c1/2∞ (z − y)1/2.

Fix a γ, α < γ < 1. By the interpolation formula [17], p27, we have ||u||Xα ≤ c1||u||α/γX γ ||u||1−α/γ
X

for some fixed constant c1 > 0, thus by (9.1d) and (9.2),

||wz − wy ||Xα ≤ 2α/γc1c
1/2−α/(2γ)
∞ c(γ)α/γ |z − y|1/2−α/(2γ).

We see that Vn,c is equicontinuous, thus by the Arzelà-Ascoli theorem, it is compact.
By the continuous dependence on initial conditions, τ : Vn,c → Vn,c is continuous. Now we

can apply the Schauder fixed point theorem to find a fixed point of τ , which was required. We
can extend wy to the entire y ∈ R by choosing an increasing sequence of nk ∈ N such that nk >
maxy∈[−nk−1,nk−1](|y|+d(y)), and proving that {wy, y ∈ [−nj , nj ]} is then independent of nk, k > j,
analogously as in the proof of Lemma 8.2. This completes (C1),(i). We obtain (C2),(ii) from (1.7)
and the construction. �

Proofs of claims in Subsection 1.2. Theorem 1.3, (i) is a restated Lemma 9.1; (ii) is Lemma 8.2,
and (iii) can easily be deduced from (ii), as then By ∩ E = {vy}. Corollary 1.4 follows directly from
Lemma 8.3, where we obtain the choice of y0 directly from (B3). Corollaries 1.5 and 1.6 follow from
Lemmas 8.5 and 8.6, where we obtain the part (ii) of the claims from an easy application of (N2) to
(i). �
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10. Some examples

10.1. The B/DC case. In the B/DC case, E is equal to the closure of the set of equilibria and
periodic orbits in B. This follows from the Poincaré-Bendixson theorem [10] and Lemma 3.4, as by
[10], Theorem 1, the only recurrent orbits in the B/DC case are equilibria and periodic orbits.

Theorem 1.1 in the B/DC case can be deduced from results in [10], Theorems 1, 2 and Lemma
3.3.

10.2. Embedded vector fields in the B/AC case. Consider planar vector fields constructed by
Fiedler and Sandstede [11], embedded in the bounded, AC case of (1.1). Then the union of supports
of invariant measures of these vector fields are mapped into a subset of E . This complements well
Theorem 1.1, in the sense that E can have arbitrary complexity of a 2d vector field. In particular,
one can embed in E invariant measures with positive metric entropy with respect to T .

10.3. Extended gradient systems. Consider g = −∂V (x, u)/∂u, with a C2 V , 1-periodic in x,
bounded from below, in the extended case. Then g satisfies (A1-3), and is an example of an extended
gradient system, introduced in [15]. Under an additional assumption that for any u(0) ∈ H2α

ul (R),
3/4 < α < 1, the solution exists for all t ≥ 0 and is uniformly bounded in Xα := H2α

ul (R) (see
[15],[16] for further details), we can establish the following:

Theorem 10.1. (i) The ergodic attractor consists of equilibria, i.e. it is given with E = {u ∈
H2

ul
(R), uxx = ∂V (x, u)/∂u}, and π : E → R2 given with (1.3) is one-to-one.
(ii) For all u ∈ H2α

ul
(R), 3/4 < α ≤ 1, we have that ω̄(u) ⊂ E.

(iii) Given any S-invariant measure µ on H2α
ul

(R), for µ-a.e. u ∈ H2α
ul

(R), we have that ω(u) ⊂ E.
(iv) Given any S-invariant measure µ on H2α

ul
(R), its ω-limit set in the weak∗ topology of the

induced semiflow on the space of measures consists of measures supported on E.
The claims (i),(iii),(iv) were proved in [31, 32] (the fact that π is one-to-one follows from uniqueness

of the solutions of the ordinary differential equation in the description of E), and (ii) was shown in
[15], [16].

Theorem 10.1, (i) is an example of a family for which Theorem 1.2 holds without a non-degeneracy
restriction; (ii) strengthens in this particular case the properties of the ergodic attractor in the
extended case from Subsection 3.3; and (iii), (iv) give an example of another family of nonlinearities
g for which the claims in Corollaries 1.5 and 1.6 hold. The main tool in the proof of (i),(iii),(iv) is
the following Lyapunov function on the space of S-invariant measures on Xα:

L(µ) =

∫

Xα

∫ 1

0

(

u2
x(x)

2
+

∂V (x, u)

∂u

)

dx dµ(u),

which plays an analogous role as the zero function in this paper.

10.4. The Allen-Cahn equation. We give an example why (N2) is required to obtain sharper
conclusions (ii) in the claims of Corollaries 1.5 and 1.6. Even though it does not strictly belong to
the class of Burgers-like equations, we believe it is illustrative.

Example 10.1. Consider the nonlinearity as in Subsection 10.3, with V = 1
4u

4− 1
2u

2, thus g = u−u3.
As done in [25], the phase-plane analysis of the family of equilibria and Theorem 10.1 show that E
consists of the following equilibria: u− ≡ −1, u+ ≡ 1, a two families of spatially heteroclinic functions
h+
y , h

−
y , such that limx→−∞ h−

y (x) = limx→∞ h+
y (x) = 1, limx→−∞ h+

y (x) = limx→∞ h−
y (x) = −1,

characterized by h+
y (y) = h−

y (y) = 0, and further spatially periodic functions with various periods
and values in (−1, 1).

Similarly as in [25], consider a smooth profile v0 : [−n, n] → R, −1 < v0 ≤ 0, v0(−n) = v0(n) = 0,
such that 1

2n

∫ n

−n v
0(x)dx ≤ −1 + δ for δ > 0 small enough, let v1 = −v0, and embed the Bernoulli

measure as in Example 7.1 such that to each sequence (ωk)k∈Z we associate a function u by combining
profiles vω(k) to obtain a S2n-invariant measure. We easily obtain a S-invariant measure µ by taking
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2n copies of its translates. Poláčik [25] has shown that there exists u ∈ suppµ such that ω(u) contains
orbits not in E . However, one can show by applying Theorem 10.1, (iii) and techniques from [25],
that for n large enough and δ > 0 small enough, for µ-a.e. u, ω(u) = {u+, u−, h+

y , y ∈ R, h−
y , y ∈ R},

thus spatially heteroclinic functions in ω-limit sets in the sense of Corollary 1.5,(i) can not be avoided
in general. We also obtain that for µ-a.e. u, ω̄(u) = {u+, u−}, and that the ω-limit set of µ in the
weak∗-topology consists of a single measure 1

2δu− + 1
2δu+ . This shows that the ω-limit measure in

the sense of Corollary 1.6 is not necessarily supported on a single function.

10.5. The Burgers and Burger-like equations. Consider the family of nonlinearities generaliz-
ing the nonlinearity in (1.6):

g(t, x, u, ux) = −h(u)ux + ĝ(t, x),

where h, ĝ are continuous, ĝ is locally Hölder continuous in t and 1-periodic in x, t, such that for

all t ∈ R,
∫ 1

0
ĝ(t, x)dx = 0; and h is locally Lipschitz continuous. Then g satisfies (A1-3). We now

show that this is a Burgers-like nonlinearity:

Lemma 10.2. The equation (1.1) with the nonlinearity g as above satisfies (B1-3).

Proof. To show (B1-3), it suffices to consider (1.1) in the bounded case, for u ∈ Xα = H2α(S1). First

note that for any continuous ĥ : R → R, by considering H(y) =
∫ 1

0
ĥ(z)dz, thus dH(u)/dx = ĥ(u)ux,

we get

(10.1)

∫ 1

0

ĥ(u)uxdx = 0.

Now (B1) is self-evident, and (B3) follows easily by differentiating
∫ 1

0
u(x)dx with respect to t and

using (10.1) with ĥ = h and partial integration. To show (B2), let c0 = maxx,t∈[0,1] |ĝ(x, t)|, fix
y ∈ R and choose u ∈ Xα such that

∫ 1

0
u(x)dx = y. Let t0 ∈ R, and assume the solution of (1.1),

u(t0) = u exists on [t0, t1). We differentiate for an integer p ≥ 1:

d

dt

1

2p

∫ 1

0

(u(x) − y)2pdx =

∫ 1

0

(u(x)− y)2p−1uxx −
∫ 1

0

(u(x) − y)2p−1h(u)ux +

∫ 1

0

(u(x)− y)2p−1ĝ(t, x)

= −(2p− 1)

∫ 1

0

(u(x)− y)2p−2u2
x(x)dx +

∫ 1

0

(u(x)− y)2p−1ĝ(t, x),(10.2)

where in the second row we partially integrated the first term and used that u(x) is 1-periodic, and

also (10.1) with ĥ(u) = (u− y)2p−1h(u) applied to the second term.
As w(x) := (u(x) − y)p, w ∈ C1(S1) has a zero for some x ∈ S1, we can apply the L2-Poincaré

inequality to w to obtain

(10.3)

∫ 1

0

(u(x)− y)2pdx ≤ p2

π2

∫ 1

0

(u(x) − y)2p−2u2
x(x)dx.

By the weighted Young’s inequality applied to the integrand in the last term in (10.2), we get

(10.4) (u(x) − y)2p−1ĝ(t, x) ≤ (2p− 1)π

2p2
(u(x) − y)2p +

1

2π
c2p0 .

Inserting (10.3) and (10.4) into (10.2), we now have

d

dt

1

2p

∫ 1

0

(u(x)− y)2pdx ≤ − (2p− 1)π

2p2

∫ 1

0

(u(x)− y)2pdx+
1

2π
c2p0 ,

thus by the Gronwall inequality,

(10.5) ||u(t0)− y||L2p(S1) ≤ c2p ⇒ ||u(t)− y||L2p(S1) ≤ c2p, t ∈ [t0, t1),
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where

c2p =

(

p2

(2p− 1)π2

)

1
2p

c0.

Now if ||u(t0) − y||L∞(S1) ≤ c0, we have that for all integer p ≥ 2π2 and all t ∈ [t0, t1), ||u(t) −
y||L2p(S1) ≤ c2p. As limp→∞ c2p = c0, we conclude that for all t ∈ [t0, t1), ||u(t) − y||L∞(S1) ≤ c0,
thus (C1) holds with d(y) := c0, where (C1),(ii) follows from (1.7). �

Example 10.2. Consider the Burgers equation (1.6). If we use the Cole-Hopf substitution u =
−2ϕx/ϕ, ϕ(x) = exp

(

− 1
2

∫ x

0 u(y)dy
)

, as in [28, 29, 30], and get for ϕ the linear equation

(10.6) ϕt = ϕxx − 1

2
ĝ(x, t)ϕ.

Let ϕy be the transformed family vy, y ∈ R, as in (C1), which exists by Lemmas 9.1 and 10.2. By
definition, ϕ0 is non-negative, continuous and 1-periodic in t, x, thus ϕ0(t) is uniformly bounded in
L∞(R). Assume now ν is a S-invariant measure supported on sufficiently smooth ϕ, such that for
some 0 < c1 < c2, for ν-a.e. ϕ, c1 ≤ ϕ ≤ c2. Then we can find 0 < c3 < 1 such that c3ϕ

0 ≤ ϕ ≤ 1
c3
ϕ0,

thus by the maximum principle and linearity of (10.6), ϕ(t) is bounded uniformly in t in L∞(R).
It is easy to check that then the measure µ which is the pull of ν with respect to the Cole-Hopf
substitution satisfies (N2) with y0 = 0.

The assumptions of Sinai in [28] on the probability measure can be understood as analogous
to ours, as his Assumption 2 (the spatial invariance of expectation) is somewhat weaker form of
S-invariance, his Assumption 1 when combined with the maximum principle as above implies (N2),
and the Assumption 3 seems to be related to the finiteness of density of zeroes in (N1), yet to be
understood.

11. Open problems

11.1. Non-degeneracy of measures. To further characterize and possibly remove the non-degeneracy
restrictions to the results in the extended case, we propose two approaches. First, the following gen-
eral ergodic-theoretical conjecture (a generalization of Proposition 6.2) would imply Theorem 1.2
without a non-degeneracy restriction:

Conjecture 11.1. Assume (Ω,F , ν) is a probability space, and that σ̂, τ̂ : Ω → Ω are commuting,
measurable, ν-invariant maps. Assume that ϕ, ζ, δ : Ω → R are measurable, that ζ, δ ≥ 0 and that
ν-a.e.,

(11.1) ϕ ◦ σ̂ − ϕ+ ζ ◦ τ̂ − ζ ≥ δ.

Then δ = 0, ν-a.e..

Problem (1). Prove, or disprove Conjecture 11.1.

An alternative approach is to characterize non-linearities g and invariant sets for which all the
S-invariant measures are non-degenerate. Let π1 : C(R) → C([0, 1]), π1(u) = u|[0,1], let 3/4 < α <

γ < 1 and let Y := H2γ
ul (R)∩ T̂ (0,−δ0)H

2α
ul (R) for some δ0 > 0. For example, we have the following:

Lemma 11.1. Assume µ1, µ2 are S-invariant measures supported on a subset of Y bounded in
H2γ

ul
(R), such that

(11.2) sup
||π1(u)− π1(v)||H2γ ([0,1])

||π1(u)− π1(v)||H2α([0,1])
< ∞,

where supremum goes over u ∈ suppµ1, v ∈ suppµ2, u 6= v. Then we have that for any such u, v,

ζ̂(u, v) < ∞. Furthermore, µ1 × µ2 is non-degenerate.

Remark 11.1. For example, this holds if µ1, µ2 are supported on disjoint sets in Y, bounded in
H2γ

ul (R); or alternatively if they are supported on finite sets in Y, such as in the Example 7.1, (i).
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Proof. By assumptions, the set

C :=

{

π1(u)− π1(v)

||π1(u)− π1(v)||H2α([0,1])
, u ∈ suppµ1, v ∈ suppµ2, u 6= v

}

.

is compact in H2α([0, 1]). By the local structure of zeroes and the fact that for all w = u − v, the
solution exists backward in time on the interval (−δ0, 0], we can find an open, and by compactness
finite cover Uj of C, j = 1, ...,m, such that z(w) is uniformly bounded for w ∈ Uj . This and S-
invariance of µ implies a finite uniform bound on z[n,n+1](u − v), for u ∈ suppµ1, v ∈ suppµ2,
n ∈ Z. �

Example 11.1. The ergodic attractor for nonlinearities from subsection (10.3) is non-degenerate.

Indeed, consider a S, T (t)-invariant measure µ supported on a set B̃ bounded in H2γ
ul (R), thus

bounded in L∞(R) by a constant c1 > 0, and let u, v ∈ suppµ. By Theorem 10.1, (i), uxx =
∂V (x, u)/∂u, vxx = ∂V (x, v)/∂v, thus by the Mean Value Theorem,

||(π1(u)− π1(v))xx||L1([0,1]) ≤ max
x∈[0,1],|ξ|≤c1

∣

∣

∣

∣

∂2V (x, ξ)

∂ξ2

∣

∣

∣

∣

||π1(u)− π1(v)||L1([0,1]).

We can now deduce (11.2) by applying the standard interpolation and embedding estimates.

Now it would suffice to answer the following:

Problem (2). Characterize nonlinearities g such that for any z = z(0) ∈ H2α
ul (R), there exists t > 0

and an invariant set B̃, bounded in H2γ
ul (R), such that any u, v ∈ B̃, u 6= v, satisfy (11.2), and such

that z(t) ∈ B̃.
Problem (3). Characterize nonlinearities g such that the attractor A (i.e. the set of the entire
solutions) in the extended case consists of u, v, u 6= v satisfying (11.2).

11.2. Further extended gradient systems. As noted by Zelenyak [41], and extended by Matano,
Fiedler, Poláčik, Rocha and others ([12], [24] and references therein), there is a number of examples of
nonlinearities g with a Lyapunov function on the bounded domain (with periodic or other boundary
conditions). The discussion in Subsection 10.3 thus naturally leads to the following:

Problem (4). Prove (or disprove) that for all nonlinearities g for which there exists a Lyapunov
function in the bounded case (i.e. with periodic boundary conditions), the conclusions (i)-(iv) of
Theorem 10.1 hold.

For example, one can show that it holds for the cases considered in in [12].

11.3. Related problems. We believe the application of the zero function on the space of measures
could be applied to other classes of dynamical systems, and systems with a random force:

Problem (5). Extend results for the Burgers like equations to the quasi-periodic force case considered
in [30].

Problem (6). Work in progress. Extend results for the Burgers like equations to the random force
case considered in [7, 29], by using the fact that for the difference of two weak solutions u(t), v(t)
with the same random force, the random force cancels out and the difference is smooth enough to
apply the zero function method.

Problem (7). Investigate whether the results for the equations

ut = εuxx + g(t, x, u, ux),

g a Burgers like nonlinearity, extend to the entropy solutions in the inviscid limit ε → 0, as considered
in [7], by e.g. using in addition the zero function techniques for perturbations of parabolic differential
equations developed by Poláčik and Tereščak [37], or another method.
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Problem (8). Consider all the problems in this paper and apply zero-function techniques on the space
of measures for analogous 1d, order-preserving discrete-space, continuous-time problems without
and with a random force (the Frenkel-Kontorova models, [2, 34] and references therein), or order-
preserving discrete-space, discrete-time models (monotone coupled map lattices and probabilistic
cellular automata, [5, 38] and references therein).

This program has already been initiated in the case of the Frenkel-Kontorova models [35, 36].

12. Appendix - Fractional uniformly local spaces

We recall the key facts on uniformly local spaces used throughout the paper in the extended case.
Let ϕy(u)(x) = u(x+ y) be the translation, y ∈ R. The uniformly local spaces are given with:

||u||L2
ul
(R) = sup

y∈R

(
∫

R

e−|x+y|u(x)2dx

)1/2

,

L2
ul(R) =

{

u ∈ L2
loc(R), ||u||L2

ul
(R) < ∞, lim

y→0
||ϕyu− u||L2

ul
(R) = 0

}

,

Hk
ul(R) =

{

u ∈ L2
ul(R) | ∂j

t u ∈ L2
ul(R) for all j ≤ k

}

.

It is straightforward to show that the unbounded linear operator Aq = −utt on X := L2
ul(R) has the

domain D(A) = H2
ul(R), and that by using an explicit expression of the heat kernel, A generates

an analytic semigroup exp(−tA) on X with the usual a-priori bounds, thus it is sectorial ([17], Sec.
3). We can thus set A1 = A + I, and then σ(A1) ≥ 1 > 0, and define the fractional powers Aα

1 ,
0 < α < 1, and the space Xα := D(Aα

1 ) as in [17], Section 1.4. We occasionally write H2α
ul (R)

instead of Xα to distinguish it from the bounded case. We always use the graph norm on Xα

||u||Xα := ||Aα
1 u||L2

ul
(R).

Now local existence, regularity and continuity with respect to initial conditions of (1.1) holds on
Xα, with the usual definitions of the mild solution; and the variations of constants formula holds
(see [15], Section 7.2 for details).
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[10] B. Fiedler, J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations, Arch. Rational

Mech. Anal. 107 (1989), 325-345.
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[24] P. Poláčik, Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, Handbook of Dy-
namical Systems, Vol. 2. 835-884, Elsevier/North-Holland, Amsterdam, 2002.
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