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Abstract. We establish pointwise and distributional fractal tube formulas for
a large class of compact subsets of Euclidean spaces of arbitrary dimensions.
These formulas are expressed as sums of residues of suitable meromorphic func-
tions over the complex dimensions of the compact set under consideration (i.e.,
over the poles of its fractal zeta function). Our results generalize to higher di-
mensions (and in a significant way) the corresponding ones previously obtained
for fractal strings by the first author and van Frankenhuijsen. They are illus-
trated by several examples and applied to yield a new Minkowski measurability
criterion.

1. Introduction. The development of the higher-dimensional theory of complex
dimensions in [33–40] provides, among many other things, a new approach to the
elusive notion of ‘fractality’. To be more specific, for a set to be considered fractal,
a commonly accepted proposal is that it should have a nontrivial fractal dimension,
i.e., greater than its topological dimension; see, especially, [42], where the Hausdorff
dimension was used. The problem is that none of the known fractal dimensions
(Hausdorff, Minkowski, packing, etc.) gives a satisfactory character to all of the
sets that we would like to call fractal. Namely, the most famous counterexample
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is the devil’s staircase; i.e., the Cantor function graph, for which all of the known
fractal dimensions are equal to 1, its topological dimension.

The complex dimensions of bounded subsets generalize the notion of Minkowski
dimension (also known as the box dimension). More specifically, complex dimen-
sions are defined as the multiset of (visible) poles (or more general singularities) of
the associated fractal distance (or tube) zeta function and, under mild conditions,
the Minkowski dimension of a bounded set is also its (real) complex dimension with
maximal real part. More importantly, the complex dimensions play a major role
in determining the asymptotics of the volume of the t-neighborhoods of the given
bounded set A as t → 0+ and therefore reflect its inner geometry. This latter
part of the theory of complex dimensions is announced in the present article, along
with sketches of proofs of the main results and illustrations of the results in two
examples. The full proofs, and in the much greater generality of relative fractal
drums, are provided in two articles [37, 38] and can also be found in the research
monograph [33, Ch. 5].

The resulting ‘fractal tube formulas’ can be interpreted pointwise or distribution-
ally, as well as with or without an error term; see Theorems 3.1 and 3.2, along with
Remark 3.3. They enable us to express (modulo a possible error term) the volume
|At| of the t-neighborhood as a sum over the underlying complex dimensions ω of A
and the associated residues of the given fractal zeta function. For example, in the
case of simple poles, the corresponding exact fractal tube formula can be stated as
follows (see Remark 3.3(c)):

|At| =
∑

ω

cω
tN−ω

N − ω
, (1)

where the sum runs over all of the complex dimensions of A and cω is the residue
of ζA (the distance zeta function of A, see Definition 2.1) evaluated at ω. In this
manner, in Equation (1), the oscillations that are intrinsic to fractal geometry are
expressed in a natural way via the complex dimensions. More specifically, the real
parts (resp., the imaginary parts) of the underlying complex dimensions correspond
to the amplitudes (resp., the frequencies) of the corresponding ‘geometric vibra-
tions’.

We should stress that the fractal tube formulas obtained in this paper (see The-
orems 3.1, 3.2 and Remark 3.3) extend to arbitrary dimensions N ≥ 1 the corre-
sponding ones obtained for fractal strings in [41, §8.1] (i.e., for N = 1).

Moreover, they also extend to very general fractal sets the corresponding tube
formulas obtained for fractal sprays (a natural higher-dimensional generalization of
fractal strings, [32]) in [27, 28].1.

As is expected, being a generalization of the Minkowski dimension, the complex
dimensions are closely connected to the property of Minkowski measurability and
this connection is, along with the aforementioned fractal tube formulas, the main
announced result of the present paper; see Theorem 3.4. Namely, under suitable
hypotheses, we show that a bounded subset of R

N is Minkowski measurable if
and only if its only complex dimension with maximal real part D is D itself, its
Minkowski (or box) dimension, and it is simple.

1The former statement is briefly justified at the end of this paper, while both statements are
explained in detail in [37] and [33, Ch. 5]
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We note that the Minkowski measurability criterion obtained in Theorem 3.4
extends to any dimension N ≥ 1 the corresponding one obtained in [41, §8.3] for
fractal strings (i.e., when N = 1).

The question of the Minkowski measurability of a given set A has attracted con-
siderable interest in the past. Mandelbrot’s suggestion in [43] to use the Minkowski
content as a characteristic for the texture (or ‘lacunarity’) of sets (see [43] and [42,
§X]) is one of the motivations for this question; more information on this subject
can be found, e.g., in [1, 11, 12] and in [41, §12.1.3].

More directly relevant to our present work, a lot of attention was devoted to the
notion of Minkowski content in connection to the (modified) Weyl–Berry conjecture
[20]. This conjecture relates the spectral asymptotics of the Laplacian on a bounded
open set and the Minkowski content of its boundary and it is resolved affirmatively
in dimension one, i.e., for fractal strings in [30, 31].2 The characterization of the
Minkowski measurability of bounded subsets of R obtained in [31] was a crucial part
of proving this result.3 In particular, this work led to a useful reformulation of the
Riemann hypothesis, as announced in [25], in terms of an inverse spectral problem
for fractal strings; see [26]. See also the formulation given in [20] and which was
proved for compact subsets of R in 1993 by M. L. Lapidus and C. Pomerance in [31]
(but disproved in higher dimensions, at least in its original form, in [10, 32]; see,
however, the corresponding conjectures made in [22] for self-similar drums and on
which our present work may eventually help us shine new light).

In closing this introduction, we mention that works involving the notion of
Minkowski measurability (or of Minkowski content) include [5, 6, 8, 10–12, 14, 17,
20–41,43,47,52,54,58], along with the many relevant references therein. References
on tube formulas in the ‘smooth setting’ and in the ‘fractal setting’ are provided at
the beginning of Section 3.

2. Preliminaries. We begin by stating some definitions and results from the pa-
pers [34, 35] and the research monograph [33] that will be needed in this article,
as well as by recalling some well-known notions. Given a bounded subset A of RN

(always assumed to be nonempty in this paper), we denote its δ-neighborhood by
Aδ := {x ∈ R

N : d(x,A) < δ}. Here, d(x,A) := inf{|x−y| : y ∈ A} is the Euclidean
distance between the point x and the set A.4 Furthermore, for a compact subset A
of RN and r ≥ 0, we define its upper r-dimensional Minkowski content,

Mr
(A) = lim sup

t→0+

|At|
tN−r

, (2)

and its upper box dimension,

dimBA = inf{r ≥ 0 : Mr
(A) = 0} = sup{r ≥ 0 : Mr(A) = +∞}.

The value Mr(A) of the lower r-dimensional Minkowski content of A is defined

analogously as Mr
(A), except for a lower instead of an upper limit; and similarly

for the lower box dimension dimBA.

2For the original Weyl–Berry conjecture and its physical applications, see Berry’s papers [2,3].

Furthermore, early mathematical work on this conjecture and its applications can be found in [5,
10, 20–22, 31, 32]. For a more extensive list of later work, see [41, §12.5].

3A new proof of a part of this result was given in [8] and, more recently, in [47].
4Without loss of generality, we may replace A by its closure, A, and hence assume from now

on that A is compact.
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If dimBA = dimBA, this common value is called the Minkowski (or box) dimen-

sion of A and denoted by dimB A. If 0 < MD(A)(≤)MD(A) < ∞, for some D ≥ 0,
the set A is said to be Minkowski nondegenerate. It then follows that dimB A exists
and is equal to D. Moreover, if MD(A) exists and is different from 0 and +∞ (in
which case dimB A exists and then necessarily, D = dimB A), the set A is said to
be Minkowski measurable.

We will now introduce the notions of distance and tube zeta functions of compact
sets and state their basic properties. These definitions have enabled us in [33–39]
to develop a higher-dimensional extension of the theory of complex dimensions of
fractal strings ( [41]), valid for arbitrary compact sets.

Definition 2.1 (Fractal zeta functions, [34]). Let A be a compact subset of RN and
fix δ > 0. We define the distance zeta function ζA of A and the tube zeta function

ζ̃A of A by the following Lebesgue integrals, respectively, for some δ > 0 and for all
s ∈ C with Re s sufficiently large:

ζA(s; δ) :=

∫

Aδ

d(x,A)s−Ndx and ζ̃A(s; δ) :=

∫ δ

0

ts−N−1|At| dt. (3)

It is not difficult to show that the distance and tube zeta functions of a compact
subset A of RN satisfy the following functional equation, which is valid on any
connected open set U ⊆ C containing the vertical line {Re s = dimBA} and to which
any (and hence, both) of the two zeta functions has a meromorphic continuation
(see [34] or [33, §2.2]):

ζA(s; δ) = δs−N |Aδ|+ (N − s)ζ̃A(s; δ). (4)

Furthermore, in the above definition (see Equation (3)), the dependence of the
zeta functions on the parameter δ > 0 is inessential, from the point of view of the
theory of complex dimensions (see Definition 2.4 below). Indeed, it is shown in [33]
that the difference of two distance (or tube) zeta functions of the same compact set
A, and corresponding to any two different values of the parameter δ, is an entire
function.

Let us briefly summarize the main properties of the distance and tube zeta func-
tions (see [34] or [33, Ch. 2]):

If A is a compact subset of RN , then the tube zeta function ζ̃A( · ; δ) is holomor-
phic in the half-plane {Re s > dimBA} and dimBA coincides with the abscissa of

(absolute) convergence of ζ̃A( · ; δ).
Furthermore, if the box (or Minkowski) dimension D := dimB A exists and

MD(A) > 0, then ζ̃A(s; δ) → +∞ as s ∈ R converges to D from the right. The

above statements are also true if we replace ζ̃A by ζA and in the preceding sen-
tence assume, in addition, that D < N . Finally, we have the scaling property; that
is, if for λ > 0, we let λA := {λx : x ∈ A}, then ζλA(s;λδ) = λsζA(s; δ) and

ζ̃λA(s;λδ) = λsζ̃A(s; δ).

If A is a Minkowski nondegenerate subset of RN (so that D := dimB A exists),

and for some δ > 0 there exists a meromorphic extension of ζ̃A( · ; δ) to a con-

nected open neighborhood of D, then D is a simple pole of ζ̃A( · ; δ) and the residue

res(ζ̃A( · ; δ), D) is independent of δ. Furthermore, we have

MD(A) ≤ res(ζ̃A( · ; δ), D) ≤ MD
(A).
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In particular, if A is Minkowski measurable, then

res(ζ̃A( · ; δ), D) = MD(A).

If, additionally, D < N , the analogous statement and conclusion is true for the
distance zeta function ζA and we have

(N −D)MD(A) ≤ res(ζA( · ; δ), D) ≤ (N −D)MD
(A).

Moreover, if A is Minkowski measurable, then

res(ζA( · ; δ), D) = (N −D)MD(A).

We refer to [35] as well as to [33, §2.2] for sufficient conditions guaranteeing the
existence of a meromorphic continuation for ζA (or, equivalently, provided dimBA <

N , ζ̃A) on a suitable domain.

Let us now introduce some additional definitions, which are adapted from [41]
to the present, much more general, context of compact subsets of an arbitrary
Euclidean space, RN (with N ≥ 1):

The screen S is the graph of a bounded, real-valued, Lipschitz continuous func-
tion S(τ), with the horizontal and vertical axes interchanged:

S := {S(τ) + iτ : τ ∈ R}.
The Lipschitz constant is denoted by ‖S‖Lip. Furthermore, we let

supS := sup
τ∈R

S(τ) ∈ R.

For a compact subset A of RN , we always assume that the screen S lies to the left
of the critical line {Re s = D}, i.e., that supS ≤ D. Moreover, the window W is
the closed subset of C defined by

W := {s ∈ C : Re s ≥ S(Im s)}.
The set A is said to be admissible if its tube (or distance) zeta function can be
meromorphically extended to an open connected neighborhood of some window W

and does not have any pole located on the corresponding screen S.

Definition 2.2 (d-languid set; adapted from [41, Def. 5.2]). An admissible compact
subset A of RN is said to be d-languid if there exists δ > 0 such that ζA(s; δ) satisfies
the following growth conditions: There exist real constants κd and C > 0 and a
two-sided sequence (Tn)n∈Z of real numbers such that T−n < 0 < Tn for n ≥ 1,
limn→∞ Tn = +∞ and limn→∞ T−n = −∞, satisfying the following two hypotheses,
L1 and L2:

L1 There exists c > N such that |ζA(σ + iTn; δ)| ≤ C(|Tn|+ 1)κd , for all n ∈ Z

and all σ ∈ (S(Tn), c).

L2 For all τ ∈ R, with |τ | ≥ 1, we have that |ζA(S(τ) + iτ ; δ)| ≤ C|τ |κd .

Definition 2.3 (Strongly d-languid set; adapted from [41, Def. 5.3]). A compact
subset A of RN is said to be strongly d-languid if for some δ > 0, ζA(s; δ) satisfies L1
with S(τ) ≡ −∞ in condition L1; i.e., for every σ < c and, additionally, there exists
a sequence of screens Sm(τ) : τ 7→ Sm(τ)+ iτ for m ≥ 1, τ ∈ R with supSm → −∞
as m → ∞ and with a uniform Lipschitz bound, supm≥1 ‖Sm‖Lip < ∞, such that

L2’ There exist B,C > 0 such that

|ζA(Sm(τ) + iτ ; δ)| ≤ CB|Sm(τ)|(|τ |+ 1)κd ,
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for all τ ∈ R and m ≥ 1.

Definition 2.4 (Complex dimensions, [33, 35]). Let A be an admissible compact
subset of RN . Then, the set of visible complex dimensions of A (with respect to U)
is defined as

P(ζA( · ; δ), U) := {ω ∈ U : ω is a pole of ζA( · ; δ)}.
If U = C, we say that P(ζA( · ; δ),C) is the set of complex dimensions of A.5

3. Pointwise and distributional tube formulas and a criterion for Min-

kowski measurability. In this section, we state and sketch the proof of our main
results, the pointwise and distributional tube formulas, valid for a large class of
compact subsets of RN (see Theorem 3.1 and 3.2 below), along with an associated
Minkowski measurability criterion (see Theorem 3.4). These results extend to higher
dimensions the corresponding tube formulas and Minkowski measurability criterion
obtained for fractal strings in [41], §8.1 and §8.3, respectively. We point out that
the detailed proofs of our main results (stated in a much more general form and
within the broader context of relative fractal drums) can be found in the long
papers corresponding to this article, [37, 38]. Moreover, we note that in light of
the functional equation (4), Theorems 3.1, 3.2 and 3.4 have an obvious analog for
tube (instead of distance) zeta functions. Also, the exact tube formula stated in
Theorem 3.1 has a counterpart with error term (much as in Theorem 3.2); see
Remark 3.3(b). Finally, we refer to [37, 38] and [41, §13.1] for many additional
references on tube formulas (or related formulas) in various settings, including,
[4, 7, 9, 13, 15, 16, 19, 27–29,33, 37, 38, 40, 44–46,48, 50, 53–57].

The key observation in deriving Theorem 3.1 and 3.2 below is the fact that the
tube zeta function of a compact set A in RN is equal to the Mellin transform of its
modified tube function

f(t) := χ(0,δ)(t)t
−N |At|, (5)

where χE denotes the characteristic function of the set E. More precisely, one has
that

ζ̃A(s; δ) = {Mf}(s) :=
∫ +∞

0

ts−1f(t) dt, (6)

where M denotes the Mellin transform. One then applies the Mellin inversion
theorem (see, e.g., [51, Thm. 28]) to deduce that

|At| =
1

2πi

∫ c+i∞

c−i∞

tN−sζ̃A(s; δ) ds, (7)

for all t ∈ (0, δ), where c > dimBA is arbitrary. One then proceeds in a similar
manner, much as in [41, Ch. 5] for the case of fractal strings. More precisely, one
works with a k-th primitive function of t 7→ |At| in order to be able to represent
the above integral as a sum over the complex dimensions contained in the window
W . Here, k ∈ N is taken large enough to ensure the pointwise convergence of
this sum. From this result, one then derives (by distributional differentiation) the
distributional tube formula for every value of k (even for k ∈ Z), and, in particular,
for k = 0. In this way, we obtain the fractal tube formulas expressed in terms of the

5Clearly, P(ζA( · ; δ), U) is a discrete subset of C and is independent of δ; hence, so is

P(ζA( · ; δ),C). Therefore, we will often write P(ζA, U) or P(ζA,C) instead.
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tube zeta function and then use the functional equation (4) in order to translate
them in terms of the distance zeta function.

Theorem 3.1 (Pointwise tube formula). Let A be a compact subset of RN such

that dimBA < N . Furthermore, assume that there exists a constant λ > 0 such

that λA is strongly d-languid for some δ > 0 and κd < 1 (with κd ∈ R). Then, for

every t ∈ (0, λ−1 min{1, δ, B−1}), the following exact pointwise tube formula is valid

(where B is the constant appearing in L2’ of Definition 2.3 above):6

|At| =
∑

ω∈P(ζA,C)

res

(
tN−s

N − s
ζA(s), ω

)
. (8)

In the case when κd ∈ R, we usually only have a distributional tube formula.
Furthermore, if A is only d-languid, we will have a distributional error term, with
information about its asymptotic order given in the sense of [41, §5.4]. Namely, the
distribution R ∈ D′(0, δ) is said to be of asymptotic order at most tα (resp., less
than tα) as t → 0+ if when applied to a test function ϕ ∈ D(0, δ),7 we have that
〈R, ϕa〉 = O(aα) (resp., 〈R, ϕa〉 = o(aα)), as a → 0+, where ϕa(t) := a−1ϕ(t/a)
(and the implicit constants may depend on ϕ). We then write that R(t) = O(tα)
(resp., R(t) = o(tα)) as t → 0+.

Theorem 3.2 (Distributional tube formula). Let A be a d-languid compact subset

of RN , for some δ > 0 and κd ∈ R. Furthermore, assume that dimBA < N and

denote by V(t) the (regular) distribution generated by the locally integrable function

t 7→ |At|. Then, we have the following distributional equality:

V(t) =
∑

ω∈P(ζA,W )

res

(
tN−s

N − s
ζA(s), ω

)
+R(t). (9)

More precisely, the action of V(t) on a test function ϕ ∈ D(0,+∞) is given by

〈
V , ϕ

〉
=

∑

ω∈P(ζA,W )

res

({Mϕ}(N − s+ 1)

N − s
ζA(s), ω

)
+
〈
R, ϕ

〉
. (10)

In Equation (9), the distributional error term R(t) is O(tN−supS) as t → 0+.
Moreover, if S(τ) < supS for all τ ∈ R, then R(t) is o(tN−supS) as t → 0+. If,

in addition, λA is strongly d-languid for some λ > 0, then, for all test functions

in D
(
0, λ−1 min{1, δ, B−1}

)
, we have that R ≡ 0 and W = C; hence, we obtain an

exact tube formula in that case.

Remark 3.3. (a) Theorems 3.1 and 3.2 have natural counterparts for the k-th
primitive of |At| or of V(t) (where k ∈ N0 := N∪{0} for the pointwise formula, and
k ∈ Z for the distributional formula, with negative values of k denoting the |k|-th
distributional derivative of V(t)). In the analog of Theorem 3.1, the larger k, the
weaker the assumptions on the growth of ζA. Furthermore, for the counterpart of
Theorem 3.2, the special case when k = −1, corresponding to the ‘geometric density
of states’ dV/dt, viewed as a positive measure, is conceptually the most important
one.

6Here and in Theorem 3.2, we write ζA(s) instead of ζA(s; δ) since the residues in the formula
do not depend on the parameter δ.

7 Here, D(0, δ) := C∞

c (0, δ) is the standard space of infinitely differentiable test functions with
compact support.
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(b) If in Theorem 3.1, we assume the weaker hypothesis that ζA is d-languid rela-
tive to a windowW , then (under suitable assumptions on κd), we obtain a pointwise
fractal tube formula with error term R(t). Furthermore, the sum in the analog of
(8) is then taken over the set of visible complex dimensions, P(ζA,W ). Moreover,
the error term can be estimated much as in Theorem 3.2, but now pointwise instead
of distributionally.

(c) The special case of Theorem 3.1 when all of the complex dimensions are simple
yields the pointwise fractal tube formula stated in Equation (1) of the introduction
(i.e., §1):

|At| =
∑

ω∈P(ζA,C)

cω
tN−ω

N − ω
, (11)

where cω = res(ζA, ω) for each ω ∈ P(ζA,C). Naturally, depending on the hypothe-
ses, Equation (11) has a pointwise analog with error term, as well as a distributional
analog with or without error term.

One of the applications of the above results is a Minkowski measurability cri-
terion for a compact d-languid subset of RN (see Theorem 3.4 below), which gen-
eralizes [41, Thm. 8.15] to higher dimensions. In the proof of Theorem 3.4, one
direction is a consequence of the distributional tube formula (Theorem 3.2 above)
and the uniqueness theorem for almost periodic distributions (see [49, §VI.9.6, p.
208]). The other direction follows from a generalization of the classic Wiener–
Ikehara Tauberian theorem (see [18]) and for this direction of Theorem 3.4 to hold,
the assumptions on the distance zeta function ζA can be considerably weakened
(see [38]).

Theorem 3.4 (Minkowski measurability criterion). Let A be a compact subset of

RN such that D := dimB A exists and D < N . Furthermore, assume that A is d-
languid for a screen passing between the critical line {Re s = D} and all the complex

dimensions of A with real part strictly less than D. Then, the following statements

are equivalent:

(a) A is Minkowski measurable.

(b) D is the only pole of ζA located on the critical line {Re s = D}, and it is

simple.

There exist d-languid compact sets (and even fractal strings, see [41, Exple. 5.32])
which do not satisfy the hypothesis of Theorem 3.4 concerning the screen. We point
out that Theorems 3.1 and 3.2 can be applied to obtain tube formulas for a variety
of well-known fractal sets, as is illustrated by the following examples. Furthermore,
Example 3.6 below shows how our results can be applied to derive the tube formula
of a self-similar fractal set in R

3. We further note that fractal tube formulas can also
be obtained for examples of higher-dimensional fractal sets that are not self-similar,
such as “fractal nests” and “geometric chirps”, as well as for a version of the Cantor
graph or devil’s staircase (see [33, 36] for the definitions of these notions). In such
examples, we will generally obtain a distributional (or pointwise) tube formula with
an error term; see [37] and [33, Ch. 5] for details.

Example 3.5. Let A be the Sierpiński gasket in R2, constructed in the usual way
inside the unit triangle. Then, for δ > 1/4

√
3, the distance zeta function ζA is given
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for all s ∈ C by

ζA(s; δ) =
6(
√
3)1−s2−s

s(s− 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s− 1
,

which is meromorphic on the whole complex plane (see [36, §4.2] or [33, §3.2]). In
particular, P(ζA,C) = {0} ∪

(
log2 3 +

2π
log 2 iZ

)
, each complex dimension is simple,

and by letting ωk := log2 3+pki (so that ω0 = log3 2 = dimB A) and p := 2π/ log 2,
we have that

res(ζA( · ; δ), ωk) =
6(
√
3)1−ωk

4ωk(log 2)ωk(ωk − 1)

(for all k ∈ Z) and res(ζA( · ; δ), 0) = 3
√
3 + 2π. One can easily check, by using the

scaling property of the distance zeta function, that λA is strongly d-languid, for any
λ ≥ 2

√
3 and with κd := −1. Hence, we can apply Theorem 3.1 in order to obtain

the following exact pointwise tube formula, valid for all t ∈ (0, 1/2
√
3), and which

coincides with the one obtained in [27–29] and also, in [7]:

|At| =
∑

ω∈P(ζA,C)

res

(
t2−s

2− s
ζA(s; δ), ω

)

=
6
√
3 t2−log2 3

log 2

∞∑

k=−∞

(4
√
3)−ωk t−pki

(2 − ωk)(ωk − 1)ωk

+

(
3
√
3

2
+ π

)
t2.

(12)

By Theorem 3.4 (and in accord with [27–29]), it follows that the Sierpiński gasket
is not Minkowski measurable. Indeed, D := dimB A = log3 2 is simple and A
has nonreal complex dimensions with real part D. Note that the fact that A is
not Minkowski measurable also follows directly from (12) and the definition of
Minkowski measurablity; see (2) and the discussion following it.

Example 3.6. Let A be the three-dimensional analog of the Sierpiński carpet.
More precisely, we construct A by dividing the closed unit cube of R

3 into 27
congruent cubes and remove the open middle cube, then we iterate this step with
each of the 26 remaining smaller closed cubes; and so on, ad infinitum. By choosing
δ > 1/6, we deduce that ζA is meromorphic on C and given for all s ∈ C by (see [33]
or [40])

ζA(s; δ) =
48 · 2−s

s(s− 1)(s− 2)(3s − 26)
+

4πδs

s
+

6πδs−1

s− 1
+

6δs−2

s− 2
.

In particular, P(ζA,C) = {0, 1, 2} ∪
(
log3 26 + piZ

)
, where p := 2π/ log 3; further-

more, each complex dimension of A is simple. Moreover, we have that

res(ζA( · ; δ), 0) = 4π − 24

25
, res(ζA( · ; δ), 1) = 6π +

24

23
,

res(ζA( · ; δ), 2) =
96

17

and, by letting ωk := log3 26 + pki (for all k ∈ Z),

res(ζA( · ; δ), ωk) =
24

13 · 2ωkωk(ωk − 1)(ωk − 2) log 3
.
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One easily checks that the hypotheses of Theorem 3.1 are satisfied with κd := −1,
and thus we obtain the following exact pointwise tube formula, valid for all t ∈
(0, 1/2):

|At| =
24 t3−log3 26

13 log 3

∞∑

k=−∞

2−ωkt−pki

(3− ωk)(ωk − 1)(ωk − 2)ωk

+

(
6− 6

17

)
t+

(
3π +

12

23

)
t2 +

(
4π

3
− 8

25

)
t3.

(13)

In particular, we conclude that dimB A = log3 26 and, by Theorem 3.4, that the
three-dimensional Sierpiński carpet is not Minkowski measurable (as expected).
Again, this conclusion follows from either the Minkowski measurability criterion
provided in Theorem 3.4 or directly from the definitions and the above fractal tube
formula obtained in (13).

We conclude this paper by pointing out that, in a precise way, the above results
generalize the corresponding ones obtained for fractal strings in [41, §8.1 & §8.3].
Namely, this can be seen from the fact that for the geometric zeta function ζL of a
nontrivial fractal string L = (lj)j≥1 and the distance zeta function of the set

AL :=

{
ak :=

∑

j≥k

lj : k ≥ 1

}
,

we have that

ζAL
(s; δ) =

21−s

s
ζL(s) +

2δs

s
,

where δ > l1/2, and this identity holds on any subdomain U of C containing the
critical line {Re s = dimBAL} and to which any of the two zeta functions has a
meromorphic continuation; see [33, §2.1]. Hence, if U ⊆ C \ {0}, then ζL and
ζAL

have the same visible complex dimensions in U , with the same multiplicities;
furthermore, their corresponding residues (or, more generally, principal parts) are
related in a straightforward manner.
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[25] M. L. Lapidus and H. Maier, Hypothèse de Riemann, cordes fractales vibrantes et conjecture
de Weyl–Berry modifiée, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 19–24.

[26] M. L. Lapidus and H. Maier, The Riemann hypothesis and inverse spectral problems for
fractal strings, J. London Math. Soc. (2) 52 (1995), 15–34.

[27] Lapidus M. L. and Pearse E. P. J., Tube formulas and complex dimensions of self-similar
tilings, Acta Applicandae Mathematicae No. 1, 112 (2010), 91-137.

[28] M. L. Lapidus, E. P. J. Pearse and S. Winter, Pointwise tube formulas for fractal sprays and
self-similar tilings with arbitrary generators, Adv. in Math. 227 (2011), 1349–1398.

[29] M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar
tilings and fractals with monophase generators, in: [6, pp. 185–203].

[30] M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl–Berry
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