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v

Abstract. In 2009, the first author introduced a new class of
zeta functions, called ‘distance zeta functions’, associated with ar-
bitrary compact fractal subsets of Euclidean spaces of arbitrary
dimension. It represents a natural, but nontrivial extension of the
theory of ‘geometric zeta functions’ of bounded fractal strings (ini-
tiated also by the first author in the early 1990s). In this memoir,
we introduce the class of ‘relative fractal drums’ (or RFDs), which
contains the classes of bounded fractal strings and of compact frac-
tal subsets of Euclidean spaces as special cases. Furthermore, the
associated (relative) distance zeta functions of RFDs, extend (in a
suitable sense) the aforementioned classes of fractal zeta functions.
This notion is very general and flexible, enabling us to view prac-
tically all of the previously studied aspects of the theory of fractal
zeta functions from a unified perspective as well as to go well be-
yond the previous theory. An unexpected novelty is that the upper
box (or Minkowski) dimension associated with an RFD can also as-
sume negative values (including −∞), which can be interpreted as
a flatness property of the RFD. The abscissa of (absolute) con-
vergence of any relative fractal drum is equal to the relative box
dimension of the RFD. We pay particular attention to the question
of constructing meromorphic extensions of the distance zeta func-
tions of RFDs, as well as to the construction of transcendentally
∞-quasiperiodic RFDs (i.e., roughly, RFDs with infinitely many
quasiperiods, all of which are algebraically independent). We also
describe a class of RFDs (and, in particular, a new class of bounded
sets), called maximal hyperfractals, such that the critical line of
(absolute) convergence consists solely of nonremovable singulari-
ties of the associated relative distance zeta functions. Finally, we
also describe a class of Minkowski measurable RFDs which possess
an infinite sequence of complex dimensions of arbitrary multiplic-
ity m ≥ 1, and even an infinite sequence of essential singularities
along the critical line.
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Preface

The purpose of this memoir is to develop the theory of complex dimensions for
arbitrary compact subsets A of Euclidean spaces RN , of arbitrary dimensionN ≥ 1.
To this end, in 2009, the first author has introduced a new class of zeta functions,
called distance zeta functions ζA of fractal sets A, the poles of which (after ζA has
been suitably meromorphically extended) are defined as the complex dimensions of
A. This notion establishes an important bridge between the geometry of fractal
sets, Number Theory and Complex Analysis.

The development of the higher-dimensional theory of complex dimensions of
fractal sets has led us to the discovery of the tube zeta functions ζ̃A of fractal sets,
which are not only a valuable technical tool, but a natural companion of the distance
zeta functions ζA. Both the distance and tube zeta functions enable us to extend
in a nontrivial way the existing theory of geometric zeta functions ζL of bounded
fractal strings L. An even broader perspective is achieved by introducing the so-
called relative fractal drums (RFDs) (A,Ω) in Euclidean spaces, which extend the
notions of bounded fractal sets in RN , as well as of bounded fractal strings. The
associated relative fractal zeta functions ζA,Ω enable us to consider the theory of
fractal zeta functions from a unified perspective. An unexpected novelty is that
a relative fractal drum (A,Ω) can have a (naturally defined) Minkowski (or box)
dimension dimB(A,Ω) of negative value (and even of value −∞), or more generally,
that its principal complex dimensions (i.e., the poles of ζA,Ω on the critical line

{Re s = D}, where D = dimB(A,Ω) is the upper Minkowski dimension of (A,Ω))
can have negative real parts.

The residue of a fractal zeta function, computed at the value D of the abscissa
of (absolute) convergence of the zeta function (i.e., at the Minkowski dimension),
is very closely related to the Minkowski content of the corresponding set or RFD.
Furthermore, we also study the quasiperiodicity of relative fractal drums, by using
a classical result from (transcendental) analytic number theory, due to Alan Baker.
Roughly, for any given positive integer n, it is possible to construct a fractal set
with n algebraically independent quasiperiods; as a result, we obtain a transcen-

dentally n-quasiperiodic set. Moreover, we can even construct transcendentally ∞-
quasiperiodic sets, i.e., fractal sets with infinitely many algebraically independent
quasiperiods.

Towards the end of this memoir, special emphasis is given to the construction
of fractal sets A which have principal complex dimensions (i.e., the poles of the

distance zeta function ζA with real part equal to D = dimBA) of any given mul-
tiplicity m ≥ 2 and even with ‘infinite multiplicity’ m = ∞; i.e., in this case, the
principal complex dimensions of A are, in fact, essential singularities of its distance
zeta function ζA.

xiii
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Finally, we also construct fractal sets A in RN , which we callmaximal hyperfrac-

tals, such that the corresponding distance zeta function has the entire critical line
of (absolute) convergence {Re s = D} as the set of its nonremovable singularities.

We conclude this memoir by a discussion of the notion of “fractality”, for-
mulated in terms of the present higher-dimensional theory of complex dimensions.
Furthermore, we illustrate this discussion by means of an RFD suitably associated
with the Cantor graph (or the “devil’s staircase”).

Riverside, California and Paris, France Michel L. Lapidus

Zagreb, Croatia Goran Radunović and Darko Žubrinić



CHAPTER 1

Introduction

1.1. The development of the idea of dimension: from integers to
complex numbers

The development of the mathematical ideas behind the concept of dimension

started in the 19th century, with the need to precisely define some basic notions like
the ‘line’ and ‘surface’. Its history can be very roughly subdivided into the following
three parts, all of them deeply interlaced: the history of integer dimensions, fractal
dimensions, and complex dimensions.

1.1.1. Integer dimensions. Until the beginning of the 20th century, the no-
tion of ‘dimension’ has been in use exclusively as a nonnegative integer. It was
rigourously defined in the 19th century, first for linear objects, i.e., in the area of
linear algebra (where it was defined as the number of elements of any base of a
given linear space). Soon, several other integer dimensional quantities have been
introduced, in order to study arbitrary subsets of Euclidean spaces (and, more
generally, of topological spaces). These basic dimensional quantities are known as
the small inductive dimension (Menger–Urysohn), the large inductive dimension
(Brouwer–Čech) and the covering dimension (Čech–Lebesgue). A history of the
extremely complex subject of integer dimensions appearing in Topology is given in
the survey article [CriJo].

1.1.2. Fractal dimensions. The foundations of the theory of fractal dimen-

sions have already been laid out in the 1920s, in the works of Minkowski, Hausdorff,
Besicovich and Bouligand, by introducing (suitably defined) dimensions which can
assume noninteger (more specifically, nonnegative real) values, in order to better
understand geometric properties of very general subsets of Euclidean spaces. These
developments resulted in the Hausdorff dimension and the Minkowski dimension

or the Minkowski–Bouligand dimension (also called the box dimension, the notion
that we adopt in this memoir), which have become essential tools of modern Fractal

Geometry.
Many distinguished scholars contributed in various ways to spreading and de-

veloping these ideas, and thereby, in particular, to the introduction of the seemingly
counterintuitive concept of fractal dimension; there are too many of them to name
them all here. (See, for example, [Man, Chapter XI].) In addition, the methods
of Fractal Geometry are today extremely developed and frequently used in various
specialized scientific fields, both from the theoretical and applied points of view.
The relevance of this branch of Mathematics can be seen, in particular, in its nu-
merous applications, ranging from the technical and natural sciences to finance and
economics, and even to the visual arts. Its present vitality is demonstrated by the
existence of several professional research journals dedicated exclusively to the study

1



2 1. INTRODUCTION

of problems emerging from Fractal Geometry. An overview of the early history of
Fractal Geometry and the development of its main ideas can be found in [Man].
(See also [Lap10].)

1.1.3. Complex dimensions. The idea of introducing complex dimensions

(more specifically, of complex numbers as dimensions) as a quantification of the
inner (oscillatory) geometric properties of objects called bounded fractal strings

L, has been proposed in the beginning of the 1990s by the first author of this
memoir, based in part on earlier work in [Lap1–3, LapPo1–2, LapMa1–2]. Very
roughly, bounded fractal strings can be identified with certain bounded subsets of
the real line. In order to define the complex dimensions of a given bounded fractal
string L, one has to assign to it the corresponding (geometric) zeta function ζL.
The ‘complex dimensions’ of bounded fractal strings are then defined as the poles
of a suitable meromorphic extension of the geometric zeta function in question.
The development of the main ideas and results behind the mathematical theory
of complex dimensions of fractal strings can be found in [Lap-vFr3]. (See also
[Lap-vFr1–2].)

It is natural to ask the following question: Is it possible to define the ‘complex
dimensions’ for any (nonempty) bounded subset A of Euclidean space? In other
words, is there a natural zeta function ζA, such that its poles can be considered as
the ‘complex dimensions’ of a given set A (assuming that a suitable meromorphic
extension of ζA is possible)? The answer to this question has been obtained by the
first author in 2009, by introducing a class of distance zeta functions ζA, as we call
them in this memoir.

As the result of a collaboration between the authors of this memoir, initiated by
the first author in 2009, it soon became clear that the notion of ‘complex dimensions’
can be introduced not only for bounded subsets of Euclidean spaces, but even for
much more general geometric objects, denoted by (A,Ω), which we call relative
fractal drums (RFDs). (An example of relative fractal drum is given by (∂Ω,Ω),
where Ω is a bounded open subset of some Euclidean space RN , with N ≥ 1, while
∂Ω is its topological boundary. The special case when N = 1 precisely corresponds
to a bounded fractal string.) The study of the complex dimensions of relative

fractal drums is the main goal of the present memoir. The flexibility of this notion,
as well as of the corresponding notion of relative distance zeta function ζA,Ω, has
enabled us to view the existing theory of complex dimensions of fractal strings (and
their generalizations to fractal sprays) from a unified perspective and to extend it
beyond recognition. An unexpected novelty was the possibility for the relative
Minkowski dimensions of some classes of relative fractal drums to take negative
values (including the value −∞).

We should mention that the set of complex dimensions of a given RFD (and,
in particular, of a given bounded set of RN ) is always a discrete subset of C, and
hence, consists of a (finite or countable) sequence of complex numbers, with finite
multiplicities (as poles of the corresponding fractal zeta functions). In the future,
we may extend this notion to also include the possible essential singularities of
the corresponding fractal zeta functions. Indeed, in this memoir, we construct
fractal sets and RFDs whose fractal zeta functions have infinitely many essential
singularities.

The theory of complex dimensions of relative fractal drums, developed in this
memoir, provides a useful bridge between Fractal Geometry, Number Theory and
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Complex Analysis. This theory is extensively developed in [LapRaŽu1–8], as well
as in the present memoir, but nevertheless is far from being completed. It has
brought to light numerous interesting questions and new challenging problems for
further research; see, especially, [LapRaŽu1, Chapter 6] and [LapRaŽu6, §8].

1.2. Relative fractal drums and their distance zeta functions

In 2009, the first author has introduced a new class of zeta functions ζA, called
‘distance zeta functions’, associated with arbitrary compact subsets A of a given
Euclidean space RN of arbitrary dimension N . More specifically, the distance zeta

function ζA of a bounded set A ⊂ RN is defined by

(1.2.1) ζA(s) :=

∫

Aδ

d(x,A)s−Ndx,

for all s ∈ C with Re s sufficiently large, where δ is a fixed positive real number and
Aδ is the Euclidean δ-neighborhood of A. (Here, d(x,A) := inf{|x − a| : a ∈ A}
denotes the Euclidean distance from x to A and the integral is understood in the
sense of Lebesgue and is therefore absolutely convergent.) They have been studied
in [LapRaŽu2], as well as in the research monograph [LapRaŽu1, Chapter 2].

We extend the class of distance zeta functions from a class of compact sets to
a new class of objects that we call ‘relative fractal drums’ (RFDs); see Definition
1.2 below. This enables us to provide a unified approach to the study of fractal
zeta functions. An unexpected novelty is that RFDs allow negative upper box
(or Minkowski) dimension (defined by (1.4.3) below), or even equal to −∞; see
Proposition 2.14 below.

Definition 1.1. Let Ω be an open subset of RN , possibly unbounded, but of
finite N -dimensional Lebesgue measure. Assume that A is a (nonempty) subset of
RN such that

(1.2.2) there exists δ > 0 such that Ω ⊆ Aδ.

We then say that the ordered pair (A,Ω) is a relative fractal drum (or an RFD, in
short) in RN .

We stress that when working with an RFD (A,Ω), we always assume that both
A and Ω are nonempty.

Relative fractal drums represent a natural extension of the following classes of
objects simultaneously:

(a) The class STRb of bounded fractal strings L := (ℓj)j∈N; indeed, for any given
bounded fractal string1 L := (ℓj)j∈N, we can define a disjoint union

(1.2.3) Ω :=

∞⋃

j=1

Ij

of open intervals Ij such that |Ij | = ℓj for each j ≥ 1, and A := ∂Ω; then L
can be identified with any such RFD (∂Ω,Ω); the set Ω is referred to as a geo-

metric realization of the bounded fractal string L; using this identification, we can

1A bounded fractal string L := (ℓj)j∈N is defined as the nonincreasing sequence of positive

real numbers (ℓj)j∈N such that
∑∞

j=1 ℓj < ∞; see [Lap-vFr3].
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write L = (∂Ω,Ω); it is sometimes convenient to deal with the canonical geometric

representation of L, defined by

(1.2.4) AL :=
{
aj :=

∑

k≥j

ℓk : j ∈ N

}
,

and in this case, the set

(1.2.5) Ωcan,L := (0, ℓ1) \AL =
∞⋃

j=1

(ak, ak+1)

is obviously a geometric realization of L, which we call the canonical geometric

realization of L;
(b) The class COM(RN ) of compact fractal sets A in Euclidean space RN , by

identifying A with the corresponding RFD (A,Aδ), for any fixed δ > 0.

Moreover, denoting by RFD(RN ) the family of all RFDs in RN , we have the
following natural inclusions, for any N ≥ 1:

(1.2.6) STRb ⊂ COM(RN ) ⊂ RFD(RN ).

Here, any bounded fractal string L := (ℓj)j∈N can be identified with the compact

set A ⊂ R, where A := {aj =
∑∞

k=j ℓk : j ∈ N} ⊂ R.

We now introduce the main definition of this memoir.

Definition 1.2. Let (A,Ω) be a relative fractal drum (or an RFD) in RN .
The distance zeta function ζA,Ω of the relative fractal drum (A,Ω) (or the relative

distance zeta function of the RFD (A,Ω)) is defined by

(1.2.7) ζA,Ω(s) :=

∫

Ω

d(x,A)s−Ndx,

for all s ∈ C with Re s sufficiently large.

The family of relative distance zeta functions represents a natural extension of
the following classes of fractal zeta functions:

(a) The class of geometric zeta functions ζL, associated with bounded fractal
strings L := (ℓj)j∈N and defined (for all s ∈ C with Re s sufficiently large) by

(1.2.8) ζL(s) :=
∞∑

j=1

ℓsj

(it has been extensively studied in the research monograph [Lap-vFr3], by the first
author and van Frankenhuijsen, as well as in the relevant references therein); more
precisely, we show that

(1.2.9) ζL(s) = s2s−1ζ∂Ω,Ω(s)

for all s ∈ C with Re s sufficiently large, where Ω is any geometric realization of L,
described in (a), appearing immediately after Definition 1.1.

(b) The class of distance zeta functions ζA associated with compact fractal
subsets A of Euclidean spaces, defined by (1.2.1).
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We point out that some of the results of this memoir (especially in §2.1) can
be viewed in the context of very general convolution-type integrals of the form

(1.2.10) H(s) =

∫

E

f(s, t) dµ(t),

about which we cite the following well-known result. We shall need it in the proofs
of Theorem 3.2 and Proposition 3.12 below.

Theorem 1.3. Let V be an open set in C (or even in Cn). Furthermore, let

(E,B(E), µ) be a measure space, where E is a locally compact metrizable space,

B(E) is the Borel σ-algebra of E, and µ is a positive or complex (local, i.e., locally
bounded) measure, with associated total variation measure denoted by |µ|. Assume

that a function f : V × E → C is given, satisfying the following three conditions:

(1) f( · , t) is holomorphic for |µ|-a.e. t ∈ E,

(2) f(s, · ) is µ-measurable for all s ∈ V , and

(3) a suitable growth property is fulfilled by f : for every compact subset K of

V , there exists gK ∈ L1(|µ|) such that |f(s, t)| ≤ gK(t), for all s ∈ V and |µ|-a.e.
t ∈ K.

Then, the function H defined by (1.2.10) is holomorphic on V . Moreover, one can

interchange the derivative and the integral. (The problem of complex differentiating

under the integral sign is discussed, for example, in [Mattn].) More precisely, for

every s ∈ V and every k ∈ N, we have

(1.2.11) F (k)(s) =

∫

E

∂k

∂sk
f(s, t) dµ(t).

Remark 1.4. According to [Mattn] and as is well known, if conditions (1) and
(2) from Theorem 1.3 are satisfied, then condition (3) is equivalent to the following
condition, which is generally slightly easier to verify in practice:

(3′)
∫
E |f( · , t)|d|µ|(t) is locally bounded; that is, for each fixed s0 ∈ V , there

exists δ > 0 such that

(1.2.12) sup
s∈V,|s−s0|<δ

∫

E

|f(s, t)|d|µ|(t) < ∞.

In other words, we can replace condition (3) with condition (3′) in the statement
of Theorem 1.3. (This is the case because the notion of holomorphicity is local.)

1.3. Overview of the main results of this memoir

We note that the notion of complex dimensions of a relative fractal drum (RFD),
necessary for a clearer understanding of this overview, is introduced in Definition
1.6 below. The definitions of the relative Minkowski content and of the relative box
(or, more accurately, Minkowski) dimension can be found in Equations (1.4.1) and
(1.4.2) below, respectively.

Overview of Chapter 2. The main result of §2.1 is contained in parts (a)
and (b) of Theorem 2.1, according to which the abscissa of (absolute) convergence
D(ζA,Ω) of the distance zeta function ζA,Ω of any RFD (A,Ω) is equal to the up-

per box (i.e., Minkowski) dimension dimB(A,Ω) of the RFD. Part (c) of the same
theorem provides some mild conditions under which the value of D := dimB(A,Ω)
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(assuming that dimB(A,Ω) exists) is a singularity of the relative distance zeta func-
tion ζA,Ω, and therefore also coincides with the abscissa of holomorphic continuation
of the distance zeta function of the RFD.

Theorem 2.2 shows that for a nondegenerate RFD (A,Ω) and provided ζA,Ω

possesses a meromophic extension to an open connected neighborhood of D :=
dimB A < N , the residue of ζA,Ω evaluated atD always lies (up to the multiplicative
constant (N − D)) between the lower and the upper D-dimensional Minkowski
contents of the RFD. In particular, if the RFD is Minkowski measurable, then
the residue res(ζA,Ω, D) is, up to the same multiplicative constant, equal to the
D-dimensional Minkowski content of the RFD.

In Proposition 2.10 of §2.2, we show that if there is at least one point a ∈ A∩Ω
at which the RFD (A,Ω) satisfies a suitable cone property with respect to Ω (see
Definition 2.6), then D(ζA,Ω) ≥ 0. In general, however, the value of D(ζA,Ω) (i.e., of

the upper relative box dimension dimB(A,Ω)), can take on any prescribed negative
value (see Proposition 2.12), and even the value −∞ (see Corollary 2.14).

In §2.3, dealing with the scaling property of the relative distance zeta functions,
the main result is stated in Theorem 2.16. It has important applications to the
study of self-similar sprays (or tilings). Corollary 2.17 states an interesting scaling
property of the residues of relative distance zeta functions, evaluated at their sim-
ple poles; see Equation (2.3.2). The countable additivity of the relative distance
zeta function with respect to the disjoint union of RFDs (a notion introduced in
Definition 2.18) is established in Theorem 2.19.

In §2.4, we introduce the notion of the relative tube zeta function (see Equa-
tion (2.4.1)), which is closely related to the relative distance zeta function (see the
functional equation (2.4.2) connecting these two fractal zeta functions). Equation
(2.4.5) in Proposition 2.21 connects the residues (evaluated at any visible complex
dimension) of the relative tube and distance functions. In Example 2.22, we cal-
culate (via a direct computation) the complex dimensions of the torus RFD. Much
more generally, in Proposition 2.23, we calculate the distance zeta function (and the
complex dimensions) of the boundary of any (nonempty) compact set C of positive
reach (and, in particular, of any compact convex subset of RN ); we also obtain at
the same time a similar result for the boundary of a smooth compact submanifold
of RN (thereby significantly extending the results of the aforementioned Example
2.22).

The important problem of the existence and construction of meromorphic ex-
tensions of some classes of relative (tube and distance) zeta functions is studied in
§2.5. It is treated in Theorem 2.24 for a class of Minkowski measurable RFDs, and
in Theorem 2.25 for a class of Minkowski nonmeasurable (but Minkowski nonde-
generate) RFDs.

The main result of §2.6 is stated in Theorem 2.40, dealing with the construction
of∞-quasiperiodic relative fractal drums, a notion introduced in Definition 2.37. Its
proof makes an essential use of suitable families of generalized Cantor sets C(m,a)

with two parameters m and a, introduced in Definition 2.28, and of some of their
properties listed in Proposition 2.29. Theorem 2.40 can be considered as a fractal
set-theoretic interpretation of Baker’s theorem from transcendental number the-
ory (see Theorem 2.30). It provides an explicit construction of a transcendentally
∞-quasiperiodic relative fractal drum. In particular, this RFD possesses infinitely
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many algebraically incommensurable quasiperiods. In Definition 2.38, we also in-
troduce the new notions of hyperfractal RFDs, as well as of strong hyperfractals and
of maximal hyperfractals. It turns out that the relative fractal drums constructed in
Theorem 2.40 are not only ∞-quasiperiodic, but are also maximally hyperfractal.
Accordingly, the critical line {Re s = D}, where D := dimB(A,Ω), consists solely
of nonremovable singularities of the associated fractal zeta function; a fortiori, the
distance and tube zeta functions of the RFD cannot be meromorphically extended
beyond this vertical line.

The scaling property of relative tube zeta functions is provided in Proposition
2.42. This result is analogous to the one obtained for relative distance zeta functions
in Theorem 2.16.

Overview of Chapter 3. This chapter deals with the problem of embeddings

of RFDs into higher-dimensional Euclidean spaces. Theorem 3.3 of §3.1 shows that
the notion of complex dimensions of fractal sets does not depend on the dimension
of the ambient space. In Theorem 3.10 of §3.2, an analogous result is obtained for
general RFDs. An important role in the accompanying computations is played by
the gamma function, the Euler beta function, as well as by the Mellin zeta function
of an RFD, introduced in Equation (3.2.19). In Example 3.15, we apply these
results in order to calculate the complex dimensions of the Cantor dust.

Overview of Chapter 4. In this chapter, we study relative fractal sprays in
RN , introduced in Definition 4.1 of §4.1. The main result is given in Theorem 4.6,
which deals with the distance zeta function of relative fractal sprays.

In §4.2, we study the relative Sierpiński sprays and their complex dimensions.
Example 4.12 deals with the relative Sierpiński gasket, while Example 4.14 deals
with the inhomogeneous Sierpiński N -gasket RFDs, for any N ≥ 2. Furthermore,
Example 4.15 deals with the relative Sierpiński carpet, while Example 4.17 deals
with the Sierpiński N -carpet, for any N ≥ 2. Interesting new phenomena occur in
this context, which are discussed throughout §4.2.

In Definition 4.18 of §4.3, we recall (and extend to RFDs) the notion of self-
similar sprays (or tilings), defined by a suitable ratio list of finitely many real
numbers in (0, 1).

Theorem 4.21 provides an explicit form for the distance zeta function of a self-
similar spray, which can be found in Equation (4.3.12). The results obtained here
are illustrated by the new examples of the 1/2-square fractal and of the 1/3-square
fractal, discussed in Example 4.23 and in Example 4.24, respectively.

In §4.4, we describe a constructive method for generating principal complex
dimensions2 of relative fractal drums of any prescribed multiplicity m ≥ 2, includ-
ing infinite multiplicity. (The latter case where m = ∞ corresponds to essential
singularities of the associated fractal zeta function.) In Example 4.26, we provide
the construction of the m-th order a-string, while we define the m-th order Cantor

string in Equation (4.4.5). In Examples 4.28 and 4.29, we construct Minkowski
measurable RFDs which possess infinitely many principal complex dimensions of
arbitrary multiplicity m, with m ≥ 2 and even with m = ∞ (i.e., corresponding to
essential singularities).

2The principal complex dimensions of an RFD are the poles of the associated fractal (i.e.,
distance or tube) zeta function with maximal real part D, where D is both the abscissa of (ab-
solute) convergence of the zeta function and the (relative) Minkowski dimension of the RFD; see
Definition 1.6 and part (b) of Theorem 2.1 below.
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Overview of Chapter 5. This chapter is dedicated to the discussion of the
notion of fractality (of RFDs), and its intimate relationship with the notion of the
complex dimensions of RFDs. In §5.1, fractal and subcritically fractal RFDs are
discussed. These notions are illustrated in §5.2 in the case of the Cantor graph

RFD.

1.4. Notation

In the sequel, an important role is played by the definition of the upper and
lower Minkowski contents of RFDs and of the upper and lower box (or Minkowski)
dimensions of RFDs. We shall follow the definitions introduced by the third author
in [Žu2], but with an essential difference: the parameter r appearing below can be
any real number, and not just a nonnegative real number. (See Remark 1.5 below.)
Hence, for a given parameter r ∈ R, we define the r-dimensional upper and lower

Minkowski contents of an RFD (A,Ω) in RN as follows:3

(1.4.1) M∗r(A,Ω) := lim sup
t→0+

|At ∩Ω|
tN−r

, Mr
∗(A,Ω) := lim inf

t→0+

|At ∩Ω|
tN−r

.

We also call them the relative upper Minkowski content and lower Minkowski con-

tent of (A,Ω), respectively. They represent a natural extension of the corresponding
notions of upper and lower Minkowski contents of bounded sets in RN , introduced
by Federer in [Fed2].

As usual, we then define the upper box dimension of the RFD (A,Ω) by

(1.4.2)
dimB(A,Ω) := inf{r ∈ R : M∗r(A,Ω) = 0}

= sup{r ∈ R : M∗r(A,Ω) = +∞},
as well as the lower box dimension of (A,Ω) by

(1.4.3)
dimB(A,Ω) := inf{r ∈ R : Mr

∗(A,Ω) = 0}
= sup{r ∈ R : Mr

∗(A,Ω) = +∞}.
We refer to dimB(A,Ω) and dimB(A,Ω) as the relative upper and lower box (or
Minkowski) dimension of (A,Ω), respectively. The novelty here is that, contrary to
the usual upper and lower box dimensions, the relative upper and lower Minkowski
dimensions can attain negative values as well, and even −∞. More specifically, it
is easy to see that

−∞ ≤ dimB(A,Ω) ≤ dimB(A,Ω) ≤ N.

If dimB(A,Ω) = dimB(A,Ω), then the common value is denoted by dimB(A,Ω)
and we call it the box (or Minkowski) dimension of the RFD (A,Ω), or just the
relative box (i.e., Minkowski) dimension.4

If there exists D ∈ R such that 0 < MD
∗ (A,Ω) ≤ M∗D(A,Ω) < ∞, then we

say that the RFD (A,Ω) is Minkowski nondegenerate. Clearly, in this case we have
that D = dimB(A,Ω).

If for some r ∈ R, we have M∗r(A,Ω) = Mr
∗(A,Ω), the common value is

denoted by Mr(A,Ω). If for some D ∈ R, MD(A,Ω) exists and MD(A,Ω) ∈
3For a given measurable set E ⊂ RN , its N-dimensional Lebesgue measure is denoted by

|E| = |E|N .
4We caution the reader, however, that unlike in the standard case of bounded subsets of RN ,

the notion of relative Minkowski dimension of an RFD has not yet been given a suitable geometric
interpretation in terms of “box counting”.
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(0,+∞), then we say that the RFD (A,Ω) is Minkowski measurable. Clearly, in
this case, the dimension of (A,Ω) exists and we have D = dimB(A,Ω).

For example, if the sets A and Ω are a positive distance apart (i.e., inf{|x− y| :
x ∈ A, y ∈ Ω} > 0), then it is easy to see that dimB(A,Ω) = −∞. Indeed, since
|At ∩ Ω| = 0 for all sufficiently small t > 0, we have that Mr(A,Ω) = 0 for all
r ∈ R. A class of nontrivial examples for which −∞ < dimB(A,Ω) < 0 can be
found in Proposition 2.12.

In the case when Ω := Aδ, where A si a bounded subset of RN and δ is a
fixed positive real number, we obtain the usual (nonrelative) values of box (or
Minkowski) dimensions, i.e., dimBA := dimB(A,Aδ), dimBA := dimB(A,Aδ),
dimB A := dimB(A,Aδ), which are all nonnegative in this case, as well as the
values of the usual Minkowski contents of A; that is, Mr∗(A) := Mr∗(A,Aδ),
Mr

∗(A) := Mr
∗(A,Aδ), Mr(A) := Mr(A,Aδ), for any r ≥ 0. It is easy to see that

these values do not depend on the choice of δ > 0.

Remark 1.5. These definitions extend to a general RFD the definitions used
in [Lap1] for an ordinary fractal drum (i.e., a drum with fractal boundary) in the
case of Dirichlet boundary conditions; see also [Lap-vFr2, §12.5] and the relevant
references therein, including [Brocar, Lap2–3]). We then have (A,Ω) = (∂Ω,Ω),
where Ω is a (nonempty) bounded open subset of RN ; it follows at once that
D := D(ζ∂Ω,Ω) ≥ 0. In fact, we always have that D ∈ [N − 1, N ]; see [Lap1]. The
special case when N = 1 corresponds to bounded fractal strings, for which we must
have that D ∈ [0, 1]; see, for example, [Lap1–3, LapPo1–2, LapMa1–2, HeLap,
LapLu–vFr1–2].

In the sequel, we use the following notation. Given α ∈ R ∪ ±∞, we denote,
for example, the open right half-plane {s ∈ C : Re s > α} by {Re s > α}, with
the obvious convention if α = ±∞; namely, for α = +∞, we obtain the empty set
and for α = +∞, we have all of C. Moreover, if α ∈ R, we denote the vertical line
{s ∈ C : Re s = α} by {Re s = α}.

We also let N := {1, 2, 3 . . .} and N0 := N ∪ {0} = {0, 1, 2, . . .}. The logarithm
of a positive real number x with base a > 0 is denoted by loga x; i.e., y = loga x ⇔
x = ay. Furthermore, log x := loge x is the natural logarithm of x; i.e., y = log x
⇔ x = ey.

Let f(s) :=
∫
E ϕ(x)sdµ(x) be a tamed generalized Dirichlet-type integral (DTI),

in the sense of [LapRaŽu2, Definition 2.12]; that is, ϕ ≥ 0 |µ|-a.e. on E and ϕ is
essentially |µ|-bounded on E, where |µ| is the total variation of the local complex
or positive measure on the locally compact space E. Then, we denote by D(f) the
abscissa of (absolute) convergence of f ; i.e., D(f) ∈ [−∞,∞]) is the infimum of all
α ∈ R such that ϕα (or, equivalently, ϕ(x)Re s, with α := Re s) is |µ|-integrable.
If D(f) ∈ R, the corresponding vertical line {Re s = D(f)} in the complex plane
is called the critical line of f . Furthermore, we denote by Dmer(f) the abscissa

of meromorphic continuation of f (i.e., Dmer(f) ∈ [−∞,∞] is the infimum of all
α ∈ R such that f possesses a meromorphic extension to the open right half-plane
{Re s > α}). We define Dhol(f), the abscissa of holomorphic continuation of f ,
in exactly the same way as for Dmer(f), except for “meromorphic” replaced by
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“holomorphic”.5 In general, for any tamed DTI f , we have that

(1.4.4) −∞ ≤ Dmer(f) ≤ Dhol(f) ≤ D(f) ≤ +∞.

(See [LapRaŽu1, Theorem A.2] for the next to last inequality, and [LapRaŽu1,
Appendix A] for the general theory of tamed DTIs.)

In order to be able to define the key notions of complex dimensions and of
principal complex dimensions (see Equation (2.1.4) in Chapter 2 below), we assume
that the function f has the property that it can be extended to a meromorphic
function defined on G ⊆ C, where G is an open and connected neighborhood of the
window W defined by

W = {s ∈ C : Re s ≥ S(Im s)}.
Here, the function S : R → (−∞, D(ζA)], called the screen, is assumed to be
Lipschitz continuous. Note that if f := ζA,Ω, then the closed set W contains
the critical line {Re s = D(ζA,Ω)}; in fact, it also contains the closed half-plane
{Re s ≥ D(ζA,Ω)}.

Definition 1.6 (Complex dimensions of an RFD). The set of poles of f located
in a window W containing the critical line {Re s = D(f)} is denoted by P(f,W ).
When the window W is known, or when W := C, we often use the shorter no-
tation P(f) instead. If f := ζA,Ω and ζA,Ω can be meromorphically extended to
a connected open subset containing the closed right half-plane {Re s ≥ D(ζA,Ω)},
the multiset of poles (i.e., we also take the multiplicities of the poles into account)
is called the multiset of (visible) complex dimensions of (A,Ω). The multiset of
complex dimensions on the critical line of ζA,Ω is called the multiset of principal
complex dimensions of (A,Ω). This multiset is independent of the choice of δ, as
well as of the meromorphic extension of ζ. We note that analogous definitions will
be used in the case of the relative tube zeta function ζ̃A,Ω, introduced in Equation
(2.4.1) below, instead of the relative distance zeta function ζA,Ω.

If Ω is a given subset of RN , its closure and boundary are denoted by Ω and
∂Ω respectively.

For two given sequences of positive numbers (ak)k≥1 and (bk)k≥1 we write
ak ∼ bk as k → ∞ if limk→∞ ak/bk = 1. Analogosly, if a( · ) and b( · ) are two
real-valued functions defined on an open interval (0, t0), we write a(t) ∼ b(t) as
t → 0+ if limt→0+ a(t)/b(t) = 1.

We shall also need the relation ∼ between Dirichlet-type integral functions
(DTIs) and meromorphic functions (that is, f ∼ g, where f is a DTI and g is a
meromorphic function) in the sense of [LapRaŽu2, Definition 2.22], which we now
briefly recall.

Definition 1.7. Let f and g be tamed Dirichlet-type integrals, both admitting
a (necessarily unique) meromorphic extension to an open connected subset U of C
which contains the closed right half-plane {Re s ≥ D(f)}. Then, the function f is
said to be equivalent to g, and we write f ∼ g, if D(f) = D(g) (and this common
value is a real number) and furthermore, the sets of poles of f and g, located on
the common critical line {Re s = D(f)}, coincide. Here, the multiplicities of the

5Note that Dmer(f) and Dhol(f) can be defined for any given meromorphic function f on
a domain U of C, whereas D(f) is only well defined if f is a tamed DTI. (See [LapRaŽu2] or
[LapRaŽu1, Appendix A].)



1.4. NOTATION 11

poles should be taken into account. In other words, we view the set of principal
poles Pc(f) of f as a multiset. More succinctly,

(1.4.5) f ∼ g
def.⇐⇒ D(f) = D(g) (∈ R) and Pc(f) = Pc(g).





CHAPTER 2

Basic properties of relative distance and tube zeta

functions

2.1. Holomorphicity of relative distance zeta functions

In the sequel, we denote by D(ζA,Ω) the abscissa of (absolute) convergence of a
given relative distance zeta function ζA,Ω. It is clear that D(ζA,Ω) ∈ [−∞, N ]. Re-
call from the discussion in Chapter 1 that an analogous definition can be introduced
for much more general, tamed Dirichlet-type integrals, introduced in [LapRaŽu2],
as well as in the monograph [LapRaŽu1, especially in Appendix A].

Some of the basic properties of distance zeta functions of RFDs are listed in
the following theorem.

Theorem 2.1. Let (A,Ω) be a relative fractal drum in RN . Then the following

properties hold:

(a) The relative distance zeta function ζA,Ω is holomorphic in the half-plane

{Re s > dimB(A,Ω)}, and for those same values of s, we have

ζ′A,Ω(s) =

∫

Ω

d(x,A)s−N log d(x,A) dx.

(b) The lower bound on the (absolute) convergence region {Re s > dimB(A,Ω)}
of the relative distance zeta function ζA,Ω is optimal. In other words,

(2.1.1) D(ζA,Ω) = dimB(A,Ω).

(c) If D := dimB(A,Ω) exists, D < N and MD
∗ (A,Ω) > 0, then ζA,Ω(s) → +∞

as s ∈ R converges to D from the right. Hence, under these assumptions, we have

that1

(2.1.2) D(ζA,Ω) = Dhol(ζA,Ω) = dimB(A,Ω).

We omit the proof since it follows the same steps as in the case when Ω := Aδ

(that is, as in the case of a bounded set A); see [LapRaŽu2, Theorem 2.5]. In
the proof of part (a) of Theorem 2.1, we need the following result. For any relative

fractal drum (A,Ω) in RN , we have that

(2.1.3) γ < N − dimB(A,Ω) =⇒
∫

Ω

d(x,A)−γdx < ∞.

1The abscissa of holomorphic continuation, denoted by Dhol(ζA,Ω), is defined in the discus-

sion preceding Equation (1.4.4) above.

13
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In the case when Ω = Aδ, where δ is a positive real number, this implication reduces
to the Harvey–Polking result (see [HarvPo]) since in that case, dimB(A,Aδ) =
dimBA. We note that the technical condition (1.2.2) on the RFD (A,Ω) from Def-
inition 1.1 is needed in order that the integrals appearing during the computation
of ζA,Ω are well defined for Re s large enough.

It is clear that the function ζA,Ω is a tamed generalized Dirichlet-type integral

in the sense of [LapRaŽu2, Definition 2.12]. If the RFD (A,Ω) is such that the
corresponding relative zeta function ζA,Ω can be meromorphically extended to an
open, connected window W containing the critical line {Re s = D(ζA,Ω)}, then the
poles of ζA,Ω located on the critical line are called the principal complex dimensions

of the RFD (A,Ω). The corresponding multiset of complex dimensions of the RFD
(A,Ω) is denoted by dimPC(A,Ω). In other words,

(2.1.4) dimPC(A,Ω) := P(ζA,Ω,W ) ∩ {Re s = D(ζA,Ω)}.

It is easy to see that the multiset dimPC(A,Ω) does not depend on the choice of
window W . If A is a bounded subset of RN and δ a fixed positive real number, the
multiset of principal complex dimensions of A is defined by

(2.1.5) dimPC A := dimPC(A,Aδ),

and this multiset does not depend on the choice of δ > 0.
Analogously, for any bounded fractal string L for which D := dimBL > 0, we

define the multiset of principal complex dimensions of L by

(2.1.6) dimPC L := dimPC(∂Ω,Ω),

where Ω is any geometric realization of the fractal string L; see Equation (1.2.9)
which connects the standard geometric zeta function ζL with the relative distance
zeta function ζ∂Ω,Ω. It is clear that the multiset dimPC(∂Ω,Ω) does not depend on
the choice of the geometric realization Ω, because the same is true for the relative
distance zeta function ζ∂Ω,Ω.

In light of [LapRaŽu2, Theorem 3.3], we have the following result.

Theorem 2.2. Assume that (A,Ω) is a Minkowski nondegenerate RFD in RN ,

that is, 0 < MD
∗ (A,Ω) ≤ M∗D(A,Ω) < ∞ (in particular, dimB(A,Ω) = D), and

D < N . If ζA,Ω can be meromorphically continued to a connected open neighborhood

of s = D, then D is necessarily a simple pole of ζA,Ω, and

(2.1.7) (N −D)MD
∗ (A,Ω) ≤ res(ζA,Ω, D) ≤ (N −D)M∗D(A,Ω).

Furthermore, if (A,Ω) is Minkowski measurable, then

(2.1.8) res(ζA,Ω, D) = (N −D)MD(A,Ω).

In the following example, we compute the relative distance zeta function of an
open ball in RN with respect to its boundary.

Example 2.3. Let Ω := BR(0) be the open ball in RN of radius R and let
A = ∂Ω be the boundary of Ω, i.e., the (N − 1)-dimensional sphere of radius R.
Then, introducing the new variable ρ = R − r and letting ωN := |B1(0)|N , the
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N -dimensional Lebesgue measure of the unit ball in RN , we have that

ζA,Ω(s) = NωN

∫ R

0

(R − r)s−N rN−1dr = NωN

∫ R

0

ρs−N (R − ρ)N−1dρ

= NωN

∫ R

0

ρs−N
N−1∑

k=0

(−1)k
(
N − 1

k

)
RN−1−kρkdρ

= NωNRs
N−1∑

k=0

(
N − 1

k

)
(−1)k

s− (N − k − 1)

= NωNRs
N−1∑

j=0

(
N − 1

j

)
(−1)N−j−1

s− j
,

for all s ∈ C with Re s > N − 1. It follows that ζA,Ω can be meromorphically
extended to the whole complex plane and is given by

(2.1.9) ζA,Ω(s) = NωNRs
N−1∑

j=0

(
N − 1

j

)
(−1)N−j−1

s− j
,

for all s ∈ C.
Therefore, we have that

(2.1.10)
dimB(A,Ω) = D(ζA,Ω) = N − 1,

P(ζA,Ω) = {0, 1, . . . , N − 1} and dimPC(A,Ω) = {N − 1}.
Furthermore,

(2.1.11) res(ζA,Ω, j) = (−1)N−j−1NωN

(
N − 1

j

)
Rj ,

for j = 0, 1, . . . , N − 1. As a special case of (2.1.11), for j = D := N − 1 we obtain
that

(2.1.12) res(ζA,Ω, D) = NωNRN−1 = MD(A,Ω) = (N −D)MD(A,Ω).

(This is a very special case of Equation (2.1.8) appearing in Theorem 2.2 above.)
The second to last equality in (2.1.12) follows from the following direct computation
(with D := N − 1):

(2.1.13)

MD(A,Ω) = lim
t→0+

|At ∩ Ω|
tN−D

= lim
t→0+

ωNRN − ωN(R − t)N

t
= NωNRN−1.

Furthermore, recall that HD(A) = HN−1(∂BR(0)) = NωNRN−1, where HN−1 is
the (N − 1)-dimensional Hausdorff measure. Hence, MD(A,Ω) = HD(A).

Remark 2.4. We note that the usual notions of distance and tube zeta func-
tions, ζA and ζ̃A, associated with a bounded subset A of RN (see [LapRaŽu1–3]),
can be recovered by considering the RFD (A,Aδ), for some δ > 0:

(2.1.14)

ζA(s) = ζA,Aδ
(s) =

∫

Aδ

d(x,A)s−N dx,

ζ̃A(s) = ζ̃A,Aδ
(s) =

∫ δ

0

ts−N−1|At| dt.
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Here, ζ̃A,Aδ
is the relative tube zeta function of the RFD (A,Aδ), as defined in

Equation (2.4.1) of §2.4 below.

2.2. Cone property of relative fractal drums

We introduce the cone property of a relative fractal drum (A,Ω) at a prescribed
point, in order to show that the abscissa of convergence D(ζA,Ω) of the associated
relative zeta function ζA,Ω be nonnegative. The main result of this section is stated
in Proposition 2.10. We also construct a class of nontrivial RFDs for which the
relative box dimension is an arbitrary negative number (see Proposition 2.12) or
even equal to −∞ (see Corollary 2.14 and Remark 2.15, along with part (a) of
Proposition 2.10).

Definition 2.5. Let Br(a) be a given ball in RN , of radius r and center a. Let
∂B be the boundary of the ball, which is an (N−1)-dimensional sphere, and assume
that G is a closed connected subset contained in a hemisphere of ∂B. Intuitively,
G is a disk-like subset (‘calotte’) of a hemisphere contained in the sphere ∂B. We
assume that G is open with respect to the relative topology of ∂B. The cone

K = Kr(a,G) with vertex at a, and of radius r, is defined as the interior of the
convex hull of the union of {a} and G.

Definition 2.6. Let (A,Ω) be a relative fractal drum in RN such that A∩Ω 6=
∅. We say that the relative fractal drum (A,Ω) has the cone property at a point

a ∈ A∩Ω if there exists r > 0 such that Ω contains a cone Kr(a,G) with vertex at
a (and of radius r).

Remark 2.7. If a ∈ A ∩ Ω (hence, a is an inner point of Ω), then the cone
property of the relative fractal drum (A,Ω) is obviously satisfied at this point. So,
the cone property is actually interesting only on the boundary of Ω, that is, at
a ∈ A ∩ ∂Ω.

Example 2.8. Given α > 0, let (A,Ωα) be the relative fractal drum in R2

defined by A = {(0, 0)} and Ωα = {(x, y) ∈ R2 : 0 < y < xα, x ∈ (0, 1)}. If
0 < α ≤ 1, then the cone property of (A,Ω) is fulfilled at a = (0, 0), whereas for
α > 1 it is not satisfied (at a = (0, 0)). Using these domains, we can construct a
one-parameter family of RFDs with negative box dimension; see Proposition 2.12
below.

In order to prove Proposition 2.10 below, we first need an auxiliary result.

Lemma 2.9. Assume that K = Kr(a,G) is an open cone in RN with vertex at

a (and of radius r > 0), and f ∈ L1(0, r) is a nonnegative function. Then there

exists a positive integer m, depending only on N and on the opening angle of the

cone, such that

(2.2.1)

∫

Br(a)

f(|x− a|) dx ≤ m

∫

K

f(|x− a|) dx.

Proof. Since the sphere ∂B is compact, there exist finitely many calottes
G1, . . . , Gm contained in the sphere, which are all congruent to G (that is, each Gi

can be obtained from G by a rigid motion, for i = 1, . . . ,m), and which cover ∂B.
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Let Ki = Kr(a,Gi), with i = 1, . . . ,m, be the corresponding cones with vertex at
a. It is clear that the value of

(2.2.2)

∫

Ki

f(|x− a|) dx

does not depend on i. Since Br(a) = ∪m
i=1Ki, we then have

(2.2.3)

∫

Br(a)

f(|x− a|) dx ≤
m∑

i=1

∫

Ki

f(|x− a|) dx = m

∫

K

f(|x− a|) dx,

as desired. �

Proposition 2.10. Let (A,Ω) be a relative fractal drum in RN . Then:

(a) If the sets A and Ω are a positive distance apart (i.e., if d(A,Ω) > 0), then
D(ζA,Ω) = −∞; that is, ζA,Ω is an entire function. Furthermore, dimB(A,Ω) =
−∞.

(b) Assume that there exists at least one point a ∈ A ∩ Ω at which the relative

fractal drum (A,Ω) satisfies the cone property. Then D(ζA,Ω) ≥ 0.

Proof. (a) For r > 0 small enough such that r < d(A,Ω), where d(A,Ω) is
the distance between A and Ω, we have Ar ∩ Ω = ∅; so that ζA,Ar∩Ω(s) = 0 for
all s ∈ C. Therefore, D(ζA,Ar∩Ω) = −∞. Since ζA,Ω(s) − ζA,Ar∩Ω(s) is an entire
function, we conclude that we also have that D(ζA,Ω) = −∞. Since |Aε ∩ Ω| = 0
for all sufficiently small ε > 0, we have Mr(A,Ω) = 0 for all r ∈ R, and therefore,
dimB(A,Ω) = −∞.

(b) Let us reason by contradiction and therefore assume that D(ζA,Ω) < 0. In
particular, ζA,Ω(s) is continuous at s = 0 (because it must then be holomorphic at
s = 0, according to part (a) of Theorem 2.1 above). By hypothesis, there exists an
open cone K = Kr(a,G), such that K ⊆ Ω. Using the inequality d(x,A) ≤ |x− a|
(valid for all x ∈ RN since a ∈ Ω) and Lemma 2.9, we deduce that for any real
number s ∈ (0, N),

ζA,Ω(s) ≥ ζA,K(s) =

∫

K

d(x,A)s−Ndx ≥
∫

K

|x− a|s−Ndx

≥ 1

m

∫

Br(a)

|x− a|s−Ndx =
NωN

m
rss−1.

This implies that ζA,Ω(s) → +∞ as s → 0+, s ∈ R, which contradicts the holomor-
phicity (or simply, the continuity) of ζA,Ω(s) at s = 0. �

The cone condition can be replaced by a much weaker condition, as we will
now explain in the following proposition.

Proposition 2.11. Let (rk)k≥0 be a decreasing sequence of positive real num-

bers, converging to zero. We define a subset of the cone Kr(a,G) as follows:

(2.2.4) Kr(a,G, (rk)k≥0) =
{
x ∈ Kr(a,G) : |x− a| ∈

∞⋃

k=0

(r2k, r2k+1)
}
.

If we assume that the sequence (rk)k≥1 is such that

(2.2.5)

∞∑

k=0

(−1)krsk → L > 0 as s → 0+, s ∈ R,
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✲

✻

r

A

y = xα

Ω

dimB(A,Ω) < 0

Figure 1. A relative fractal drum (A,Ω) with negative box dimension
dimB(A,Ω) = 1− α < 0 (here α > 1), due to the ‘flatness’ of the open
set Ω at A; see Proposition 2.12. This provides a further illustration of
the drop in dimension phenomenon (for relative box dimensions).

then the conclusion of Proposition 2.10(b) still holds, with the cone condition in-

volving K = K(a,G) replaced by the above modified cone condition, involving the

set K ′ := Kr(a,G, (rk)k≥0) contained in K.

Proof. In order to establish this claim, it suffices to use a procedure analogous
to the one used in the proof of Proposition 2.10:

ζA,Ω(s) ≥
∫

K′
|x− a|s−Ndx ≥ 1

m

∞∑

k=0

∫

Br2k
(a)\Br2k+1

(s)

|x− a|s−Ndx

=
NωN

m
s−1

∞∑

k=0

(rs2k − rs2k+1) =
NωN

m
s−1

∞∑

k=0

(−1)krsk.

For example, if rk = 2−k, then condition (2.2.5) is fulfilled since
∞∑

k=0

(−1)krsk =

∞∑

k=0

(−1)k2−ks =
1

1 + 2−s
→ 1

2
as s → 0+, s ∈ R.

This concludes the proof of the proposition. �

The following proposition (building on Example 2.8 above) shows that the
box dimension of a relative fractal drum can be negative, and even take on any
prescribed negative value; see Figure 1.

Proposition 2.12. Let A = {(0, 0)} and

(2.2.6) Ω = {(x, y) ∈ R2 : 0 < y < xα, x ∈ (0, 1)},
where α > 1. (See Figure 1.) Then the relative fractal drum (A,Ω) has a negative

box dimension. More specifically, dimB(A,Ω) exists, the relative fractal drum (A,Ω)
is Minkowski measurable and

(2.2.7)

dimB(A,Ω) = D(ζA,Ω) = 1− α < 0,

M1−α(A,Ω) =
1

1 + α
,

Dmer(ζA,Ω) ≤ 3(1− α).

Furthermore, s = 1− α is a simple pole of ζA,Ω.
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Proof. First note that Aε = Bε((0, 0)). Therefore, for every ε > 0, we have

|Aε ∩ Ω| ≤
∫ ε

0

xαdx =
εα+1

α+ 1
.

If we choose a point (x(ε), y(ε)) such that

(x(ε), y(ε)) ∈ ∂(Aε) ∩ {(x, y) : y = xα, x ∈ (0, 1)},
then the following equation holds:

(2.2.8) x(ε)2 + x(ε)2α = ε2.

It is clear that

|Aε ∩ Ω| ≥
∫ x(ε)

0

xαdx =
x(ε)α+1

α+ 1
.

Letting D := 1− α, we conclude that

(2.2.9)
1

α+ 1

(x(ε)
ε

)α+1

≤ |Aε ∩ Ω|
ε2−D

≤ 1

α+ 1
, for all ε > 0.

We deduce from (2.2.8) that x(ε) ∼ ε as ε → 0+, since

(2.2.10)
x(ε)

ε
= (1 + x(ε)2(α−1))−1/2 → 1 as ε → 0+;

therefore, (2.2.9) implies that dimB(A,Ω) = D and MD(A,Ω) = 1/(α+ 1).
Using (2.2.9) again, we have that

(2.2.11) 0 ≤ f(ε) :=
1

α+ 1
− |Aε ∩ Ω|

ε2−D
≤ 1

α+ 1

(
1−

(x(ε)
ε

)α+1)
.

Using (2.2.10) and the binomial expansion, we conclude that
(x(ε)

ε

)α+1

= 1− α+ 1

2
x(ε)2α−2 + o(x(ε)2α−2) as ε → 0+.

Hence, we deduce from (2.2.11) that

f(ε) = O(x(ε2α−2)) = O(ε2α−2) as ε → 0+.

Since |Aε ∩Ω| = ε2−D((α + 1)−1 + f(ε)), we conclude that

Dmer(ζA,Ω) ≤ D − (2α− 2) = 3(1− α).

Furthermore, s = D is a simple pole.
Finally, we note that the equality D(ζA,Ω) = D follows from (2.1.1). �

In the following lemma, we show that for any δ > 0, the sets of principal
complex dimensions of the RFDs (A,Ω) and (A,Aδ ∩ Ω) coincide.

Lemma 2.13. Assume that (A,Ω) is a relative fractal drum in RN . Then, for

any δ > 0, we have

(2.2.12) ζA,Ω ∼ ζA,Aδ∩Ω,

where the equivalence relation ∼ is given in Definition 1.7. In particular,

(2.2.13) dimPC(A,Ω) = dimPC(A,Aδ ∩ Ω)

and therefore,

(2.2.14) dimB(A,Ω) = dimB(A,Aδ ∩ Ω).

Here, Aδ, the δ-neighborhood of A, can be taken with respect to any norm on RN .

(This extra freedom will be used in Corollary 2.14 just below.)
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Proof. Recall that according to the definition of a relative fractal drum (A,Ω),
there exists δ1 > 0 such that d(x,A) < δ1 for all x ∈ Ω; see Definition 1.1. On the
other hand, we have that d(x,A) > δ for all x ∈ Ω \ Aδ. Therefore, we conclude
that the difference

ζA,Ω(s)− ζA,Aδ∩Ω(s) =

∫

Ω\Aδ

d(x,A)s−Ndx

defines an entire function. This proves the desired equivalence in (2.2.12). The re-
maining claims of the lemma follow immediately from this equivalence. Finally, the
fact that any norm on RN can be chosen to define Aδ follows from the equivalence
of all the norms on RN . �

The following result provides an example of a nontrivial relative fractal drum
(A,Ω) such that dimB(A,Ω) = −∞. It suffices to construct a domain Ω of R2

which is flat in a neighborhood of one of its boundary points.

Corollary 2.14 (A maximally flat RFD). Let A = {(0, 0)} and

(2.2.15) Ω′ = {(x, y) ∈ R2 : 0 < y < e−1/x, 0 < x < 1}.
Then dimB(A,Ω

′) exists and

(2.2.16) dimB(A,Ω
′) = D(ζA,Ω′) = −∞.

Proof. Let us fix α > 1. Then, by l’Hospital’s rule, we have that

lim
x→0+

e−1/x

xα
= lim

t→+∞
tα

et
= 0.

Hence, there exists δ = δ(α) > 0 such that 0 < e−1/x < xα for all x ∈ (0, δ); that
is,

Ω′
δ(α) ⊂ Ωδ(α),

where
Ω′

δ(α) := {(x, y) ∈ R2 : 0 < y < e−1/x, 0 < x < δ(α) }
and

Ωδ(α) := {(x, y) ∈ R2 : 0 < y < xα, 0 < x < δ(α) }.
Using Lemma 2.13, with Ω′ instead of Ω and with the ℓ∞-norm on R2 instead of the
usual Euclidean norm (note that Ω′

δ(α) = Ω′ ∩ Bδ(α)(0), where Bδ(0) := {(x, y) ∈
R2 : |(x, y)|∞ < δ} and |(x, y)|∞ := max{|x|, |y|}), along with Proposition 2.12, we
see that

dimB(A,Ω
′) = dimB(A,Ω

′
δ(α)) ≤ dimB(A,Ωδ(α)) = 1− α.

The claim follows by letting α → +∞, since then, we have that

−∞ ≤ dimB(A,Ω
′) ≤ dimB(A,Ω

′) = −∞.

We conclude, as desired, that dimB(A,Ω) exists and is equal to −∞. �

Remark 2.15. (Flatness and ‘infinitely sharp blade’). It is easy to see that
Corollary 2.14 can be significantly generalized. For example, it suffices to assume
that a is a point on the boundary of Ω such that the flatness property of A (at
a) relative to Ω holds. This can even be formulated in terms of subsets A of the
boundary of Ω. We can imagine a bounded open set Ω ⊂ R3 with a Lipschitz
boundary ∂Ω, except on a subset A ⊂ ∂Ω, which may be a line segment, near
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Figure 2. A relative fractal drum (A,Ω) with infinite flatness, as de-
scribed in Remark 2.15. In other words, Ω has infinite flatness near
A; equivalently, dimB(A,Ω) = −∞, which provides an even more dra-
matic illustration of the drop in dimension phenomenon (for relative box
dimensions).

which Ω is flat; see Figure 2. A simple construction of such a set is Ω = Ω′ × (0, 1),
where Ω′ is given as in Corollary 2.14, and A = {(0, 0)} × (0, 1); see Equation
(2.2.15). Note that this domain is not Lipschitz near the points of A, and not even
Hölderian. The flatness of a relative fractal drum (A,Ω) can be defined by

fl(A,Ω) =
(
dimB(A,Ω)

)−
,

where (r)− := max{0,−r} is the negative part of a real number r. We say that the

flatness of (A,Ω) is nontrivial if fl(A,Ω) > 0, that is, if dimB(A,Ω) < 0. In the
example mentioned just above, we have a relative fractal drum (A,Ω) with infinite
flatness, i.e., with fl(A,Ω) = +∞. Intuitively, it can be viewed as an ‘ax’ with an
‘infinitely sharp’ blade.

2.3. Scaling property of relative distance zeta functions

We start this section with the following result, which shows that if (A,Ω) is
a given relative fractal drum, then for any λ > 0, the zeta function ζλA,λΩ(s) of
the scaled relative fractal drum λ(A,Ω) := (λA, λΩ) is equal to the zeta function
ζA,Ω(s) of (A,Ω) multiplied by λs.

Theorem 2.16 (Scaling property of relative distance zeta functions). Let ζA,Ω(s)
be the relative distance zeta function of an RFD (A,Ω). Then, for any positive real

number λ, we have that D(ζλA,λΩ)) = D(ζA,Ω) = dimB(A,Ω) and

(2.3.1) ζλA,λΩ(s) = λsζA,Ω(s),

for all s ∈ C with Re s > dimB(A,Ω) and any λ > 0. (See also Corollary 2.17

below for a more general statement.)

Proof. The claim is established by introducing a new variable y = x/λ, and by
noting that d(λy, λA) = λd(y,A), for any y ∈ RN (which is an easy consequence of
the homogeneity of the Euclidean norm). Indeed, in light of part (b) of Theorem 2.1,
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for any s ∈ C with Re s > dimB(A,Ω) = D(ζA,Ω), we have successively:

ζλA,λΩ(s) =

∫

λΩ

d(x, λA)s−Ndx

=

∫

Ω

d(λy, λA)s−NλNdy

= λs

∫

Ω

d(y,A)s−Ndy = λsζA,Ω(s).

It follows that (2.3.1) holds and ζλA,λΩ is holomorphic for Re s > dimB(A,Ω). Since

D(ζA,Ω) = dimB(A,Ω) (by part (b) of Theorem 2.1), we deduce that D(ζλA,λΩ) ≤
D(ζA,Ω), for every λ > 0. But then, replacing λ by its reciprocal λ−1 in this last
inequality, we obtain the reverse inequality (more specifically, we replace (A,Ω) by
(λ−1A, λ−1Ω) to deduce that for every λ > 0, D(ζA,Ω) ≤ D(ζλ−1A,λ−1Ω); we then
substitute λ−1 for λ in this last inequality in order to obtain the desired reversed
inequality: for every λ > 0, D(ζA,Ω) ≤ D(ζλA,λΩ)), and hence, we conclude that

dimB(A,Ω) = D(ζA,Ω) = D(ζλA,λΩ),

for all λ > 0, as desired. �

We note that if L = (ℓj)j≥1 is a fractal string, and λ is a positive constant,
then for the scaled string λL := (λℓj)j≥1, the corresponding claim in Theorem 2.16
is trivial: ζλL(s) = λsζL(s), for every λ > 0. Indeed, by definition of the geometric
zeta function of a fractal string (see Equation (1.2.8)), we have

ζλL(s) =
∞∑

j=1

(λℓj)
s = λs

∞∑

j=1

ℓsj = λsζL(s),

for Re s > D(ζL). (The same argument as above then shows that D(ζL) = D(ζλL).)
Then, by analytic (i.e., meromorphic) continuation, the same identity continues to
hold in any domain to which ζL can be meromorphically extended to the left of the
critical line {Re s = D(ζL)}.

The following result supplements Theorem 2.16 in several different and signifi-
cant ways.

Corollary 2.17. Fix λ > 0. Assume that ζA,Ω admits a meromorphic con-

tinuation to some open connected neighborhood U of the open half-plane {Re s >
dimB(A,Ω)}. Then, so does ζλA,λΩ and the identity (2.3.1) continues to hold for

every s ∈ U which is not a pole of ζA,Ω (and hence, of ζλA,λΩ as well).
Moreover, if we assume, for simplicity, that ω is a simple pole of ζA,Ω (and

hence also, of ζλA,λΩ), then the following identity holds:

(2.3.2) res(ζλ(A,Ω), ω) = λω res(ζA,Ω, ω).

If s is a multiple pole, then an analogous statement can be made about the principal

parts (instead of the residues) of the zeta functions involved, as the reader can easily

verify.

Proof. The fact that ζλA,λΩ is holomorphic at a given point s ∈ U if ζA,Ω

is holomorphic at s (for example, if Re s > dimB(A,Ω)), follows from (2.3.1) and
the equality D(ζλA,λΩ) = D(ζA,Ω) = dimB(A,Ω). An analogous statement is true
if “holomorphic” is replaced with “meromorphic”. More specifically, by analytic
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continuation of (2.3.1), ζλA,λΩ is meromorphic in an open connected set U if and
only if ζA,Ω is meromorphic in U , and then, clearly, identity (2.3.1) continues to hold
for every s ∈ U which is not a pole of ζA,Ω (and hence also, of ζλA,λΩ). Therefore,
the first part of the corollary is established.

Next, assume that ω is a simple pole of ζA,Ω. Then, in light of (2.3.1) and the
discussion in the previous paragraph, we have that for all s in a pointed neighbor-
hood of ω (contained in U but not containing any other pole of ζA,Ω),

(2.3.3) (s− ω)ζλ(A,Ω)(s) = λs ((s− ω)ζA,Ω(s)) .

The fact that (2.3.2) holds now follows by letting s → ω, s 6= ω in (2.3.3). Indeed,
we then have

res(ζA,Ω, ω) = lim
s→ω

(s− ω)ζA,Ω(s),

and similarly for res(ζλ(A,Ω), ω). �

The scaling property of relative zeta functions (established in Theorem 2.16
and Corollary 2.17) motivates us to introduce the notion of relative fractal spray,
which is very close to (but not identical with) the usual notion of fractal spray
introduced by the first author and Carl Pomerance in [LapPo3] (see [Lap-vFr3]
and the references therein). First, we define the operation of union of (disjoint)
families of RFDs (Definition 2.18).

Definition 2.18. Let (Aj ,Ωj)j≥1 be a countable family of relative fractal
drums in RN , such that the corresponding family of open sets (Ωj)j≥1 is disjoint
(i.e., Ωj ∩Ωk = ∅ for j 6= k), Aj ⊆ Ωj for each j ∈ N, and the set Ω := ∪∞

j=1Ωj is of
finite N -dimensional Lebesgue measure (but may be unbounded). Then, the union

of the (finite or countable) family of relative fractal drums (Aj ,Ωj) (j ≥ 1) is the
relative fractal drum (A,Ω), where A := ∪∞

j=1Aj and Ω := ∪∞
j=1Ωj . We write

(2.3.4) (A,Ω) =

∞⊔

j=1

(Aj ,Ωj).

It is easy to derive the following countable additivity property of the distance
zeta functions.

Theorem 2.19. Assume that (Aj ,Ωj)j≥1 is a finite or countable family of

RFDs satisfying the conditions of Definition 2.18, and let (A,Ω) be its union (in
the sense of Equation (2.3.4) appearing in Definition 2.18). Furthermore, assume

that the following condition is fulfilled:

(2.3.5) For any j ∈ N and x ∈ Ωj , we have that d(x,A) = d(x,Aj).

Then, for Re s > dimB(A,Ω),

(2.3.6) ζA,Ω(s) =

∞∑

j=1

ζAj ,Ωj (s).

Condition (2.3.5) is satisfied, if for every j ∈ N, Aj is equal to the boundary of Ωj

in RN (that is, Aj := ∂Ωj).
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Proof. The claim follows from the following computation, which is valid for
Re s > dimB(A,Ω):

(2.3.7)

ζA,Ω(s) =

∫

Ω

d(x,A)s−Ndx =

∞∑

j=1

∫

Ωj

d(x,A)s−Ndx

=

∞∑

j=1

∫

Ωj

d(x,Aj)
s−Ndx =

∞∑

j=1

ζAj ,Ωj (s).

More specifically, clearly, (2.3.7) holds for every real number s such that s >

dimB(A,Ω) ≥ D(ζA,Ω). Therefore, for such a value of s,

ζA,Ωj (s) =

∫

Ωj

d(x,A)s−Ndx ≤
∫

Ω

d(x,A)s−Ndx = ζA,Ω(s) < ∞,

for every j ≥ 1. Hence,

(2.3.8) sup
j≥1

{D(ζA,Ωj )} ≤ D(ζA,Ω) ≤ dimB(A,Ω),

from which (2.3.7) now follows for all s ∈ C with Re s > dimB(A,Ω), in light of
the countable additivity of the local complex Borel measure (and hence, locally
bounded measure) on Ω, given by dγ(x) := d(x,A)s−Ndx. (Note that according
to the hypothesis of Definition 2.18, we have |Ω| < ∞, so that dγ is indeed a local
complex Borel measure; see, e.g., [Foll] or [Ru], along with [DolFri], [JohLap],
[JohLapNi] and [LapRaŽu1, Appendix A].) �

Remark 2.20. In the statement of Theorem 2.19, the numerical series on the
right-hand side of (2.3.6) converges absolutely (and hence, converges also in C) for
all s ∈ C such that Re s > dimB(A,Ω). In particular, for every real number s such
that s > dimB(A,Ω), it is a convergent series of positive terms (i.e., it has a finite
sum). It remains to be investigated whether (and under which hypotheses) Equa-
tion (2.3.6) continues to hold for all s ∈ C in a common domain of meromorphicity
of the zeta functions ζA,Ω and ζA,Ωj for j ≥ 1 (away from the poles). At the poles,
an analogous question could be raised for the corresponding residues (assuming, for
simplicity, that the poles are simple).

2.4. Relative tube zeta functions

We begin this section by introducing the relative tube zeta function associated
with the relative fractal drum (A,Ω) in RN . It is defined by

(2.4.1) ζ̃A,Ω(s) :=

∫ δ

0

ts−N−1|At ∩ Ω| dt,

for all s ∈ C with Re s sufficiently large, where δ > 0 is fixed. As we see, ζ̃A,Ω

involves the relative tube function t 7→ |At ∩ Ω|. As was noted in Remark 2.4, if
Ω := Aδ with A ⊂ RN bounded, we recover the tube zeta function of the set A;

that is, ζ̃A(s) :=
∫ δ

0 ts−N−1|At| dt, for all s ∈ C with Re s sufficiently large.

The abscissa of convergence of the relative tube zeta function ζ̃A,Ω is given by

D(ζ̃A,Ω) = dimB(A,Ω). This follows from the following fundamental identity (or
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functional equation), which connects the relative tube zeta function ζ̃A,Ω and the
relative distance zeta function ζA,Ω, defined by (1.2.7):

(2.4.2) ζA,Aδ∩Ω(s) = δs−N |Aδ ∩ Ω|+ (N − s)ζ̃A,Ω(s),

for all s ∈ C such that Re s > dimB(A,Ω). Its proof is based on the the known
identity

(2.4.3)

∫

Aδ∩Ω

d(x,A)−γ dx = δ−γ |Aδ ∩ Ω|+ γ

∫ δ

0

t−γ−1|At ∩ Ω| dt,

where γ > 0; see [Žu1, Theorem 2.9(a)], or a more general form provided in [Žu2,
Lemma 3.1]. As a special case, when Ω := Aδ with A ⊂ RN bounded, Equation
(2.4.2) reduces to

(2.4.4) ζA(s) = δs−N |Aδ|+ (N − s)ζ̃A(s),

for all s ∈ C such that Re s > dimBA, which has been obtained in [LapRaŽu2].

The following proposition connects the residues of relative tube and distance
functions.

Proposition 2.21. Assume that (A,Ω) is an RFD in RN . Let U be a connected

open subset of C to which the relative distance zeta function ζA,Ω can be meromor-

phically extended, and such that it contains the critical line {Re s = D(ζA,Ω)}.
Then the relative tube function ζ̃A,Ω can be meromorphically extended to U as well.

Furthermore, if ω ∈ U is a simple pole of ζA,Ω, then it is also a simple pole of ζ̃A,Ω

and we have that

(2.4.5) res(ζA,Ω, ω) = (N − ω) · res(ζ̃A,Ω, ω).

Moreover, the functional equation (2.4.2) continues to hold for all s ∈ U .

The proposition also holds if we interchange the relative distance function and

relative tube function in the above statement.

Proof. Since the difference ζA,Ω(s) − ζA,Aδ∩Ω(s) = ζA,Ω\Aδ∩Ω(s) is an entire
function (note that δ < d(x,A) < c, where c := supx∈A d(x,A) < ∞; see property
(1.2.2) in Definition 1.1 of the RFD), it suffices to prove the proposition in the case
of the RFD (A,Aδ∩Ω) instead of (A,Ω). The claim now follows from the functional
equation (2.4.2). We leave the details to the interested reader. �

Example 2.22 (Torus relative fractal drum). Let Ω be an open solid torus in
R3 defined by two radii r and R, where 0 < r < R < ∞, and let A := ∂Ω be its
topological boundary. In order to compute the tube zeta function of the torus RFD
(A,Ω), we first compute its tube function. Let δ ∈ (0, r) be fixed. Using Cavalieri’s
principle, we have that

(2.4.6) |At ∩ Ω|3 = 2πR
(
r2 − (r − t)2

)
= 2πR(2rt− t2),

for all t ∈ (0, δ), from which it follows that

(2.4.7) ζ̃A,Ω(s) :=

∫ δ

0

ts−4|At ∩ Ω|3 dt = 2πR
(
2r

δs−2

s− 2
− δs−1

s− 1

)
,

for all s ∈ C such that Re s > 2. The right-hand side defines a meromorphic function
on the entire complex plane, so that, using the principle of analytic continuation,
ζ̃A,Ω can be (uniquely) meromorphically extended to the whole of C. In particular,
we see that the multiset of complex dimensions of the torus RFD (A,Ω) is given by
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P(A,Ω) = {1, 2}. Each of the complex dimensions 1 and 2 is simple. In particular,
we have that

(2.4.8) dimPC(A,Ω) = {2} and res(ζ̃A,Ω, 2) = 4πRr.

Also, dimB(A,Ω) = D(ζ̃A) = 2. From Equation (2.5.8) appearing in Theorem 2.24
below, we conclude that the 2-dimensional Minkowski content of the torus RFD
(A,Ω) is given by

(2.4.9) M2(A,Ω) = 4πRr.

Since |At|3 = 2πR
(
(r + t)2 − (r − t)2

)
, we can also easily compute the ‘ordinary’

tube zeta function ζ̃A of the torus surface A in R3:

(2.4.10) ζ̃A(s) = 8πRr
δs−2

s− 2
,

for all s ∈ C. In particular, res(ζ̃A, 2) = 8πRr. Using Equations (2.4.2) and
(2.4.4), we deduce from (2.4.10) the corresponding expressions for the distance zeta
functions, which are valid for all s ∈ C:

(2.4.11) ζA,Ω(s) = 2πR
(
2r

δs−1

s− 2
− 2

s− 1

)
, ζA(s) = 8πRr

δs−2

s− 2
.

Also,

P(ζA,Ω) = P(ζ̃A,Ω) = {1, 2}
and

Pc(ζA,Ω) = Pc(ζ̃A,Ω) = {2}
(with each pole 1 and 2 being simple) and

dimB(A,Ω) = D(ζA,Ω) = D(ζ̃A,Ω) = 2.

Furthermore, we see that res(ζA,Ω, 2) = 4πRr and res(ζA, 2) = 8πRr, in agreement
with (2.4.5) in Proposition 2.21 above.

One can easily extend the example of the 2-torus to any (smooth) closed sub-
manifold of RN (and, in particular, of course, to the n-torus, with n ≥ 2). This can
be done by using Federer’s tube formula [Fed1] for sets of positive reach, which
extends and unifies Weyl’s tube formula [Wey] for (proper) smooth submanifolds
of RN and Steiner’s formula (obtained by Steiner [Stein] and his successors) for
compact convex subsets of RN . The global form of Federer’s tube formula expresses
the volume of t-neighborhoods of a (compact) set of positive reach2 A ⊂ RN as a
polynomial of degree at most N in t, whose coefficients are (essentially) the so-
called Federer’s curvatures and which generalize Weyl’s curvatures in [Wey] (see
[BergGos] for an exposition) and Steiner’s curvatures in [Stein] (see [Schn, Chap-
ter 4] for a detailed exposition) in the case of submanifolds and compact convex
sets, respectively.

2A closed subset C of RN is said to be of positive reach if there exists δ > 0 such that every
point x ∈ RN within a distance less than δ from C has a unique metric projection onto C; see
[Fed1]. The reach of C is defined as the supremum of all such positive numbers δ. Clearly, every
closed convex subset of RN is of infinite (and hence, positive) reach.
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In the present context, for a compact set of positive reach C ⊂ RN , it is easy to
deduce from the tube formula in [Fed1] an explicit expression for ζ̃A(s), as follows
(with A := ∂C).3

Proposition 2.23. Let A = ∂C be the boundary of a (nonempty) compact set

C of positive reach in RN . Then, for any δ > 0 sufficiently small, we have that

(2.4.12) ζ̃A(s) := ζ̃A(s; δ) =

N−1∑

k=0

ck
δs−k

s− k
,

where |At| =
∑N−1

k=0 ckt
N−k for all t ∈ (0, δ) and the coefficients ck are the (normalized)

Federer curvatures. (From the functional equation (2.4.2) above, one then de-

duces at once a corresponding explicit expression for the distance zeta function

ζA(s) := ζA(s; δ).)
Hence, dimB A exists and

(2.4.13) D := D(ζ̃A) = D(ζA) = dimB A = max{k ∈ {0, 1, . . . , N − 1} : ck 6= 0}
and (since D ≤ N − 1 < N),

(2.4.14) P := P(ζ̃A) = P(ζA) ⊆ {0, 1, . . . , N − 1}.
In fact,

(2.4.15) P =
{
k ∈ {0, 1, . . . , N − 1} : ck 6= 0

}
⊆ {k0, . . . , D},

where k0 := min
{
k ∈ {0, 1, . . . , D} : ck 6= 0

}
. Furthermore, each of the complex

dimensions of A is simple.

Finally, if C is such that its affine hull is all of RN (which is the case when the

interior of C is nonempty and, in particular, if C is a convex body), then D = N−1,
while if C is a (smooth) submanifold with boundary the closed d-dimensional smooth

submanifold A := ∂C (with 0 ≤ d ≤ N − 1), then D = d.

For the 2-torus A, we have N = 3, D = 2 (since the Euler characteristic of A
is equal to zero), c2 6= 0,4 c1 6= 0, and hence, c0 = 0, k0 = 1 and P = {1, 2}, as was
found in Example 2.22 via a direct computation.

We note that much more general tube formulas called (as in [Lap-vFr2–3]
and [LapPeWi2–3], [LapPeWi1–2]) “fractal tube formulas” are obtained in
[LapRaŽu5] (as well as in [LapRaŽu1, Chapter 5], see also [LapRaŽu4]) for
arbitrary bounded sets (and even more generally, RFDs) in RN , under mild growth
assumptions on the associated fractal zeta functions.

2.5. Meromorphic extensions of relative zeta functions

We shall use the following assumption on the asymptotics of the relative tube
function t 7→ |At ∩ Ω|:
(2.5.1) |At ∩ Ω| = tN−Dh(t)(M +O(tα)) as t → 0+,

where M > 0, α > 0 and D ≤ N are given in advance. Here, we assume that
the function h(t) is positive and has a sufficiently slow growth near the origin, in

3Relative versions are also possible, for example for the RFD (A,
◦

C), where
◦

C is the interior
of C, assumed to be nonempty.

4Note that c2 is just proportional to the area of the 2-torus, with the proportionality constant
being a standard positive constant.
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the sense that for any c > 0, h(t) = O(tc) as t → 0+. Typical examples of such
functions are h(t) = (log t−1)m, m ≥ 1, or more generally,

h(t) =
(
log . . . log︸ ︷︷ ︸

n

(t−1)
)m

(the m-th power of the n-th iterated logarithm of t−1, for n ≥ 1), and in these cases
we obviously have MD(A,Ω) = +∞. For this and other examples, see [HeLap].
The function t 7→ tDh(t)−1 is usually called a gauge function, but for the sake of
simplicity, we shall instead use this name only for the function h(t).

Assuming that a relative fractal drum (A,Ω) in RN is such thatD = dimB(A,Ω)
exists, and MD

∗ (A,Ω) = 0 or +∞ (orM∗D(A,Ω) = 0 or +∞), it makes sense to de-
fine a new class of relative lower and upper Minkowski contents of (A,Ω), associated
with a suitably chosen gauge function h(t):

(2.5.2)

MD
∗ (A,Ω, h) = lim inf

t→0+

|At ∩ Ω|
tN−Dh(t)

,

M∗D(A,Ω, h) = lim sup
t→0+

|At ∩ Ω|
tN−Dh(t)

.

The aim is to find an explicit gauge function so that these two contents are in
(0,+∞), and the functions r 7→ Mr

∗(A,Ω, h) and r 7→ M∗r(A,Ω, h), r ∈ R, defined
exactly as in (2.5.2), except for D replaced with r, have a jump from +∞ to 0
when r crosses the value of D. In this generality, the above contents are called
gauge relative Minkowski contents (with respect to h).

If for some gauge function h, say, we have that MD(A,Ω, h) ∈ (0,+∞) (which
means, as usual, that MD

∗ (A,Ω, h) = M∗D(A,Ω, h) and that this common value,
denoted by MD(A,Ω, h), lies in (0,+∞)), we say (as in [HeLap]) that the fractal
drum (A,Ω) is h-Minkowski measurable.

In what follows, we denote the Laurent expansion of a meromorphic extension
(assumed to exist) of the relative tube zeta function ζ̃A,Ω to an open, connected
neighborhood of s = D (more specifically, an open pointed disk centered at s = D)
by

(2.5.3) ζ̃A,Ω(s) =
∞∑

j=−∞
cj(s−D)j ,

where, of course, cj = 0 for all j ≪ 0 (that is, there exists j0 ∈ Z such that cj = 0
for all j < j0).

Let us first introduce some notation. Given a T -periodic function G : R → R,
we denote by G0 its truncation to [0, T ]; that is

(2.5.4) G0(τ) =

{
G(t) if τ ∈ [0, T ]

0 if τ /∈ [0, T ],

while the Fourier transform of G0 is denoted by Ĝ0:

(2.5.5) Ĝ0(t) =

∫ +∞

−∞
e−2πi tτG0(τ) dτ =

∫ T

0

e−2πi tτG(τ) dτ,

where i :=
√
−1 is the imaginary unit.

The following theorem shows that, in order to obtain a meromorphic extension
of the zeta function to the left of the abscissa of convergence, it is important to have
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some information about the second term in the asymptotic expansion of the relative
tube function t 7→ |Aδ ∩ Ω| near t = 0. It is important to note that the presence
(in Theorem 2.24) of the gauge function h(t) := (log t−1)m is closely related to
the multiplicity of the principal complex dimension D, which is equal to m + 1.
Theorem 2.24 extends [LapRaŽu3, Theorem 4.24] to the general setting of RFDs.

Observe that since the case when m = 0 is allowed in Theorem 2.24 just below,
that theorem enables us to deal, in particular, with the usual class of Minkowski
measurable RFDs (for which the gauge function h is trivial, i.e., satisfies h(t) ≡ 1).

Theorem 2.24 (Minkowski measurable RFDs). Let (A,Ω) be a relative frac-

tal drum in RN such that (2.5.1) holds for some D ≤ N , M > 0, α > 0 and

with h(t) := (log t−1)m for all t ∈ (0, 1), where m is a nonnegative integer. Then

the relative fractal drum (A,Ω) is h-Minkowski measurable, dimB(A,Ω) = D, and

MD(A,Ω, h) = M. Furthermore, the relative tube zeta function ζ̃A,Ω has for ab-

scissa of convergence D(ζ̃A,Ω) = D, and it possesses a (necessarily unique) mero-

morphic extension (at least) to the open right half-plane {Re s > D − α}; that is,
the abscissa of meromorphic continuation Dmer(ζ̃A,Ω) of ζ̃A,Ω can be estimated by

(2.5.6) Dmer(ζ̃A,Ω) ≤ D − α.

Moreover, s = D is the unique pole in this half-plane, and it is of order m+ 1. In

addition, the coefficients of the Laurent series expansion (2.5.3) corresponding to

the principal part of ζ̃A,Ω at s = D are given by

(2.5.7)
c−m−1 = m!M,

c−m = · · · = c−1 = 0 (provided m ≥ 1.)

If m = 0, then D is a simple pole of ζ̃A,Ω and we have that

(2.5.8) res(ζ̃A,Ω, D) = M.

Proof. Let us set

(2.5.9)

ζ1(s) = Mzm(s), zm(s) =

∫ δ

0

ts−D−1(log t−1)mdt,

ζ2(s) =

∫ δ

0

ts−N−1(log t−1)m O(tN−D+α) dt.

Since ζ̃A,Ω(s) = ζ1(s) + ζ2(s), we can proceed as follows. It is easy to see that for
each ε > 0, we have (log t−1)m = O(t−ε) as t → 0+; hence,

|ζ2(s)| ≤
∫ δ

0

O(tRe s−1−D+(α−ε)) dt.

Then, since the integral is well defined for all s ∈ C with Re s > D − (α − ε), we
deduce that D(ζ2) ≤ D− (α−ε). Letting ε → 0+, we obtain the desired inequality:
D(ζ2) ≤ D − α.

By means of the change of variable τ = log t−1 (for 0 < t ≤ δ), it is easy to see
that

(2.5.10) zm(s) =

∫ ∞

log δ−1

e−τ(s−D)τmdτ.
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Integration by parts yields the following recurrence relation, where we have to
assume (at first) that Re s > D:

(2.5.11) zm(s) =
1

s−D

(
(log δ−1)mδs−D +mzm−1(s)

)
, for m ≥ 1,

and z0(s) = (s −D)−1δs−D. Since D(ζ2) ≤ D − α, it is clear that the coefficients

cj , j < 0, of the Laurent series expansion (2.5.3) of ζ̃A,Ω(s) = ζ1(s) + ζ2(s) in a
connected open neighborhood of s = D do not depend on δ > 0. Indeed, changing

the value of δ > 0 to δ1 > 0 in (2.4.1) is equivalent to adding
∫ δ1
δ

ts−N−1|At ∩Ω| dt,
which is an entire function of s. Therefore, without loss of generality, we may take
δ = 1 in (2.5.11):

(2.5.12) zm(s) =
m

s−D
zm−1(s) = · · · = m!

(s−D)m
z0(s) =

m!

(s−D)m+1
.

In this way, we obtain that

(2.5.13) ζ1(s) =
m!

(s−D)m+1
M,

and we can meromorphically continue ζ1 from the half-plane {Re s > D} to the

entire complex plane. The claim then follows from the equality ζ̃A,Ω(s) = ζ1(s) +
ζ2(s). �

A large class of examples of RFDs satisfying condition (2.5.1), involving power
logarithmic gauge functions, can be found in Example 4.26 of §4.4 below, based
on [LapRaŽu5, Theorem 6.13]. (In fact, [LapRaŽu5, Theorem 6.13] can be
understood as a partial converse of the above result, Theorem 2.24.) These RFDs
are constructed by using consecutive tensor products of a suitable bounded fractal
string L, i.e., by an iterated spraying of L; see [LapRaŽu5] for details. A nontrivial
class of examples is already obtained when L is the ternary Cantor string. A similar
comment can be made about the analogous condition (2.5.14) appearing in the
folowing theorem.

Theorem 2.25 (Minkowski nonmeasurable RFDs). Let (A,Ω) be a relative

fractal drum in RN such that there exist D ≤ N , a nonconstant periodic function

G : R → R with minimal period T > 0, and a nonnegative integer m, satisfying

(2.5.14) |At ∩ Ω| = tN−D(log t−1)m
(
G(log t−1) +O(tα)

)
as t → 0+.

Then dimB(A,Ω) exists and dimB(A,Ω) = D, G is continuous, and

MD
∗ (A,Ω, h) = minG, M∗D(A,Ω, h) = maxG,

where h(t) := (log t−1)m for all t ∈ (0, 1). Furthermore, the tube zeta function ζ̃A,Ω

has for abscissa of convergence D(ζ̃A,Ω) = D, and it possesses a (necessarily unique)
meromorphic extension (at least) to the open right half-plane {Re s > D− α}; that
is,

(2.5.15) Dmer(ζ̃A,Ω) ≤ D − α.
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Moreover, all of its poles located in this half-plane are of order m + 1, and the set

of poles P(ζ̃A,Ω) is contained in the vertical line {Re s = D}. More precisely,

(2.5.16)

P(ζ̃A,Ω)) = Pc(ζ̃A,Ω)

=

{
sk = D +

2π

T
ki ∈ C : Ĝ0

(
k

T

)
6= 0, k ∈ Z

}
,

where s0 = D ∈ P(ζ̃A,Ω) and Ĝ0 is the Fourier transform of G0 (as given by (2.5.5)).
The nonreal poles come in complex conjugate pairs; that is, for each k ≥ 1, if sk is

a pole, then s−k is a pole as well.

In addition, for any given k ∈ Z, if ζ̃A,Ω(s) =
∑∞

j=−∞ c
(k)
j (s − sk)

j is the

Laurent expansion of the tube zeta function in a connected open neighborhood of

s = sk, then

(2.5.17)

c
(k)
j = 0 for j < 0, j 6= −m− 1,

c
(k)
−m−1 =

m!

T
Ĝ0

(
k

T

)
,

where G0 is the restriction of G to the interval [0, T ], and Ĝ0 is given by (2.5.5),
as above. Also,

(2.5.18) |c(k)−m−1| ≤
m!

T

∫ T

0

G(τ) dτ, lim
k→∞

c
(k)
−m−1 = 0.

In particular, for k = 0, that is, for s0 = D, we have

(2.5.19)
c
(0)
−m−1 =

m!

T

∫ T

0

G(τ) dτ,

m!MD
∗ (A,Ω, h) < c

(0)
−m−1 < m!M∗D(A,Ω, h).

If m = 0 (i.e., h(t) = 1 for all t ∈ (0, 1)), then D is a simple pole of ζ̃A,Ω and we

have that

(2.5.20) res(ζ̃A,Ω, D) =
1

T

∫ T

0

G(τ) dτ = M̃

and

(2.5.21) MD
∗ (A,Ω) < res(ζ̃A,Ω, D) < M∗D(A,Ω),

where M̃ = M̃D(A,Ω) denotes the average Minkowski content of (A,Ω). (See
Remark 2.26 below.)

Proof. Let us define zm by

zm(s) =

∫ δ

0

ts−D−1(log t−1)mG(log t−1) dt.

The function z0(s) is the exact counterpart of ζ1(s) from the proof of [LapRaŽu3,
Theorem 4.24], with |At| changed to |At ∩ Ω| and where, much as in that proof,

ζ̃A,Ω = ζ1 + ζ2 and ζ2 is an entire function. It is easy to see that zm(s) =

(−1)mz
(m)
0 (s); therefore, the functions zm(s) and z0(s) have the same meromorphic

extension, and the same sets of poles. This proves that ζ̃A,Ω(s) can be meromorphi-
cally extended from {Re s > D} to the half-plane {Re s > D−α}. The set of poles
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(complex dimensions) of the relative zeta function, belonging to this half-plane, is
given by

P(ζ̃A,Ω) = P(zm) = P(z0)

=

{
sk = D +

2π

T
ki ∈ C : Ĝ0

(
k

T

)
6= 0, k ∈ Z

}
.

Each of these poles is simple. Furthermore, if

z0(s) =

∞∑

j=−1

a
(k)
j (s− sk)

j

is the Laurent series of z0(s) in a neighborhood of s = sk, then

z
(m)
0 (s) = (−1)mm! a

(k)
−1(s− sk)

−m−1 +

∞∑

j=0

(m+ j)!

j!
a
(k)
m+j(s− sk)

j .

Hence,

c
(k)
−m−1 = m!a

(k)
−1 = m!

1

T
Ĝ0

(
k

T

)
,

where, in the last equality, we have used [LapRaŽu3, Eq. (4.32)]. The remaining
claims are proved much as the corresponding ones made in [LapRaŽu3, Theorem
4.24]. �

Remark 2.26. In Equation (2.5.20), M̃ = M̃D(A,Ω), the average Minkowski

content of (A,Ω), is defined as the multiplicative Cesàro average of t−(N−D)|At∩Ω|:

(2.5.22) M̃D(A,Ω) := lim
τ→+∞

1

log τ

∫ 1

1/τ

|At ∩ Ω|
tN−D

dt

t
,

provided the limit exists in [0,+∞]. (See Equation (2.5.1) and compare with
[Lap-vFr3, Definition 8.29, Eq. (8.55)].)

Remark 2.27. In light of the functional equation (2.4.2) connecting ζA,Ω and

ζ̃A,Ω, Theorems 2.24 and 2.25 also hold for relative distance zeta functions (instead
of relative tube zeta functions), provided D < N , and that in this case, all of the
expressions for the residues and the Laurent coefficients are multiplied by N −D

2.6. Construction of ∞-quasiperiodic relative fractal drums

Our construction of quasiperiodic RFDs (see Definition 2.37 below) given in
this section is based on a certain two-parameter family of generalized Cantor sets,
which we now describe.

Definition 2.28. The generalized Cantor sets C(m,a) are determined by an
integer m ≥ 2 and a positive real number a such that ma < 1. In the first step
of the analog of Cantor’s construction of the standard ternary Cantor set, we start
with m equidistant, closed intervals in [0, 1] of length a, with m− 1 ‘holes’, each of
length (1−ma)/(m− 1). In the second step, we continue by scaling by the factor a
each of the m intervals of length a; and so on, ad infinitum. The (two-parameter)
generalized Cantor set C(m,a) is defined as the intersection of the decreasing se-
quence of compact sets constructed in this way. It is easy to check that C(m,a) is a
perfect, uncountable compact subset of R. (Recall that a perfect set is a closed set
without any isolated points.) Furthermore, C(m,a) is also self-similar.
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In order to avoid any possible confusion, we note that the generalized Cantor
sets introduced here are different from the generalized Cantor strings introduced
and studied in [Lap-vFr3, Chapter 10]. With our present notation, the classic
ternary Cantor set is obtained as C(2,1/3).

We note that the box dimension of C(m,a) exists and is equal to its Hausdorff
dimension, as well as its similarity dimension (here, log1/a m). The proof of this

fact in the case of the classic Cantor set can be found in [Fal1]; see also [Hut].
For any pair (m, a) as above, this follows from a general result in [Hut] (described
in [Fal1, Theorem 9.3]) because C(m,a) is a self-similar set satisfying the open set
condition. (See also [Mora].)

It can be shown that the generalized Cantor sets C(m,a) have the following
properties. Apart from the proof of (2.6.5), the proof of the next proposition is
similar to that for the standard Cantor set (see [Lap-vFr3, Eq. (1.11)]).

Proposition 2.29. If C(m,a) ⊂ R is the generalized Cantor set introduced in

Definition 2.28, where m is an integer, m ≥ 2, and a ∈ (0, 1/m), then

(2.6.1) D := dimB C(m,a) = D(ζA) = log1/a m.

Furthermore, the tube formula associated with C(m,a) is given by

(2.6.2) |C(m,a)
t | = t1−DG(log t−1)

for all t ∈ (0, 1−ma
2(m−1) ), where G = G(τ) is a nonconstant periodic function, with

minimal period equal to T = log(1/a), and is defined by

(2.6.3) G(τ) = cD−1(ma)g(
τ−c
T ) + 2 cDmg( τ−c

T ).

Here, c = 1−ma
2(m−1) , and g : R → [0,+∞) is the 1-periodic function defined by

g(x) = 1− x for x ∈ (0, 1].
Moreover,

(2.6.4)

MD
∗ (C(m,a)) = minG =

1

D

(
2D

1−D

)1−D

,

M∗D(C(m,a)) = maxG =

(
1−ma

2(m− 1)

)D−1
m(1− a)

m− 1
.

Finally, if we assume that δ ≥ 1−ma
2(m−1) , then the distance zeta function of A :=

C(m,a) is given by

(2.6.5) ζA(s) :=

∫ 1+δ

−δ

d(x,A)s−2dx =

(
1−ma

2(m− 1)

)s−1
1−ma

s(1−mas)
+

2δs

s
.

As a result, ζA(s) admits a meromorphic continuation to all of C, given by the last

expression in (2.6.5). In particular, the set of poles of ζA(s) (in C) and the residue

of ζA(s) at s = D are respectively given by

(2.6.6)

P(ζA) = (D + piZ) ∪ {0} and

res(ζA, D) =
1−ma

DT

(
1−ma

2(m− 1)

)D−1

,
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where p = 2π/T is the oscillatory period (in the sense of [Lap-vFr3]). Further-

more,

D =
logm

2π
p,

and both p → 0+ and D → 0+ as a → 0+. In particular, P(ζA) converges to the

imaginary axis in the Hausdorff metric, as a → 0+. Finally, each pole in P(ζA) is
simple.

In the sequel, we shall need the following important theorem from transcen-
dental number theory, due to Baker [Ba, Theorem 2.1].

Theorem 2.30 (Baker, [Ba, Theorem 2.1]). Let n ∈ N with n ≥ 2. If

m1, . . . ,mn are positive algebraic numbers such that logm1, . . . , logmn are linearly

independent over the rationals, then

1, logm1, . . . , logmn

are linearly independent over the field of all algebraic numbers (or algebraically

independent, in short). In particular, the numbers logm1, . . . , logmn are transcen-

dental, as well as their pairwise quotients.

Here, we describe a general construction of quasiperiodic fractal drums possess-
ing infinitely many algebraically incommensurable periods. It is based on properties
of generalized Cantor sets, as well as on Baker’s theorem (Theorem 2.30 just above).

Let m ≥ 2 be a given integer and D ∈ (0, 1) a given real number. Then,
for a > 0 defined by a = m−1/D, we have am = m1−1/D < 1, and hence, the
generalized Cantor set A = C(m,a) is well defined, and dimB A = log1/a m = D.

Definition 2.31. A finite set of real numbers is said to be rationally (resp.,
algebraically) linearly independent or simply, rationally (resp., algebraically) inde-

pendent, if it is linearly independent over the field of rational (resp., algebraic) real
numbers.

Definition 2.32. A sequence (Ti)i≥1 of real numbers is said to be rationally

(resp., algebraically) linearly independent if any of its finite subsets is rationally
(resp., algebraically) independent. We then say that (Ti)i≥1 is rationally (resp.,
algebraically) independent, for short.

Definition 2.33. Let m ≥ 2 be a positive integer. Let p = (pi)i≥1 be the
sequence of all prime numbers, arranged in increasing order; that is,

p = (2, 3, 5, 7, 11, . . . ).

We then define the exponent sequence e = e(m) := (αi)i≥1 associated with m,
where αi ≥ 0 is the multiplicity of pi in the factorization of m. We also let

(2.6.7) p e :=
∏

{i≥1:αi>0}
pαi

i .

The set of all sequences e with components in N0 = N ∪ {0}, such that all but at
most finitely many components are equal to zero, is denoted by (N0)

∞
c .

With this definition, for any integer m ≥ 2, we obviously have m = p e(m).
Conversely, any e ∈ (N0)

∞
c defines a unique integer m ≥ 2 such that m = p e.
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Definition 2.34. Given an exponent vector e = (αi)i≥1 ∈ (N0)
∞
c , we define

the support of e as the set of all indices i ∈ N for which αi > 0, and we write

(2.6.8) S(e) = supp(e) := {i ≥ 1 : αi > 0}.
The support of an integer m ≥ 2 is defined as suppm := supp e(m).

The following definition will be useful in the sequel.

Definition 2.35. We say that a set {ei : i ≥ 1} of exponent vectors is rationally
linearly independent if any of its finite subsets is linearly independent over Q. We
then say for short that the exponent vectors are rationally independent.

The following two definitions, Definition 2.36 and Definition 2.37, refine and ex-
tend the definition of n-quasiperiodic function and set introduced in [LapRaŽu2].

Definition 2.36. We say that a function G : R → R is ∞-quasiperiodic if it is
of the form

G(τ) = H(τ, τ, . . . ),

where H : ℓ∞(R) → R,5 H = H(τ1, τ2, . . . ) is a function which is Tj-periodic in its
j-th component, for each j ∈ N, with Tj > 0 as minimal periods, and such that the
set of periods

(2.6.9) {Tj : j ≥ 1}
is rationally independent. We say that the order of quasiperiodicity of the function
G is equal to infinity (or that the function G is ∞-quasiperiodic).

In addition, we say that G is

(a) transcendentally quasiperiodic of infinite order (or transcendentally ∞-

quasiperiodic) if the periods in (2.6.9) are algebraically independent;

(b) algebraically quasiperiodic of infinite order (or algebraically ∞-quasiperio-

dic) of infinite order if the periods in (2.6.9) are rationally independent and alge-
braically dependent.

We say that a sequence (Ti)i≥1 of real numbers is algebraically dependent of
infinite order if there exists a finite subset J of N such that (Ti)i∈J is algebraically
dependent (that is, linearly dependent over the field of algebraic numbers). Recall
that a finite set of real numbers {T1, . . . , Tk} is said to be algebraically dependent if
there exist k algebraic real numbers λ1, . . . , λk, not all of which are equal to zero,
such that λ1T1 + · · ·+ λkTk = 0.

Definition 2.37. Let (A,Ω) be a relative fractal drum in RN having the fol-
lowing tube formula:

(2.6.10) |At ∩Ω| = tN−D(G(log t−1) + o(1)) as t → 0+,

where D ∈ (−∞, N ], and G is nonnegative such that

0 < lim inf
τ→+∞

G(τ) ≤ lim sup
τ→+∞

G(τ) < ∞.

(Note that it then follows that dimB(A,Ω) exists and is equal to D. Moreover,
MD

∗ (A,Ω) = lim infτ→+∞ G(τ) and M∗D(A,Ω) = lim supτ→+∞ G(τ).)

5Here, ℓ∞(R) stands for the usual Banach space of bounded sequences (τj )j≥1 of real num-

bers, endowed with the norm ‖(τj )j≥1‖∞ := supj≥1 |τj |.
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We then say that the relative fractal drum (A,Ω) in RN is quasiperiodic and
of infinite order of quasiperiodicity (or, in short, ∞-quasiperiodic) if the function
G = G(τ) is ∞-quasiperiodic; see Definition 2.36.

In addition, (A,Ω) is said to be

(a) a transcendentally ∞-quasiperiodic relative fractal drum if the correspond-
ing function G is transcendentally ∞-quasiperiodic;

(b) an algebraically ∞-quasiperiodic relative fractal drum if the corresponding
function G is algebraically ∞-quasiperiodic.

The following definition is closely related to the the notion of fractality (given in
[Lap-vFr3], §12.1.1 and §12.1.2, including Figures 12.1–12.3, along with §13.4.3).

Definition 2.38. Let A be a bounded subset of RN and let D := dimBA.
Then:

(i) The set A is a hyperfractal (or is hyperfractal) if there is a screen S along
which the associated tube (or equivalently, if D < N , distance) zeta function is a
natural boundary. This means that the zeta function cannot be meromorphically
continued to an open neighborhood of S (or, equivalently, of the associated window
W ).

(ii) The set A is a strong hyperfractal (or is strongly hyperfractal) if the critical
line {Re s = D} is a natural boundary of the associated zeta function; that is, if we
can choose S = {Re s = D} in (i).

(iii) Finally, the set A is maximally hyperfractal if it is strongly hyperfractal
and every point of the critical line is a nonremovable singularity of the zeta function.

An analogous definition can be provided (in the obvious manner) where instead
of A, we have a fractal string L = (ℓj)j≥1 in R or a relative fractal drum (A,Ω)
in RN .

Remark 2.39. Following [Lap-vFr3], but now using the higher-dimensional
theory of complex dimensions developed in this memoir and in [LapRŽu1–7],
we say that a bounded set A ⊂ RN (or, more generally, an RFD (A,Ω) in RN )
is “fractal” if it has at least one nonreal visible complex dimension6 (i.e., if the
associated fractal zeta function has a nonreal visible pole) or if it is hyperfractal
(in the sense of part (i) of Definition 2.38 just above).

The following result can be considered as a fractal set-theoretic interpreta-
tion of Baker’s theorem [Ba, Theorem 2.1] (i.e., of Theorem 2.30 above) from
transcendental number theory. It provides a construction of a transcendentally
∞-quasiperiodic relative fractal drum. In particular, this drum possesses infinitely
many algebraically incommensurable quasiperiods Ti. In our construction, we use
the two-parameter family of generalized Cantor sets C(m,a) introduced in Defini-
tion 2.28 and whose basic properties are described in Proposition 2.29.

6Then, it clearly has at least two complex conjugate nonreal complex dimensions.
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Theorem 2.40. Let D ∈ (0, 1) be a given real number, and let (mi)i≥1 be

a sequence of integers such that mi ≥ 2 for each i ≥ 1. For any i ≥ 1, define

ai = m
−1/D
i and let C(mi,ai) be the corresponding generalized Cantor sets (see

Definition 2.28). Assume that (Ωi)i≥1 is a family of disjoint open intervals on the

real line such that |Ωi| ≤ C1m
1−1/D
i c

1/D
i for each i ≥ 1, where the sequence (ci)i≥1

of positive real numbers is summable, and C1 > 0. Let

(A,Ω) :=
⋃

i≥1

(Ai,Ωi), where Ai := |Ωi|C(mi,ai) + inf Ωi, for all i ≥ 1.

Assume that the sequence of real numbers

(2.6.11) {logm1, . . . , logmn, . . . } is rationally independent.

Then the sequence of real numbers

(2.6.12)
{ 1

D
,T1, T2, . . .

}

is algebraically independent. In other words, the relative fractal drum (A,Ω) is

transcendentally quasiperiodic with infinite order of quasiperiodicity. Furthermore,

(2.6.13) D(ζA,Ω) = Dmer(ζA,Ω),

and moreover, all the points on the critical line {Re s = D} are nonremovable sin-

gularities of ζA,Ω; in other words, the relative fractal drum (A,Ω) is also maximally

hyperfractal (in the sense of Definition 2.38(iii) above).
Finally, the relative fractal drum (A,Ω) is Minkowski nondegenerate, in the

sense that

0 < MD
∗ (A,Ω) ≤ M∗D(A,Ω) < ∞.

Theorem 2.40 admits a partial extension. If instead of condition (2.6.11) we
assume that mi → ∞ as i → ∞, then (2.6.13) still holds, and, moreover, all of the
points of the critical line are nonremovable singularities of ζA. Furthermore, the
fractal drum (A,Ω) is Minkowski nondegenerate.

We shall need the following lemma, which states a simple scaling property of the
tube functions and Minkowski contents of RFDs. We note that Relation (2.6.15)
below yields a partial extension of [Žu2, Proposition 4.4.]. Compare also with
the scaling property of the corresponding distance zeta function ζA,Ω, obtained in
Theorem 2.16.

Lemma 2.41. (a) Let (A,Ω) be a relative fractal drum in RN . Then, for any

fixed λ > 0 and for all t > 0, we have that

(2.6.14) (λA)t ∩ λΩ = λ(At/λ ∩ Ω), |(λA)t ∩ λΩ| = λN |At/λ ∩ Ω|.
Furthermore, for any real parameter r ∈ R, we have the following scaling (or
homogeneity) properties of the relative upper and lower Minkowski contents:

(2.6.15) M∗r(λA, λΩ) = λrM∗r(A,Ω), Mr
∗(λA, λΩ) = λrMr

∗(A,Ω).

(b) If A is a generalized Cantor set C(m,a) (see Definition 2.28), then

|(λC(m,a))t ∩ (0, λ)| = t1−D(Gλ(log t
−1)− 2tD),

where

Gλ(τ) := λDG(τ + logλ)

and G is the T -periodic function defined in Equation (2.6.3) of Proposition 2.29.
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Proof. (a) Scaling the set At ∩ Ω by the factor λ, we obtain λ(At ∩ Ω). On
the other hand, the same result is then obtained as an intersection of the scaled
sets (λA)λt and λΩ; that is,

λ(At ∩ Ω) = (λA)λt ∩ λΩ.

The first equality in (2.6.14) now follows by replacing t with t/λ. The second one
is an immediate consequence of the first one. We also have

M∗r(λA, λΩ) = lim sup
t→0+

|(λA)t ∩ λΩ|
tN−r

= λN lim sup
t→0+

|(A)t/λ ∩ Ω|
tN−r

= λN lim sup
τ→0+

|(A)τ ∩ Ω|
(λτ)N−r

= λrM∗r(A,Ω),

The second equality in (2.6.15) is proved in the same way, but by now using the
lower limit instead of the upper limit.

(b) In the case of the generalized Cantor set, we use (2.6.14) with N = 1 and
Proposition 2.29:

|(λC(m,a))t ∩ (0, λ) = λ|C(m,a)
t/λ ∩ (0, 1)| = λ

( t

λ

)1−D(
G
(
log

λ

t

)
− 2(t/λ)D

)

= t1−D
(
λDG(log λ+ log t−1)− 2tD

)
.

This completes the proof of the lemma. �

Relative tube zeta functions have a scaling property which is analogous to that
obtained for the tube zeta functions of bounded sets. We leave the proof to the
interested reader.

Proposition 2.42 (Scaling property of relative tube zeta functions). Let (A,Ω)

be a relative fractal drum and let δ > 0. Let us denote by ζ̃A,Ω;δ(s) the associated

relative fractal zeta function defined by Equation (2.4.1). Then, for any λ > 0, we

have D(ζ̃λA,λΩ;λδ) = D(ζ̃A,Ω;δ) = dimB(A,Ω) and

(2.6.16) ζ̃λA,λΩ;λδ(s) = λsζ̃A,Ω;δ(s),

for all s ∈ C such that Re s > dimB(A,Ω). Furthermore, if ω ∈ C is a simple pole of

ζ̃A,Ω;δ, where ζ̃A,Ω;δ is meromophically extended to an open connected neighborhood

of the critical line (as ususal, we keep the same notation for the extended function),
then

(2.6.17) res(ζ̃λA,λΩ;λδ , ω) = λω res(ζ̃A,Ω;δ , ω).

In the proof of Theorem 2.40, we shall use the following simple fact. If a
function G(τ) = H(τ, τ, . . . ) is transcendentally quasiperiodic with respect to a
sequence of quasiperiods (Ti)i≥1, it is clear that for any fixed sequence of real
numbers d = (di)i≥1, the corresponding function

Gd(τ) := H(d1 + τ, d2 + τ, . . . )

is quasiperiodic with respect to the same sequence of quasiperiods (Ti)i≥1.
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Proof of Theorem 2.40. Step 1: First of all, note that the generalized Can-

tor sets C(mi,ai) are well defined, since miai = m
1−1/D
i < 1. Furthermore,

|Ω| =
∞∑

i=1

|Ωi| ≤ C1

∞∑

i=1

m
1−1/D
i c

1/D
i ≤ C1

∞∑

i=1

c
1/D
i ≤ C1

∞∑

i=1

ci < ∞,

where we have assumed without loss of generality that ci ≤ 1 for all i ≥ 1. Using
Lemma 2.41, we have

|At ∩ Ω| =
∞∑

i=1

|(Ai)t ∩ Ωi| = t1−D
∞∑

i=1

|Ωi|D
(
Gi

(
log |Ωi|+ log

1

t

)
− 2tD

)

= t1−D
(
G
(
log

1

t

)
− 2|Ω| tD

)
,

where

G(τ) :=
∞∑

i=1

|Ωi|DGi(log |Ωi|+ τ),

and the functions Gi = Gi(τ) are Ti-periodic, with Ti := log 1/ai, for all i ≥ 1.
This shows that G(τ) = H(τ, τ, . . . ), where

H((τi)i≥1) :=
∞∑

i=1

|Ωi|D Gi(log |Ωi|+ τi).

Note that the last series is well defined, and that so is the series defining G(τ).
Indeed, letting Mi = M∗D(C(mi,ai)) and using Proposition 2.29, we see that

(2.6.18) 0 < Gi(τ) ≤ Mi =

(
2(mi − 1)

1−miai

)1−D
mi

mi − 1
(1− ai) ≤ Cm1−D

i ,

where C is a positive constant independent of i, since mi → ∞ and miai → 0 as
i → ∞. Therefore,

∞∑

i=1

|Ωi|DGi(τi) ≤
∞∑

i=1

(CD
1 mD−1

i ci) (Cm1−D
i ) = CCD

1

∞∑

i=1

ci < ∞.

In particular,

M∗D(A,Ω) ≤ CCD
1

∞∑

i=1

ci < ∞.

On the other hand, since (A1,Ω1) ⊃ (A,Ω), we can use Lemma 2.41(a) (with

r = D) and Proposition 2.29 to obtain that

MD
∗ (A,Ω) ≥ MD

∗ (A1,Ω1) = |Ω1|DMD
∗ (C(m1,a1))

= |Ω1|D
1

D

(
2D

1−D

)1−D

> 0.

Step 2: Let n be any fixed positive integer. Since the set of real numbers

{logm1, . . . , logmn}
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is rationally independent, we conclude from Baker’s theorem (see Theorem 2.30
above or [Ba, Theorem 2.1]) that the set of numbers {1, logm1, . . . , logmn} is alge-
braically independent. Dividing all these numbers byD, and usingD = (logmi)/Ti,
where Ti = log(1/ai) for all i ≥ 1 (see Proposition 2.29), we deduce that

{ 1

D
,
logm1

D
, . . . ,

logmn

D

}
=
{ 1

D
,T1, . . . , Tn

}

is algebraically independent as well. Since n is arbitrary, this proves that the
relative fractal drum (A,Ω) is transcendentally ∞-quasiperiodic, in the sense of
Definition 2.37.

Step 3: To prove the last claim, note that the critical line {Re s = D} contains

the union of the set of poles Pi = D + piiZ of the tube zeta functions ζ̃Ai,Ωi ,
i ≥ 1. Since the integers mi are all distinct, we have that mi → ∞ as i → ∞,
and therefore, pi = 2π/Ti = 2πD/ logmi → 0. This proves that the union ∪i≥1Pi,

as a set of nonisolated singularities of ζ̃A,Ω =
∑

i≥1 ζ̃Ai,Ωi , is dense in the critical

line {Re s = D}. (Indeed, it is easy to deduce from the definitions that the subset
of nonremovable singularities of ζA,Ω along the critical line L := {Re s = D} is
closed in L and, hence, must coincide with L since it is also dense in L; see the
proof of [LapRŽu2, Theorem 5.3].) It follows, in particular, that (2.6.13) holds,
as desired. �

It is noteworthy that the sequence M∗D(C(mi,ai), (0, 1)) appearing in Theo-
rem 2.40 is divergent. More precisely, it is easy to deduce from the equality in
(2.6.18) that

M∗D(C(mi,ai), (0, 1)) ∼ (2mi)
1−D as i → ∞.

The conditions of Theorem 2.40 are satisfied if, for example, mi := pi for
all i ≥ 1 (that is, (mi)i≥1 is the sequence of prime numbers (pi)i≥1, written in
increasing order), and if C1 := 1 and ci := 2−i for every i ≥ 1.



CHAPTER 3

Embeddings into higher-dimensional spaces

In this chapter, we obtain useful results concerning relative fractal drums and
bounded subsets of RN embedded into higher-dimensional spaces. In particular, we
show that the complex dimensions (and their multiplicities) of a bounded set (or,
more generally, of a relative fractal drum) are independent of the dimension of the
ambient space. (See Theorem 3.3 and Theorem 3.10.) In addition, we apply some
of these results in order to calculate the complex dimensions of the Cantor dust.
(See Example 3.15.)

3.1. Embeddings of bounded sets

We begin this section by stating a result which (along with the subsequent
result, Theorem 3.2) will be key to the developments in this chapter.

Proposition 3.1. Let A ⊂ RN be a bounded set and let D := dimBA. Then,

for the tube zeta functions of A and A× {0} ⊆ RN+1, the following equality holds:

(3.1.1) ζ̃A×{0}(s; δ) = 2

∫ π/2

0

ζ̃A(s; δ sin τ)

sins−N−1 τ
dτ,

for all s ∈ C such that Re s > D.

Proof. First of all, it is well-known and easy to check that dimB(A× {0}) =
dimBA, from which we conclude that the tube zeta functions of A and A×{0} are
both holomorphic in the right half-plane {Re s > D}. Furthermore, we use the fact
(see [Res, Proposition 6]) that for every t > 0, we have

(3.1.2) |(A× {0})t|N+1 = 2

∫ t

0

|A√
t2−u2 |N du,

where, as before, | · |N denotes the N -dimensional Lebesgue measure. (See also
the proof of Lemma 3.5 in §3.2 below.) After having made the change of variable
u = t cos v, this yields

(3.1.3) |(A× {0})t|N+1 = 2t

∫ π/2

0

|At sin v|N sin v dv.

41
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Finally, for the tube zeta function of A× {0}, we can write successively:

ζ̃A×{0}(s; δ) =

∫ δ

0

ts−N−2|(A× {0})t|N+1 dt

= 2

∫ δ

0

ts−N−1dt

∫ π/2

0

|At sin v|N sin v dv

= 2

∫ π/2

0

sin v dv

∫ δ

0

ts−N−1|At sin v|N dt

= 2

∫ π/2

0

sinN+1−s v dv

∫ δ sin v

0

τs−N−1|Aτ |N dτ

= 2

∫ π/2

0

ζ̃A(s; δ sin v)

sins−N−1 v
dv,

where we have used the Fubini–Tonelli theorem in order to justify the interchange
of integrals (in the third equality), as well as made another change of variable
(in the fourth equality), namely, τ = t sin v. This completes the proof of the
proposition. �

In the following theorem, Γ(t) :=
∫ +∞
0

xt−1e−x dx, initially defined for t > 0,
is the usual gamma function, meromorphically extended to all of C.

Theorem 3.2. Let A ⊆ RN be a bounded set and let D := dimBA. Then, we

have the following equality between ζ̃A, the tube zeta function of A, and ζ̃AM , the

tube zeta function of AM := A× {0} · · · × {0}× ⊆ RN+M , with M ∈ N:

(3.1.4) ζ̃AM (s; δ) =
(
√
π)

M
Γ
(
N−s
2 + 1

)

Γ
(
N+M−s

2 + 1
) ζ̃A(s; δ) + E(s; δ),

initially valid for all s ∈ C such that Re s > D. Here, the error function E(s) :=
E(s; δ), (initially defined in the case when M = 1 by the integral on the right-hand

side of Equation (3.1.7) below) admits a meromorphic extension to all of C. The

possible poles (in C) of E(s; δ) are located at sk := N+2+2k for every k ∈ N0, and

all of them are simple. (It follows that ζ̃A is well defined at each sk.) Moreover, we

have that for each k ∈ N0,

(3.1.5) res(E( · ; δ), sk) =
(−1)k+1 (

√
π)

M

k! Γ
(
M
2 − k

) ζ̃A(sk; δ).

(We refer to Theorem 3.3 below for more precise information about the domain

of validity of the approximate functional equation (3.1.4), and to Corollary 3.4 for

information about the relationship between the visible poles of ζ̃A and ζ̃AM .) More

specifically, if M is even, then all of the poles sk of E(s; δ) are canceled for k ≥ M/2;
i.e., the corresponding residues in (3.1.5) are equal to zero. On the other hand, if

M is odd, then there are no such cancellations and all of the residues in (3.1.5) are
nonzero; so that all the sk’s are (simple) poles of E(s; δ) in that case.

Proof. We will prove the theorem in the case when M = 1. The general
case then follows immediately by induction. From Proposition 3.1, we have that
formula (3.1.1) holds for all s ∈ C such that Re s > dimBA. In turn, this latter
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identity can be written as follows:

(3.1.6)

ζ̃A×{0}(s; δ) = 2ζ̃A(s; δ)

∫ π/2

0

dτ

sins−N−1 τ

− 2

∫ π/2

0

dv

sins−N−1 v

∫ δ

δ sin v

τs−N−1|Aτ |N dτ

= ζ̃A(s; δ) · B
(
N − s

2
+ 1,

1

2

)
+ E(s; δ),

where B denotes the Euler beta function and

(3.1.7) E(s; δ) := −2

∫ π/2

0

dv

sins−N−1 v

∫ δ

δ sin v

τs−N−1|Aτ |N dτ.

By using the functional equation which links the beta function with the gamma
function (namely, B(x, y) = Γ(x)Γ(y)/Γ(x+ y) for all x, y > 0 and hence, upon
meromorphic continuation, for all x, y ∈ C), we obtain that (3.1.4) holds (with
M = 1) for all s ∈ C such that Re s > dimBA.

By looking at E(s; δ), we see that the integrand is holomorphic for every v ∈
(0, π/2) since the integral

∫ δ

δ sin v τ
s−N−1|Aτ |Ndτ is equal to ζ̃A(s; δ)− ζ̃A(s; δ sin v),

which is an entire function. Furthermore, if we assume that Re s < N + 1, then
since τ 7→ τRe s−N−1 is decreasing, we have the following estimate:

(3.1.8)

|E(s; δ)| ≤ 2

∫ π/2

0

sinN+1−Re s v dv

∫ δ

δ sin v

τRe s−N−1|Aτ |N dτ

≤ 2|Aδ|N
∫ π/2

0

sinN+1−Re s v dv

∫ δ

δ sin v

τRe s−N−1 dτ

≤ 2δRe s−N−1|Aδ|N
∫ π/2

0

sinN+1−Re s v sinRe s−N−1 v

∫ δ

δ sin v

dτ

= 2δRe s−N |Aδ|N
∫ π/2

0

(1− sin v) dv

= 2δRe s−N |Aδ|N
(π
2
− 1
)
.

From this we conclude that for s0 ∈ {Re s < N+1}, the condition (3′) of Remark 1.4
is satisfied, which implies, in light of Theorem 1.3, that E(s; δ) is holomorphic on
the open left half-plane {Re s < N + 1}.

On the other hand, we know that both of the tube zeta functions ζ̃A and
ζ̃AM are holomorphic on {Re s > dimBA} ⊇ {Re s > N}. The fact that E(s; δ)
is meromorphic on C, as well as the statement about its poles, now follows from
Equation (3.1.4) (with M = 1) and the fact that the gamma function is nowhere
vanishing in C. (In fact, 1/Γ(s) is an entire function with zeros at the nonpositive
integers.) More specifically, the locations of the poles of E(s; δ) must coincide with
the locations of the poles sk = N +2+2k, for k ∈ N0, of Γ((N − s)/2+1) since the

left-hand side of (3.1.4) is holomorphic on {Re s > dimBA} and because ζ̃A(sk) > 0
(since it is defined as the integral of a positive function). (Note that since N ≥ D,

we have sk > D, and hence, ζ̃A is well defined at sk, for each k ∈ N0.)
Finally, by multiplying (3.1.4) by (s− sk), taking the limit as s → sk and then

using the fact that the residue of the gamma function at −k is equal to (−1)k/k!,
we deduce that (3.1.5) holds, as desired. Furthermore, if M is odd, there are no
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cancellations between the poles of the numerator and of the denominator in (3.1.4)
since an integer cannot be both even and odd; i.e., the residues are nonzero for each
k ∈ N0. On the other hand, if M is even, then it is clear that all of the residues
at sk for k ≥ M/2 are equal to zero, i.e., the corresponding poles at sk cancel
out with the poles of the denominator in (3.1.4). This concludes the proof of the
theorem. �

Theorem 3.2 has as an important consequence, namely, the fact that the notion
of complex dimensions does not depend on the dimension of the ambient space.

Theorem 3.3. Let A ⊆ RN be a bounded set and AM be its embedding into

RN+M , with M ∈ N. Then, the tube zeta function ζ̃A of A has a meromorphic

extension to a given connected open neighborhood U of the critical line {Re s =
dimBA} if and only if the analogous statement is true for the tube zeta function

ζ̃AM of AM . Furthermore, in that case, the approximate functional equation (3.1.4)

remains valid for all s ∈ U . In addition, the multisets of the poles of ζ̃A and

ζ̃AM located in U coincide; i.e., P(ζ̃A, U) = P(ζ̃AM , U).1 Consequently, neither

the values nor the multiplicities of the complex dimensions of A depend on the

dimension of the ambient space.

Proof. This is a direct consequence of Theorem 3.2 and the principle of an-
alytic continuation. More specifically, identity (3.1.4) is valid for all s ∈ C such
that Re s > dimBA and the function E(s; δ) is meromorphic on C. Furthermore,
according to Theorem 3.2, the poles of E(s; δ) belong to {Re s ≥ N + 2}, which
implies that the function s 7→ E(s; δ) is holomorphic on {Re s < N + 2}. Iden-

tity (3.1.4) then remains valid if any of the two zeta functions involved (namely, ζ̃A
or ζ̃AM ) has a meromorphic continuation to some connected open neighborhood of

the critical line {Re s = dimBA}. This completes the proof of the theorem. �

Corollary 3.4. Let A ⊆ RN be a bounded set (with D := dimBA) such

that its tube zeta function ζ̃A has a meromorphic continuation to a connected open

neighborhood U of the critical line {Re s = dimBA}. Furthermore, suppose that

s = D is a simple pole of ζ̃A. Let AM ⊆ RN+M be the embedding of A into RN+M ,

as in Theorem 3.2. Then

(3.1.9) res(ζ̃AM , D) =
(
√
π)

M
Γ
(

N−D
2 + 1

)

Γ
(

N+M−D
2 + 1

) res(ζ̃A, D).

We point out here that the above corollary is compatible with the dimensional
invariance of the normalized Minkowski content, obtained in [Res]. More specifi-
cally, if in the above corollary, we assume, in addition, that D is the only pole of the
tube zeta function of A on the critical line {Re s = D} (i.e., D is the only complex
dimension of A with real part D), then, according to [LapRaŽu5, Theorem 5.2],
A and A×{0} are Minkowski measurable, with Minkowski dimension D := D and
Minkowski contents satisfying the following identity:

(3.1.10)
MD(A)

π
D−N

2 Γ
(
N−D

2 + 1
) =

MD(A× {0})
π

D−N−1

2 Γ
(
N+1−D

2 + 1
) .

1Recall that the bounded sets A and AM have the same upper Minkowski dimension,
dimBA = dimBAM , and hence, the same critical line {Re s = dimBA}.
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3.2. Embeddings of relative fractal drums

The results obtained in the previous section in the context of bounded subsets
of RN can also be obtained in the more general context of relative fractal drums
(RFDs) in RN . More specifically, let (A,Ω) be a relative fractal drum in RN and
let

(A× {0},Ω× (−1, 1))

be its natural embedding into RN+1. We want to connect the relative tube zeta
functions of these two RFDs; the following lemma will be needed for this purpose.

Lemma 3.5. Let (A,Ω) be a relative fractal drum in RN and fix δ ∈ (0, 1).
Then we have

(3.2.1)
∣∣(A× {0})δ ∩ (Ω× (−1, 1))

∣∣
N+1

= 2

∫ δ

0

|A√
δ2−u2 ∩ Ω|N du.

Proof. We proceed much as in the proof of [Res, Proposition 6]. Namely, we
let (x, y) ∈ RN × R ≡ RN+1 and define

(3.2.2) V := {(x, y) : dN+1((x, y), A× {0}) ≤ δ} ∩ {(x, y) : x ∈ Ω, |y| < 1} ,
where for any k ∈ N, dk denotes the Euclidean distance in Rk. It is clear that the
following equality holds: dN+1((x, y), A × {0}) =

√
dN (x,A)2 + y2. This implies

that for a fixed y ∈ [−δ, δ], we have

(3.2.3)
Vy : =

{
x ∈ RN : dN+1((x, y), A × {0}) ≤ δ

}

=
{
x : dN (x,A) ≤

√
δ2 − y2

}
.

(Note that if |y| > δ, then Vy is empty.) Finally, Fubini’s theorem implies that

∣∣(A× {0})δ ∩ (Ω× (−1, 1))
∣∣
N+1

=

∫

V

dxdy

=

∫ δ

−δ

dy

∫

Vy∩{x∈RN :x∈Ω}
dx

= 2

∫ δ

0

|A√
δ2−y2

∩ Ω|N dy,

which completes the proof of the lemma. �

The above lemma will eventually yield (in Theorem 3.10 below) an RFD analog
of Proposition 3.1 from §3.1 above. First, however, we will show that the upper
and lower relative box dimensions of an RFD are independent of the ambient space
dimension.

Proposition 3.6. Let (A,Ω) be an RFD in RN and let

(3.2.4) (A,Ω)M := (AM ,Ω× (−1, 1)M )

be its embedding into RN+M , for some M ∈ N. Then we have that

(3.2.5) dimB(A,Ω) = dimB(A,Ω)M

and

(3.2.6) dimB(A,Ω) = dimB(A,Ω)M .
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Proof. We only prove the proposition in the case when M = 1, from which
the general result then easily follows by induction. It is clear that for 0 < δ < 1,
we have

(A× {0})δ ∩ (Ω× (−1, 1)) ⊆ (A× {0})δ ∩ (Ω× (−δ, δ))

⊆ (Aδ ∩ Ω)× (−δ, δ);

so that

(3.2.7) |(A× {0})δ ∩ (Ω× (−1, 1))|N+1 ≤ 2δ|Aδ ∩Ω|N .

This observation, in turn, implies that for every r ∈ R, we have

(3.2.8)
|(A× {0})δ ∩ (Ω× (−1, 1))|N+1

δN+1−r
≤ 2|Aδ ∩Ω|N

δN−r
.

Furthermore, by successively taking the upper and lower limits as δ → 0+ in
Equation (3.2.8) just above, we obtain the following inequalities, involving the
r-dimensional upper and lower relative Minkowski contents of the RFDs (A,Ω)1
and (A,Ω), respectively:

(3.2.9) M∗r(A,Ω)1 ≤ 2M∗r(A,Ω) and Mr
∗(A,Ω)1 ≤ 2Mr

∗(A,Ω).

In light of the definition of the relative upper and lower box (or Minkowski) dimen-
sions (see Equation (1.4.3) and the text surrounding it), we deduce that

(3.2.10) dimB(A,Ω)1 ≤ dimB(A,Ω) and dimB(A,Ω)1 ≤ dimB(A,Ω).

On the other hand, for geometric reasons, we have that

(Aδ/2 ∩ Ω)×
(
−δ

√
3

2
,
δ
√
3

2

)
⊆ (A× {0})δ ∩ (Ω× (−1, 1));

so that

(3.2.11) δ
√
3|Aδ/2 ∩ Ω|N ≤ |(A× {0})δ ∩ (Ω× (−1, 1))|N+1 .

Much as before, this inequality implies that for every r ∈ R, we have

(3.2.12)

√
3|Aδ/2 ∩ Ω|N

2N−r(δ/2)N−r
≤ |(A× {0})δ ∩ (Ω× (−1, 1))|N+1

δN+1−r

and by successively taking the upper and lower limits as δ → 0+, we obtain that

(3.2.13)

√
3M∗r(A,Ω)

2N−r
≤ M∗r(A,Ω)1 and

√
3Mr

∗(A,Ω)

2N−r
≤ Mr

∗(A,Ω)1.

Finally, this completes the proof because (again in light of Equation (1.4.3) and
the text surrounding it) (3.2.13) implies the reverse inequalities for the upper and
lower relative box dimensions in (3.2.10). �

Remark 3.7. Observe that it follows from Proposition 3.6 (combined with
part (b) of Theorem 2.1) that the RFDs (A,Ω) and (A,Ω)M have the same upper

Minkowski dimension, dimB(A,Ω) = dimB(A,Ω)M , and hence, the same critical
line {Re s = dimB(A,Ω)}. This fact will be used implicitly in the statement of
Proposition 3.8 as well as in the statements of Theorems 3.9 and 3.10 just below.
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We can now state the desired results for embedded RFDs and their relative zeta
functions. In light of Lemma 3.5 and Proposition 3.6, the proofs follow the same
steps as in the corresponding results established in §3.1 about bounded subsets of
RN (namely, Proposition 3.1 and Theorem 3.2, respectively), and for this reason,
we will omit them.

Proposition 3.8. Fix δ ∈ (0, 1) and let (A,Ω) be an RFD in RN , with D :=
dimB(A,Ω). Then, for the relative tube zeta functions of (A,Ω) and (A,Ω)1 :=
(A× {0},Ω× (−1, 1)), the following equality holds:

(3.2.14) ζ̃A×{0},Ω×(−1,1);δ(s) = 2

∫ π/2

0

ζ̃A,Ω;δ sin τ (s)

sins−N−1 τ
dτ,

for all s ∈ C such that Re s > D.

Theorem 3.9. Fix δ ∈ (0, 1) and let (A,Ω) be an RFD in RN , with D :=

dimB(A,Ω). Then, we have the following equality between ζ̃A,Ω, the tube zeta func-

tion of (A,Ω), and ζ̃AM ,Ω×(−1,1)M , the tube zeta function of the relative fractal drum

(A,Ω)M := (AM ,Ω× (−1, 1)M ) in RN+M , for some M ∈ N:

(3.2.15) ζ̃AM ,Ω×(−1,1)M ;δ(s) =
(
√
π)

M
Γ
(
N−s
2 + 1

)

Γ
(
N+M−s

2 + 1
) ζ̃A,Ω;δ(s) + E(s; δ),

initially valid for all s ∈ C such that Re s > D. (See Theorem 3.10 for more precise

information about the domain of validity of the approximate functional equation

(3.2.15).) Here, the error function E(s) := E(s; δ) is meromorphic on all of C.

Furthermore, the possible poles (in C) of E(s; δ) are located at sk := N +2+2k for

every k ∈ N0, and all of them are simple. (It follows that ζ̃A is well defined at each

sk.) Moreover, we have that for each k ∈ N0,

(3.2.16) res(E( · ; δ), sk) =
(−1)k+1 (

√
π)

M

k! Γ
(
M
2 − k

) ζ̃A,Ω;δ(sk).

More specifically, if M is even, then all of the poles sk of E(s; δ) are canceled for

k ≥ M/2; i.e., the corresponding residues in (3.2.16) are equal to zero. On the

other hand, if M is odd, then there are no such cancellations and all of the residues

in (3.2.16) are nonzero; so that all of the sk’s are (simple) poles of E(s; δ) in that

case.

We deduce at once from Theorem 3.9 the following key result about the in-
variance of the complex dimensions of a relative fractal drum with respect to the
dimension of the ambient space. This result extends Theorem 3.3 to general RFDs.

Theorem 3.10. Let (A,Ω) be an RFD in RN and let the RFD (A,Ω)M :=
(AM ,Ω× (−1, 1)M ) be its embedding into RN+M , for some M ∈ N. Then, the tube

zeta function ζ̃A,Ω := ζ̃A,Ω of (A,Ω) has a meromorphic extension to a given open

connected neighborhood U of the critical line {Re s = dimB(A,Ω)} if and only if the

analogous statement is true for the tube zeta function ζ̃(A,Ω)M := ζ̃AM ,Ω×(−1,1)M of

(A,Ω)M . (See Remark 3.7 just above.) Furthermore, in that case, the approximate

functional equation (3.2.15) remains valid for all s ∈ U . In addition, the multisets

of the poles of ζ̃A,Ω and ζ̃(A,Ω)M belonging to U coincide; i.e.,

(3.2.17) P(ζ̃A,Ω, U) = P(ζ̃(A,Ω)M , U).
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Consequently, neither the values nor the multiplicities of the complex dimensions

of the RFD (A,Ω) depend on the dimension of the ambient space.

Remark 3.11. In the above discussion about embedding RFDs into higher-
dimensional spaces, we can also make similar observations if we embed (A,Ω) as
a ‘one-sided’ RFD, for example of the form (A× {0},Ω× (0, 1)), a fact which can
be more useful when decomposing a relative fractal drum into a union of relative
fractal subdrums in order to compute its distance (or tube) zeta function. This
observation follows immediately from the above results for ‘two-sided’ embeddings
of RFDs since, by symmetry, we have

(3.2.18) ζ̃A×{0},Ω×(−1,1)(s) = 2 ζ̃A×{0},Ω×(0,1)(s).

We note that when using the above formulas, one only has to be careful to take
into account the factor 2. Furthermore, we can also embed (A,Ω) as

(A× {0},Ω× (−α, α)) or (A× {0},Ω× (0, α)),

for some α > 0, but in that case, the corresponding formulas will only be valid for
all δ ∈ (0, α).

We could now use the functional equation (2.4.2) connecting the tube and
distance zeta functions, in order to translate the above results in terms of ζA,Ω, the
(relative) distance zeta function of the RFD (A,Ω). However, we will instead use
another approach because it gives some additional information about the resulting
error function. More specifically, consider the Mellin zeta function of a relative

fractal drum (A,Ω) defined by

(3.2.19) ζMA,Ω(s) :=

∫ +∞

0

ts−N−1|At ∩Ω| dt,

for all s ∈ C located in a suitable vertical strip. In fact, in light of [LapRaŽu5,
Theorem 5.7] (see also [LapRaŽu1, Theorem 5.4.7]), the above Lebesgue inte-
gral is absolutely convergent (and hence, convergent) for all s ∈ C such that

Re s ∈ (dimB(A,Ω), N). Moreover, the relative distance and Mellin zeta functions
of (A,Ω) are connected by the functional equation

(3.2.20) ζA,Ω(s) = (N − s)ζMA,Ω(s),

on every open connected set U ⊆ C to which any of the two zeta functions has
a meromorphic continuation. Observe that in (3.2.20), the parameter δ is absent.
Indeed, this means implicitly that the functional equation (3.2.20) is valid only for
the parameters δ > 0 for which the inclusion Ω ⊆ Aδ is satisfied; that is, when
ζA,Ω;δ(s) =

∫
Ω
d(x,A)s−Ndx is satisfied.

We will now embed the relative fractal drum (A,Ω) of RN into RN+1 as

(A× {0},Ω× R).

Strictly speaking, this is not a relative fractal drum in RN+1 since there does not
exist a δ > 0 such that Ω × R ⊆ (A × {0})δ. On the other hand, observe that
Lemma 3.5 is now valid for every δ > 0; that is,

(3.2.21)
∣∣(A× {0})δ ∩ (Ω× R)

∣∣
N+1

= 2

∫ δ

0

|A√
δ2−u2 ∩ Ω|Ndu.
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Proposition 3.12. Let (A,Ω) be an RFD in RN such that dimB(A,Ω) < N .

Then the function F = F (s), defined by the integral

(3.2.22) F (s) :=

∫ +∞

0

ts−N−2
∣∣(A× {0})t ∩ (Ω× R)

∣∣
N+1

dt,

is holomorphic inside the vertical strip {dimB(A,Ω) < Re s < N}.

Proof. We split the integral into two integrals: F (s) =
∫ 1

0
+
∫+∞
1

. According
to Proposition 3.6, the first integral

∫ 1

0

ts−N−2
∣∣(A× {0})t ∩ (Ω× R)

∣∣
N+1

dt

=

∫ 1

0

ts−N−2
∣∣(A× {0})t ∩ (Ω× (−1, 1))

∣∣
N+1

dt

defines a holomorphic function on the right half-plane {Re s > dimB(A,Ω)}.
In order to deal with the second integral, we observe that

∣∣(A× {0})t ∩ (Ω× R)
∣∣
N+1

≤ 2t|Ω|N ,

and, consequently,
∣∣∣∣
∫ +∞

1

ts−N−2
∣∣(A× {0})t ∩ (Ω× R)

∣∣
N+1

dt

∣∣∣∣ ≤ 2|Ω|N
∫ +∞

1

tRe s−N−1 dt

=
2|Ω|N

N − Re s
,

for all s ∈ C such that Re s < N . In light of Theorem 1.3 and Remark 1.4, the latter
inequality implies that the integral over (1,+∞) defines a holomorphic function on
the left half-plane {Re s < N}. Therefore, it follows that F (s) is holomorphic in
the vertical strip {dimB(A,Ω) < Re s < N} and the proof of the proposition is
complete. �

In light of the above proposition, we continue to use the convenient notation
ζMA×{0},,Ω×R

for the integral (3.2.22) although, as was noted earlier, (A×{0},Ω×R)

is not technically a relative fractal drum in RN+1. The following result is the
counterpart of Theorem 3.2 in the present, more general context.

Theorem 3.13. Let (A,Ω) be a relative fractal drum in RN such that D :=
dimB(A,Ω) < N . Then, for every a > 0, the following approximate functional

equation holds:

(3.2.23) ζA×{0},Ω×(−a,a)(s) =

√
πΓ
(
N−s
2

)

Γ
(
N+1−s

2

) ζA,Ω(s) + E(s; a),

initially valid for all s ∈ C such that Re s > D. Here, the error function E(s) :=
E(s; a) is initially given (for all s ∈ C such that Re s < N) by

(3.2.24) E(s; a) := (s−N−1)

∫ +∞

a

ts−N−2|(A× {0})t ∩Ω× (R \ (−a, a))|N+1 dt,

and admits a meromorphic extension to all of C, with a set of simple poles equal to

{N + 2k : k ∈ N0}.
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Moreover, Equation (3.2.23) remains valid on any connected open neighborhood

of the critical line {Re s = D} to which ζA,Ω (or, equivalently, ζA×{0},Ω×(−a,a)) can
be meromorphically continued.

Proof. In a completely analogous way as in the proof of Theorem 3.2, we
obtain that

(3.2.25) ζ̃A×{0},Ω×R;δ(s) =

√
πΓ
(
N−s
2 + 1

)

Γ
(
N+1−s

2 + 1
) ζ̃A,,Ω;δ(s) + Ẽ(s; δ),

now valid for all δ > 0 (see Equation (3.2.21) above and the discussion preceding it).

Furthermore, the error function Ẽ(s) := Ẽ(s; δ) is holomorphic on {Re s < N + 1}
and

(3.2.26) |Ẽ(s, δ)| ≤ 2δRe s−N |Aδ ∩ Ω|N
(π
2
− 1
)

for all s ∈ C such that Re s < N + 1. See the proof of Theorem 3.2 and Equation
(3.1.8) for the derivation of the above estimate. The estimate (3.2.26) now implies

that the sequence of holomorphic functions Ẽ( · ;n) tends to 0 as n → ∞, uniformly
on every compact subset of {Re s < N}, since |An ∩ Ω| = |Ω| for all n sufficiently

large. Furthermore, we also have that ζ̃A,Ω;n → ζMA,Ω and

(3.2.27) ζ̃A×{0},Ω×R(s;n) → ζMA×{0},Ω×R
as n → ∞,

uniformly on every compact subset of {D < Re s < N}. This implies that by
taking the limit in (3.2.25) as δ → +∞, we obtain the following functional equality
between holomorphic functions:

(3.2.28) ζMA×{0},Ω×R
(s) =

√
πΓ
(
N−s
2 + 1

)

Γ
(
N+1−s

2 + 1
) ζMA,Ω(s),

valid in the vertical strip {D < Re s < N}. (We can obtain this equality even more
directly by applying Lebesgue’s dominated convergence theorem to a counterpart
of (3.2.14).)

Moreover, according to (3.2.20), we have the functional equation

(3.2.29) ζMA×{0},Ω×R
(s) =

2
√
πΓ
(
N−s
2

)

Γ
(
N+1−s

2 + 1
)ζA,Ω(s),

from which we deduce that the right-hand side admits a meromorphic extension
to the right half-plane {Re s > D}, with simple poles located at the simple poles
of Γ((N − s)/2); that is, at sk := N + 2k for all k ∈ N0. (Observe that in the
above ratio of gamma functions, there are no cancellations between the poles of
the numerator and of the denominator; indeed, an integer cannot be both even and
odd.) From this we conclude that by the principle of analytic continuation, the
same property also holds for the left-hand side of (3.2.29) and, furthermore, the
left-hand side has a meromorphic extension to any domain U ⊆ C to which the
right-hand side can be meromorphically extended.

In order to complete the proof of the theorem, we now observe that for any
a > 0, since

∣∣(A× {0})t ∩ (Ω× R)
∣∣ =

∣∣(A× {0})t ∩ (Ω× (−a, a))
∣∣

+
∣∣(A× {0})t ∩ (Ω× (R \ (−a, a)))

∣∣,
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the left-hand side of (3.2.29) can be split into two parts:

ζMA×{0},Ω×R
(s) = ζMA×{0},Ω×(−a,a)(s)

+

∫ +∞

a

ts−N−2
∣∣(A× {0})t ∩ (Ω× (R \ [−a, a]))

∣∣dt

=
ζA×{0},Ω×(−a,a)(s)

N + 1− s
− E(s; a)

N + 1− s
.

We then combine this observation with (3.2.29) to obtain (3.2.23). In light of part
(a) of Theorem 2.1, we know that ζA×{0},Ω×(−a,a)(s) is holomorphic on the open

right half-plane {Re s > D}. Furthermore, much as in the proof of Proposition
3.12, we can show that E(s) := E(s; a) defines a holomorphic function on the
open left half-plane {Re s < N}. This fact, together with the functional equation
(3.2.23), now ensures that E(s; a) admits a meromorphic continuation to all of C,
with a set of simple poles equal to {N + 2k : k ∈ N0}. (Note that ζA,Ω(s) > 0
for all s ∈ [N,+∞), which implies that there are no zero-pole cancellations on the
right-hand side of (3.2.23).) This completes the proof of Theorem 3.13. �

We note that in Example 3.15 below, we actually want to embed (A,Ω) into
RN+1, as (A×{0},Ω× (0, a)) for some a > 0. By looking at the proof of the above
theorem and using a suitable symmetry argument, we can obtain the following
result, which deals with this type of embedding.

Theorem 3.14. Let (A,Ω) be a relative fractal drum in RN such that D :=
dimB(A,Ω) < N . Then, the following approximate functional equation holds:

(3.2.30) ζA×{0},Ω×(0,a)(s) =

√
πΓ
(
N−s
2

)

2Γ
(
N+1−s

2

)ζA,Ω(s) + E(s; a),

initially valid for all s ∈ C such that Re s > D. Here, the error function E(s) :=
E(s; a) is initially given (for all s ∈ C such that Re s < N) by

(3.2.31) E(s; a) := (s−N−1)

∫ +∞

a

ts−N−2|(A× {0})t ∩ Ω× (R \ (0, a))|N+1dt,

and admits a meromorphic continuation to all of C, with a set of simple poles equal

to {N + 2k : k ∈ N0}.
Moreover, Equation (3.2.30) remains valid on any connected open neighborhood

of the critical line {Re s = D} to which ζA,Ω (or, equivalently, ζA×{0},Ω×(0,a)) can

be meromorphically continued.

Example 3.15. (Complex dimensions of the Cantor dust RFD). In this ex-
ample, we will consider the relative fractal drum consisting of the Cantor dust
contained in [0, 1]2 and compute its distance zeta function. More precisely, let
A := C(1/3) ×C(1/3) be the Cantor dust (i.e., the Cartesian product of the ternary
Cantor set C := C1/3 by itself) and let Ω := (0, 1)2. We will not obtain for ζA
an explicit formula in a closed form but we will instead use Theorem 3.2 in order
to deduce that the distance zeta function of the Cantor dust has a meromorphic
continuation to all of C.

More interestingly, we will also show that the set of complex dimensions of the
Cantor dust is the union of (a nontrivial subset of) a periodic set contained in the
critical line {Re s = log3 4} and the set of complex dimensions of the Cantor set
(which is a periodic set contained in the critical line {Re s = log3 2}). This fact is
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significant because it shows that in this case, the distance (or tube) zeta function

also detects the ‘lower-dimensional’ fractal nature of the Cantor dust.

Note that, as is well known, the Minkowski dimension of the RFD (or Cantor
string) (C, (0, 1)) is given by dimB(C, (0, 1)) = log3 2 (see [Lap-vFr1, §1.2.2]. Fur-
thermore, it will follow from the discussion below that, as might be expected since
(A,Ω) = (C, (0, 1))× (C, (0, 1))),

(3.2.32) dimB(A,Ω) = 2 dimB(C, (0, 1)) = log3 4.

Consequently, the critical line of the RFD (C, (0, 1)) in R (the Cantor string RFD)
is the vertical line {Re s = log3 2}, while the critical line of the Cantor dust, viewed
as the RFD (A,Ω) in R2, is the vertical line {Re s = log3 4}, as was stated in the
previous paragraph.

The construction of the RFD (A,Ω) can be carried out by beginning with the
unit square and removing the open middle-third ‘cross’, and then iterating this
procedure ad infinitum. This procedure implies that we can subdivide the Cantor
dust into a countable union of RFDs which are scaled down versions of two base
(or generating) RFDs, (A1,Ω1) and (A2,Ω2). The first one of these base RFDs,
(A1,Ω1), is defined by Ω1 := (0, 1/3)2 and by A1 being the union of the four vertices
of the closure of Ω1 (namely, of the square [0, 1/3]2). Furthermore, the second base
RFD is defined by Ω2 := (0, 1/3)× (0, 1/6) and by A2 being the ternary Cantor set
contained in [0, 1/3]× {0}.

At the n-th level of the iteration, we have exactly 4n−1 RFDs of the type
(anA1, anΩ1) and 8 · 4n−1 RFDs of the type (anA2, anΩ2), where an := 3−n for
each n ∈ N. This observation, together with the scaling property of the relative
distance zeta function (see Theorem 2.16), yields successively (for all s ∈ C with
Re s sufficiently large):

(3.2.33)

ζA,Ω(s) =
∞∑

n=1

4n−1ζanA1,anΩ1
(s) + 8

∞∑

n=1

4n−1ζanA2,anΩ2
(s)

= (ζA1,Ω1
(s) + 8ζA2,Ω2

(s))

∞∑

n=1

4n−1 · 3−ns

=
1

3s − 4
(ζA1,Ω1

(s) + 8ζA2,Ω2
(s)) .

Moreover, for the relative distance zeta function of (A1,Ω1), we have

(3.2.34)

ζA1,Ω1
(s) = 8

∫ 1/6

0

dx

∫ x

0

(√
x2 + y2

)s−2

dy

= 8

∫ π/4

0

dϕ

∫ 1/6 cosϕ

0

rs−1 dr

=
8

6ss

∫ π/4

0

cos−s ϕdϕ =
8I(s)

6ss
,

where I(s) :=
∫ π/4

0
cos−s ϕdϕ and is easily seen to be an entire function. (In

fact, I(s) = 2−1B1/2 (1/2, (1− s)/2), where Bx(a, b) :=
∫ x

0
ta−1(1 − t)b−1dt is the

incomplete beta function.) Consequently, ζA,Ω admits a meromorphic continuation
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to all of C and we have

(3.2.35) ζA,Ω(s) =
8

3s − 4

(
I(s)

6ss
+ ζA2,Ω2

(s)

)
,

for all s ∈ C. Furthermore, let ζC,,(0,1) be the relative distance zeta function of

the Cantor middle-third set constructed inside [0, 1]; see [LapRaŽu5, Example
6.3]. Alternatively, use the relation ζC,(0,1)(s) = ζLCS (s)(2

1−s/s), where LCS is the
Cantor string and (by [Lap-vFr3, Eq. (1.29), p. 22]) ζLCS (s) = 1/(3s − 2), for all
s ∈ C. From Theorem 3.14 and the scaling property of the relative distance zeta
function (Theorem 2.16), we now deduce that

(3.2.36)

ζA2,Ω2
(s) =

√
πΓ
(
1−s
2

)

2Γ
(
2−s
2

) ζ3−1C,3−1(0,1)(s) + E(s; 6−1)

=
Γ
(
1−s
2

)

Γ
(
2−s
2

)
√
π

6ss(3s − 2)
+ E(s; 6−1),

where E(s; 6−1) is meromorphic on all of C with a set of simple poles equal to
{2k + 1 : k ∈ N0}; so that for all s ∈ C, we have

(3.2.37) ζA,Ω(s) =
8

s(3s − 4)

(
I(s)

6s
+

Γ
(
1−s
2

)

Γ
(
2−s
2

)
√
π

6ss(3s − 2)
+ E(s; 6−1)

)
.

Formula (3.2.37) implies that P(ζA,Ω, the set of all complex dimensions (in C) of
the ‘relative’ Cantor dust, is a subset of

(3.2.38)

(
log3 4 +

2π

log 3
iZ

)
∪
(
log3 2 +

2π

log 3
iZ

)
∪ {0}

and consists of simple poles of ζA,Ω. Of course, we know that log3 4 ∈ P(ζA,Ω), but
we can only conjecture that the other poles on the critical line {Re s = log3 4} are in
P(ζA,Ω) since it may happen that there are some zero-pole cancellations in (3.2.37).
On the other hand, since it is known that the Cantor dust is not Minkowski measur-
able (see [FaZe]), we can deduce from [LapRaŽu5, Theorem 5.2] that there must
exist at least two other (necessarily nonreal) poles s±k0

= log3 4 ± 2k0πi

log 3 of ζA,Ω,

for some k0 ∈ N. (Indeed, according to [LapRaŽu5, Theorem 5.2], D := log3 4
cannot be the only complex dimension of (A,Ω) on the critical line {Re s = D}
since otherwise, the Cantor dust would be Minkowski measurable, which is a con-
tradiction.) Based on (3.2.37), we cannot even claim that 0 ∈ P(ζA,Ω) for sure, but
we can see that all of the principal complex dimensions of the Cantor set are ele-
ments of P(ζA,Ω); i.e., log3 2+

2π
log 3 iZ ⊆ P(ζA,Ω)). We conjecture that we also have

log3 4 +
2π
log 3 iZ ⊆ P(ζA,Ω); that is, we conjecture that Pc(ζA,Ω) = log3 4 +

2π
log 3 iZ.

The above example can be easily generalized to the case of Cartesian products
of any finite number of generalized Cantor sets (as given by Definition 2.28), in
which case we conjecture that the set of complex dimensions of the product is
contained in the union of the sets of complex dimensions of each of the factors,
modulo any zero-pole cancellations which may occur. In light of this and other
similar examples, it would be interesting to obtain some results about zero-free
regions for fractal zeta functions. We leave this problem as a possible subject for
further investigations.





CHAPTER 4

Zeta functions of relative fractal sprays and

generating principal complex dimensions of any

multiplicity

In this chapter, we consider a special type of RFDs, called relative fractal sprays,
and study their distance zeta functions. We then illustrate our results by computing
the corresponding complex dimensions of relative Sierpiński sprays. More specif-
ically, we determine the complex dimensions (as well as the associated residues)
of the relative Sierpiński gasket (Example 4.12) and of the relative Sierpiński car-
pet (Example 4.15); we also consider higher-dimensional analogs of these exam-
ples, namely, the inhomogeneous Sierpiński N -gasket RFD (Example 4.14) and the
Sierpiński N -carpet RFD (Example 4.17).

4.1. Relative fractal sprays in RN

We now introduce the definition of relative fractal spray, which is very similar
to (but more general than) the notion of fractal spray (see [LapPo3], [Lap-vFr3,
Definition 13.2], [LapPe1–2] and [LapPeWi1–2]), itself a generalization of the
notion of (ordinary) fractal string [LapPo1–2, Lap1–3, Lap-vFr3].

Definition 4.1. Let (∂Ω0,Ω0) be a fixed relative fractal drum in RN (which
we call the base relative fractal drum, or generating relative fractal drum), (λj)j≥0

a decreasing sequence of positive numbers (scaling factors), converging to zero, and
(bj)j≥0 a given sequence of positive integers (multiplicities). The associated relative

fractal spray is a relative fractal drum (A,Ω) obtained as the disjoint union of a
sequence of RFDs, F := {(∂Ωi,Ωi) : i ∈ N0}, where N0 := N ∪ {0}, such that each
Ωi can be obtained from λjΩ0 by a rigid motion in RN , and for each j ∈ N0 there
are precisely bj RFDs in the family F that can be obtained from λjΩ0 by a rigid
motion. Any relative fractal spray (A,Ω), generated by the base relative fractal
drum (or ‘basic shape’) Ω0 and the sequences of ‘scales’ (λj)j≥0 with associated
‘multiplicities’ (bj)≥0, is denoted by

(4.1.1) (A,Ω) := Spray(Ω0, (λj)j≥0, (bj)≥0).

The family F is called the skeleton of the spray. The distance zeta function ζA,Ω

of the relative fractal spray (A,Ω) is computed in Theorem 4.6 below.
If there exist λ ∈ (0, 1) and an integer b ≥ 2 such that λj = λj and bj = bj, for

all j ∈ N0, then we simply write

(A,Ω) = Spray(Ω0, λ, b).

Definition 4.2. The relative fractal spray (A,Ω) = Spray(Ω0, (λj)j≥0, (bj)j≥0)
can be viewed as a relative fractal drum generated by (∂Ω0,Ω0) and a fractal string

55
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L = (ℓj)j≥0, consisting of the decreasing sequence (λj)j≥0 of positive real num-
bers, in which each λj has multiplicity bj for every j ≥ 0. Thus, we can write
(A,Ω) = Spray(Ω0,L). It is also convenient to view the construction of (A,Ω) in
Definition 4.1 as the tensor product of the base relative fractal drum (A0,Ω0) and
the fractal string L:
(4.1.2) (A,Ω) = (∂Ω0,Ω0)⊗ L.
We can also define the tensor product of two (possibly unbounded) fractal strings

L1 = (ℓ1j)j≥1 and L2 = (ℓ2k)k≥1 as the following fractal string (note that here, L1

and L2 are viewed as nonincreasing sequences of positive numbers tending to zero,
but that we may have

∑∞
j=1 ℓ1j = +∞ or

∑∞
k=1 ℓ2k = +∞):

(4.1.3) L1 ⊗ L2 := (ℓ1jℓ2k)j,k≥1.

By construction, the multiplicity of any l ∈ L1 ⊗ L2 is equal to the number of
ordered pairs of (ℓ1j , ℓ2k) in the Cartesian product L1 × L2 of multisets such that
l = ℓ1jℓ2k.

Example 4.3. Let Ω0 := B1(0) be the open unit disk in the plane R2 and
A0 := ∂Ω0 the unit circle. Let L := (ℓj)j≥0 be the Cantor string. In other words,
L is the multiset consisting of lk = 3−k−1 with multiplicity 2k for each k ≥ 0. As
in Definition 4.2, we define the RFD (A,Ω) as the tensor product

(4.1.4) (A,Ω) := (A0,Ω0)⊗ L.
Then,

(4.1.5)

ζA,Ω(s) =

∞∑

k=0

2kζ3−k−1(A0,Ω0)(s)

= 3−s
∞∑

k=0

2k3−skζA0,Ω0
(s) =

3−sζA0,Ω0
(s)

1− 2 · 3−s

=
2π(s− 2)3−s

s(s− 1)(1− 2 · 3−s)
,

where in the last equality we have used Equation (2.1.9) with N = 2. It follows
that ζA,Ω has a meromorphic continuation to all of C given by the last expression
of (4.1.5). Therefore, we deduce that

(4.1.6) P(ζA,Ω) = {0} ∪
(
log3 2 +

2π

log 3
iZ

)
∪ {1}, dimPC(Ã, Ω̃) = {1},

and all the complex dimensions are simple. The RFD (A,Ω) has a vertical se-
quence of equidistant complex dimensions (namely, {log3 2 + 2π

log 3 ik}k∈Z), while

there is only one principal complex dimension (namely, s = 1), and it is simple.
Using [LapRaŽu5, Theorem 5.2], we conclude that the RFD (A,Ω) is Minkowski
measurable.

We point out, however, that one can also show (by using the results and
techniques of [LapRaŽu5] and [LapRaŽu1, Chapter 5]) that the RFD (A,Ω)
is (strictly) subcritically Minkowski nonmeasurable in dimension d := log3 2, in a
sense specified in the just mentioned references. Heuristically, this means that it has
geometric oscillations of lower order d = log3 2, but none of leading order D = 1.
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We can easily modify the notion of relative fractal spray in Definition 4.1
in order to deal with a finite collection of K basic RFDs (or generating RFDs)
(∂Ω01,Ω01),. . . ,(∂Ω0K ,Ω0K), where K is and integer ≥ 1, similarly as in [LapPo3],
[Lap-vFr3, Definition 13.2] (and [LapPe1–2, LapPeWi1–2]). A slightly more
general notion would consist in replacing (∂Ω0,Ω0) by any relative fractal drum
(A0,Ω0); see [LapRaŽu1].

It is important to stress that, from our point of view, the sets Ωi in the definition
of a relative fractal spray (Definition 4.1) do not have to be ‘densely packed’. In
fact, in general, they cannot be ‘densely packed’, as indicated by Example 4.5(c)
below. They can just be viewed as the union of the disjoint family {(∂Ωi,Ωi)}i≥0

of RFDs in RN . The corresponding disjoint family of open sets {Ωi}i≥0 can even
be unbounded in RN , since its union does not have to be of finite N -dimensional
Lebesgue measure.

The following simple lemma provides necessary and sufficient conditions for a
relative fractal spray (A,Ω) to be such that |Ω| < ∞.

Lemma 4.4. Assume that (A,Ω) := Spray(Ω0, (λj)j≥0, (bj)≥0) in RN is a rel-

ative fractal spray. Then |Ω| < ∞ if and only if |Ω0| < ∞ and

(4.1.7)

∞∑

j=0

bjλ
N
j < ∞.

In that case, we have

(4.1.8) |Ω| = |Ω0|
∞∑

j=0

bjλ
N
j .

In particular, the relative fractal drum (A,Ω) is well defined and dimB(A,Ω) ≤ N .

Proof. Let us prove the sufficiency part. For Ωj = λjΩ0 we have |Ωj | =
|λjΩ0| = λN

j |Ω0|, and therefore,

|Ω| =
∞∑

j=0

|Ωj | =
∞∑

j=0

bj |λjΩ0| = |Ω0|
∞∑

j=0

bjλ
N
j .

The proof of the necessity part is also easy and is therefore omitted. �

Example 4.5. Here, we provide a few simple examples of relative fractal sprays:

(a) The ternary Cantor set can be viewed as a relative fractal drum

(A,Ω) = Spray(Ω0, 1/3, 2)

(called the Cantor relative fractal drum, or the relative Cantor fractal spray), gen-
erated by

(∂Ω0,Ω0) = ({1/3, 2/3} , (1/3, 2/3))
as the base relative fractal drum, λ = 1/3 and b = 2. Its relative box dimension
exists and is equal to D = log3 2. Of course, this is just an example of ordinary
fractal string, namely, the well-known Cantor string; see [Lap-vFr3, §1.1.2].

(b) The Sierpiński gasket can be viewed as a relative fractal drum (called the
Sierpiński relative fractal drum, or Sierpiński relative fractal spray), generated by
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Figure 1. Left: The Sierpiński gasket A, viewed as relative fractal
drum (A,Ω), with Ω being the countable disjoint union of open triangles
contained in the unit triangle Ω0. Right: An equivalent interpretation of
the Sierpiński gasket drum (A,Ω). Here, Ω is a coutable disjoint union
of open equilateral triangles, and A = ∂Ω. (There are 3j triangles with
sides 2−j−1 in the union, j ∈ N0.) Both pictures depict the first three
iterations of the construction. We can also view the standard Sierpiński
gasket A as a relative fractal drum (A,Ω), in which Ω is just the open
unit triangle on the left picture.

(∂Ω0,Ω0) as the basic relative fractal drum, where Ω0 is an open equilateral triangle
of sides of length 1/2, λ = 1/2 and b = 3. (See the left part of Figure 1.) Its relative
box dimension exists and is equal to D = log2 3.

(c) If Ω0 is any bounded open set in R2 (say, an open disk), λ = 1/2 and b = 3,
we obtain a fractal spray (A,Ω) = Spray(Ω0, 1/2, 3), in the sense of Definition 4.1.
In Theorem 4.6, we shall see that if Ω0 has a Lipschitz boundary, then the set of
poles of the relative zeta function of this fractal spray (which is a relative fractal
drum), as well as the multiplicities of the poles, do not depend on the choice of
Ω0. In this sense, examples (b) and (c) are equivalent. In particular, the box
dimension of the generalized Sierpiński relative fractal drum is constant, and equal
to D = log2 3.

In other words, the Sierpiński gasket (A,Ω) = Spray(Ω0, 1/2, 3), appearing in
Example 4.5(b), can be viewed as any countable disjoint collection of open triangles
in the plane (which can even be an unbounded collection) and their bounding
triangles, of sizes λj = 2−j−1 and multiplicities bj = 3j , j ∈ N0, and not just as the
standard disjoint collection of open triangles, densely packed inside the unit open
triangle; see the right part of Figure 1.

By using the scaling property stated in Theorem 2.16, it is easy to explicitly
compute the distance zeta function of relative fractal sprays. Note that the zeta
function involves the Dirichlet series f(s) =

∑∞
j=0 bjλ

s
j . Theorem 4.6 just below

can be considered as an extension of Theorem 2.16.

Theorem 4.6 (Distance zeta function of relative fractal sprays). Let

(A,Ω) = Spray(Ω0, (λj)j≥0, (bj)j≥0)

be a relative fractal spray in RN , in the sense of Definition 4.1, and such that

|Ω0| < ∞. Assume that condition (4.1.7) of Lemma 4.4 is satisfied; that is, |Ω| <
∞. Let Ω be the (countable, disjoint) union of all the open sets appearing in the
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skeleton, corresponding to the fractal spray. (In other words, Ω is the disjoint union

of the open sets Ωj, each repeated with the multiplicity bj for j ∈ N0.) Let f(s) :=∑∞
j=0 bjλ

s
j . (Note that according to (4.1.7), this Dirichlet series converges absolutely

for Re s ≥ N ; i.e., D(f) ≤ N .) Then, for Re s > max{dimB(A,Ω), D(f)}, the

distance zeta function of the relative fractal spray (A,Ω) is given by

(4.1.9) ζA,Ω(s) = f(s) · ζ∂Ω0,Ω0
(s),

and

(4.1.10) dimB(A,Ω) = max{dimB(∂Ω0,Ω0), D(f)}.
Proof. Clearly, it follows from (4.1.7) that f(N) < ∞. Hence, D(f) ≤ N ; so

that dimB(A,Ω) ≤ N . Each open set of the skeleton of the relative fractal spray is
obtained by a rigid motion of sets of the form λjΩ0, and for any fixed j, there are
precisely bj such sets. Identity (4.1.9) then follows immediately from Theorems 2.16
and 2.19. The remaining claims are easily derived using this identity. �

It follows from Definition 4.2 and relation (4.1.9) that the distance zeta function
of the tensor product is equal to the product of the zeta functions of its components:

(4.1.11) ζ(∂Ω0,Ω0)⊗L(s) = ζL(s) · ζ∂Ω0,Ω0
(s).

Equation (4.1.10) can therefore be written as follows:

(4.1.12) dimB((∂Ω0,Ω0)⊗ L) = max{dim(∂Ω0,Ω0), dimBL}.

Definition 4.7. The Dirichlet series f(s) :=
∑∞

j=1 bjλ
s
j (or, more generally,

its meromorphic extension to a connected open subset U of C, when it exists), is
called the scaling zeta function of the relative fractal spray (A,Ω) and is denoted
by ζS(s); hence, the factorization formula (4.1.9) can also be rewritten as follows:

(4.1.13) ζA,Ω(s) = ζS(s) · ζ∂Ω0,Ω0
(s).

Theorem 4.8. Assume that a relative fractal spray (A,Ω) = Spray(Ω0, λ, b),
as introduced at the end of Definition 4.1, is such that |Ω0| < ∞, λ ∈ (0, 1), b ≥ 2

is an integer, and bλN < 1. Then, for Re s > max{dimB(∂Ω0,Ω0), log1/λ b}), we
have

(4.1.14) ζA,Ω(s) =
ζ∂Ω0,Ω0

(s)

1− bλs
,

and the lower bound for Re s is optimal. In particular, it is equal to D(ζA,Ω), and
hence,

dimB(A,Ω) = D(ζA,Ω) = max{dimB(∂Ω0,Ω0), log1/λ b}.
If, in addition, Ω0 is bounded and has a Lipschitz boundary such that ∂Ω0 can

be described by finitely many Lipschitz charts, then

(4.1.15) dimB(A,Ω) = max{N − 1, log1/λ b}.
Therefore, if we assume that log1/λ b ∈ (N − 1, N), then the set dimPC(A,Ω) =

Pc(ζA,Ω) of principal complex dimensions of the relative fractal spray (A,Ω) is given
by

(4.1.16) dimPC(A,Ω) = log1/λ b+
2π

log(1/λ)
iZ.
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Proof. If λj := λ and bj := bj for all j ∈ N0, with bλN < 1, then
∑∞

j=0 b
jλjN =

1
1−bλN < ∞; so that |Ω| < ∞, as desired. Identity (4.1.14) follows immediately from

(4.1.9), using the fact that for Ω0 with a Lipschitz boundary satisfying the stated

assumption, we have dimB(∂Ω0,Ω0) = dimB∂Ω0 = N − 1 (this follows, for exam-
ple, from [ŽuŽup, Lemma 3]), together with the property of finite stability of the
upper box dimension; see, e.g., [Fal1, p. 44]. �

Example 4.9. Here, we construct a relative fractal spray

(A,Ω) = Spray(Ω0, (λj)j≥1, (bj)≥1)

in R2 such that |Ω0| < ∞, bj ≡ 1,
∑∞

j=1 λ
2
j < ∞ (hence, |Ω| < ∞ by Lemma 4.4),

and such that the base set Ω0 is unbounded, as well as its boundary ∂Ω0. Let Ω0

be any unbounded Borel set of finite 2-dimensional Lebesgue measure, such that
both Ω0 and ∂Ω0 are unbounded, and Ω0 is contained in the horizontal strip

V1 := {(x, y) ∈ R2 : 0 < y < 1}.
We can explicitly construct such a set as follows:

Ω0 := {(x, y) ∈ R2 : 0 < y < x−α, x > 1},
where α > 1, so that |Ω0| < ∞.

Furthermore, let (Vj)j≥1 be a countable, disjoint sequence of horizontal strips
in the plane, defined for each j ∈ N by Vj = V1+(0, j), the Minkowski sum of Vj and
(0, j). Let (λj)j≥1 be a sequence of real numbers in (0, 1) such that

∑∞
j=1 λ

2
j < ∞.

It is clear that for any λj , j ≥ 2, the set λjΩ0 is congruent (up to a rigid motion)
to the subset Ωj := λjΩ0 + (0, j) of Vj . Then, the fractal spray

(A,Ω) =

∞⋃

j=1

(∂Ωj ,Ωj)

has the desired properties.

4.2. Relative Sierpiński sprays and their complex dimensions

We provide two examples of relative fractal sprays, dealing with the relative

Sierpiński gasket and the relative Sierpiński carpet, respectively. In the sequel, it
will be useful to introduce the following definition.

Definition 4.10. We say that two given relative fractal drums (A1,Ω1) and

(A2,Ω2) in RN are congruent if there exists an isometry f : RN → RN such that
A2 = f(A1) and Ω2 = f(Ω1).

It is easy to see that the congruence of RFDs is an equivalence relation.
The following lemma states, in particular, that any two congruent RFDs have

equal distance zeta functions. We leave its proof as a simple excercise for the
interested reader.

Lemma 4.11. Let (A1,Ω1) and (A2,Ω2) be two congruent RFDs in RN . Then,

for any r ∈ R, we have

(4.2.1) Mr
∗(A1,Ω1) = Mr

∗(A2,Ω2), M∗r(A1,Ω1) = M∗r(A2,Ω2)

and

(4.2.2) dimB(A1,Ω1) = dimB(A2,Ω2), dimB(A1,Ω1) = dimB(A2,Ω2).
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Figure 2. On the left is depicted the base relative fractal drum
(∂Ω0,Ω0) of the relative Sierpiński gasket, where Ω0 is the associated
(open) equilateral triangle with sides 1/2. It can be viewed as the (dis-
joint) union of six RFDs, all of which are congruent to the relative
fractal drum (A′,Ω′) on the right. This figure explains Equation (4.2.4)
appearing in Example 4.12; see Lemma 4.11.

Furthermore,

(4.2.3) ζA1,Ω1
(s) = ζA2,Ω2

(s)

for any s ∈ C with Re s > dimB(A1,Ω1).

It follows from (4.2.3) that under the hypotheses of Lemma 4.11 and given a
connected open set U ⊆ C, ζA1,Ω1

and ζA2,Ω2
have the exact same mermomorphic

continuation to U , and therefore the same poles in U and associated residues (or
more generally, principal parts in the case of multiple poles). In particular, two
congruent RFDs have the same (visible) complex dimensions.

Example 4.12. (Relative Sierpiński gasket). Let A be the Sierpiński gasket in
R2, the outer boundary of which is an equilateral triangle with unit sides. Consider
the countable family of all open triangles in the standard construction of the gas-
ket. (Namely, these are the open triangles which are deleted at each stage of the
construction.) If Ω is the largest open triangle (with unit sides), then the relative

Sierpiński gasket is defined as the ordered pair (A,Ω). The distance zeta function
ζA,Ω of the relative Sierpiński gasket (A,Ω) can be computed as the distance zeta
function of the following relative fractal spray (see Definition 4.1):

Spray(Ω0, λ = 1/2, b = 3),

where Ω0 is the first deleted open triangle with sides 1/2. It suffices to apply Equa-
tion (4.1.14) from Theorem 4.8. Decomposing Ω0 into the union of six congruent
right triangles (determined by the heights of the triangle Ω0, see Figure 2) with



62 4. GENERATING PRINCIPAL COMPLEX DIMENSIONS OF ANY MULTIPLICITY

disjoint interiors, we have that

(4.2.4)

ζ∂Ω0,Ω0
(s) = 6 ζA′,Ω′(s) = 6

∫

Ω′
d((x, y), A′)s−2dxdy

= 6

∫ 1/4

0

dx

∫ x/
√
3

0

ys−2dy = 6
(
√
3)1−s2−s

s(s− 1)
,

for all s ∈ C with Re s > 1. Using Equation (4.1.14) and appealing to Lemma 4.11,
we deduce that the distance zeta function of the relative Sierpiński gasket (A,Ω)
satisfies

(4.2.5) ζA,Ω(s) =
6(
√
3)1−s2−s

s(s− 1)(1− 3 · 2−s)
∼ 1

1− 3 · 2−s
,

where the equality holds for all s ∈ C with Re s > log2 3 and the equivalence∼ holds
in the sense of Definition 1.7. Therefore, by the principle of analytic continuation,
it follows that ζA,Ω has a meromorphic extension to the entire complex plane, given
by the same closed form as in Equation (4.2.5). More specifically,

(4.2.6) ζA,Ω(s) =
6(
√
3)1−s2−s

s(s− 1)(1− 3 · 2−s)
, for all s ∈ C.

Hence, the set of all of the complex dimensions (in C) of the relative Sierpiński
gasket is given by

(4.2.7) P(ζA,Ω) =
(
log2 3 +

2π

log 2
iZ

)
∪ {0, 1}.

Each of these complex dimensions in (4.2.7) is simple (i.e., is a simple pole of ζA,Ω).
Note that here, {0, 1} can be interpreted as the set of integer dimensions of A, in
the sense of [LapPe2–3] and [LapPeWi1]. In particular, we deduce from (4.2.7)
that D(ζA,Ω) = log2 3, and we thus recover a well-known result. Namely, the set
dimPC(A,Ω) := Pc(ζA,Ω) of principal complex dimensions of the relative Sierpiński
gasket (A,Ω) is given by

(4.2.8) dimPC(A,Ω) = log2 3 + piZ,

where p = 2π/log 2 is the oscillatory period of the Sierpiński gasket; see [Lap-vFr3,
§6.6.1].

Note, however, that in [Lap-vFr1–3], the complex dimensions are obtained in
a completely different manner (via an associated spectral zeta function) and not
geometrically. In addition, all of the complex dimensions of the Sierpiński gasket A
are shown to be principal (that is, to be located on the vertical line Re s = log2 3 =
dimB A), a conclusion which is slightly different from (4.2.7) above.1 We also refer
to [ChrIvLap] and [LapSar], as well as to [LapPe2–3] and [LapPeWi1–2], for
different approaches (via a spectral zeta function associated to a suitable geometric
Dirac operator and via a self-similar tiling associated with A, respectively) leading
to the same conclusion.

In light of (4.2.6), the residue of the distance zeta function ζA,Ω of the relative
Sierpiński gasket computed at any principal pole sk := log2 3+pki, k ∈ Z, is given

1Analogously, for a fractal string RFD (A,Ω), we have P(ζA,Ω) = P(ζL) ∪ {0}; here, of

course, N = 1 instead of N = 2.
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by

res(ζA,Ω, sk) =
6(
√
3)1−sk

2sk(log 2)sk(sk − 1)
.

In particular,

| res(ζA,Ω, sk)| ∼
6(
√
3)1−D

D 2D log 2
k−2 as k → ±∞,

where D := log2 3.

The following proposition shows that the relative Sierpiński gasket can be
viewed as the relative fractal spray generated by the relative fractal drum (A′,Ω′)
appearing on the right-hand side of Figure 2.

Proposition 4.13 (Relative Sierpiński gasket). Let (A′,Ω′) be the relative

fractal drum defined on the right part of Figure 2. Let (A,Ω) be the relative fractal

spray generated by the base relative fractal drum (A′,Ω′), with scaling ratio λ = 1/2
and with multiplicities mk = 6 · 3k−1, for any positive integer k:

(4.2.9) (A,Ω) = Spray((A′,Ω′), λ = 1/2, mk = 6 · 3k−1 for k ∈ N).

(Note that we assume here that the base relative fractal drum (A′,Ω′) has a multi-

plicity equal to 8.) Then, the relative distance zeta function of the relative fractal

spray (A,Ω) is equal to the relative distance zeta function of the relative Sierpiński

gasket; see Equation (4.2.6).

Example 4.14. (Inhomogeneous Sierpiński N -gasket RFD). The usual Sierpiński
gasket is contained in the unit triangle in the plane. Its analog in R3, which we call
the inhomogeneous Sierpiński 3-gasket or inhomogeneous tetrahedral gasket, and
denote by A3, is obtained by deleting the middle open octahedron (from the initial
compact, convex unit tetrahedron), defined as the interior of the convex hull of
the midpoints of each of the six edges of the initial tetrahedron (thus, four sub-
tetrahedrons are left after the first step), and so on. Such sets, along with their
higher-dimensional counterparts, are discussed, for example, in [KiLap].

More generally, for any integer N ≥ 2, the inhomogeneous Sierpiński N -gasket

AN , contained in RN , can be defined as follows. Let VN := {P1, P2, . . . , PN+1} be
a set of N points in RN such that the mutual distance of any two points from the
set is equal to 1.

The set VN , where N ≥ 2, with the indicated property, can be constructed
inductively as follows. For N = 2, we take V2 to be the set of vertices of any unit
triangle in R2. We then reason by induction. Given N ≥ 2, we assume that the set
VN ofN+1 points in RN has been constructed. Note that the set VN is contained in
a sphere, whose center is denoted by O. Let us consider the line of RN+1 = RN ×R

through the point O and perpendicular to the hyperplane RN = RN ×{0} in RN+1.
There exists a unique point PN+2 in the half-plane {xN+1 > 0} of RN+1, which
is a unit distance from all of the N vertices of VN . (Here, we identify VN with
VN × {0} ⊂ RN+1.) We then define VN+1 by VN+1 := VN ∪ {PN+2}.

Let us define ΩN as the convex hull of the set VN . As usual, we call it the
N -simplex. Let ΩN,0, called the N -plex, be the open set defined as the interior

of the convex hull of the set of midpoints of all of the
(
N+1
2

)
edges of the N -

simplex ΩN . [For example, for N = 2, the set Ω2,0 (that is, the 2-plex) is an
open equilateral triangle in R2 of side lengths equal to 1/2, while for N = 3, the
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Figure 3. The open octahedron Ω3,0 inscribed into the largest (com-
pact) tetrahedron Ω3, surrounded with 4 smaller (compact) tetrahedra
scaled by the factor 1/2. Each of them contains analogous scaled open
octahedra, etc. The countable family of all open octahedra (viewed
jointly with their boundaries) constitutes the tetrahedral gasket RFD
or the Sierpiński 3-gasket RFD. The complement of the union of all
open octahedra, with respect to the initial tetrahedron Ω3, is called the
inhomogeneous Sierpiński 3-gasket.

Unlike the classic Sierpiński 3-gasket (also known as the Sierpiński
pyramid or tetrahedron) S3, which is a (homogeneous or standard)
self-similar set in R3 and satisfies the usual fixed point equation,
S = ∪4

j=1Φj(S), where {Φj}4j=1 are suitable contractive similitudes of

R3 with respective fixed points {Pj}4j=1 and scaling ratios {rj}4j=1 of
common value 1/2, the inhomogeneous Sierpiński 3-gasket A3 is not a
self-similar set. Instead, it is an inhomogeneous self-similar set (in the
sense of [BarDem], see also Equation (4.2.37) below and the discussion
surrounding it). More specifically, A := A3 satisfies the following in-

homogeneous fixed point equation (of which it is the unique solution in

the class of all nonempty compact subsets of R3), A =
⋃4

j=1 Φj(A)∪B,

where B is the boundary of the first octahedron Ω3,0 (in fact, B can
simply be taken as the union of four middle triangles on the boundary
of the outer tetrahedron Ω3).

set Ω3,0 (that is, the 3-plex) is an open octahedron in R3 of side lengths equal to

1/2.] The set ΩN \ΩN,0 is equal to the union of N +1 congruent N -simplices with
disjoint interiors, having all of their sides equal to 1/2. This is the first step of the
construction. We proceed analogously with each of the N+1 compact N -simplices.
The compact set AN obtained in this way is called the inhomogeneous Sierpiński N -

gasket. It can be identified with the relative fractal spray (AN ,ΩN ) in RN , called
the inhomogeneous Sierpiński N -gasket RFD (and, in short, the inhomogeneous

N -gasket RFD), defined by

(4.2.10) (AN ,ΩN ) = Spray ((∂ΩN,0,ΩN,0), λ = 1/2, b = N + 1).
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(See the end of Definition 4.1.) According to Theorem 4.8, we have

(4.2.11) ζAN ,ΩN (s) = ζS(s) · ζ∂ΩN,0,ΩN,0(s),

where the scaling zeta function ζS(s) of the N -gasket RFD is given for all s ∈ C

such that Re s > log2(N + 1) by

(4.2.12) ζS(s) =

∞∑

k=0

(N + 1)k(2−k)s =
1

1− (N + 1)2−s
.

Upon analytic continuation, it follows that ζS can be meromorphically continued
to the whole of C and is given by

(4.2.13) ζS(s) =
1

1− (N + 1)2−s
, for all s ∈ C.

Since (by (4.2.13)) the set of poles of ζS is given by

(4.2.14) P(ζS) = log2(N + 1) +
2π

log 2
iZ

and the set of poles of the distance zeta function of the relative N -plex (∂ΩN,0,ΩN,0)
is given by

(4.2.15) P(ζ∂ΩN,0,ΩN,0) = {0, 1, . . . , N − 1},
and (ζ∂ΩN,0,ΩN,0) 6= 0 for all s ∈ C \ P(ζ∂ΩN,0,ΩN,0), we conclude that the set of
poles (complex dimensions) of the relative Sierpiński N -gasket (AN ,ΩN ) is given
by

(4.2.16) P(ζAN ,ΩN ) = {0, 1, . . . , N − 1} ∪
{
log2(N + 1) +

2π

log 2
iZ

}
,

where each complex dimension is simple. In particular,2

(4.2.17) dimPC(AN ,ΩN) =





log2 3 +
2π
log 2 iZ for N = 2,

2 + 2π
log 2 iZ for N = 3,

{N − 1} for N ≥ 4,

and

(4.2.18) dimB(AN ,ΩN ) =

{
log2 3 for N = 2,

N − 1 for N ≥ 3,

which extends the well-known results for N = 2 and 3, corresponding to the usual
Sierpiński gasket in R2 and the tetrahedral gasket in R3, respectively. (Namely,
their respective relative box dimensions are equal to log2 3 and 2).

It can be shown that in this case, dimB(AN ,ΩN ) and dimB AN exist and

(4.2.19) dimB(AN ,ΩN ) = dimB AN = dimH AN ,

as given by the right-hand side of (4.2.18), where (as before) dimH( · ) denotes
the Hausdorff dimension. Furthermore, it is easy to see that dimPC(AN ,ΩN ) =
dimPC AN .

The relative distance zeta function ζ∂ΩN,0,ΩN,0 of the N -plex RFD can be ex-
plicitly computed as follows, in the case when N = 3. It is easy to see that the
octahedral RFD (∂Ω3,0,Ω3,0) can be identified with sixteen copies of disjoint RFDs,
each of which is congruent to the pyramidal RFD (T,Ω′) in R3, where Ω′ is the

2Recall that, by definition, dimPC(AN ,ΩN ) = Pc(ζAN ,ΩN
).
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open (irregular) pyramid with vertices at O(0, 0, 0), A(1/4, 0, 0), B(1/4, 1/4, 0) and

C(0, 0, 1/(2
√
2)), while the triangle T = conv (A,B,C) is a face of the pyramid.

Since for any (x, y, z) ∈ Ω′ we have

(4.2.20) d((x, y, z), T ) =
1√
3

(
1

2
√
2
−
√
2x− z

)
,

we deduce that

(4.2.21)

ζ∂Ω3,0,Ω3,0(s) = 16ζT,Ω′(s)

= 16

∫∫∫

Ω′
d((x, y, z), T )s−3dxdy dz

= 16

∫ 1/4

0

dx

∫ x

0

dy

∫ 1

2
√

2
−
√
2 x

0

(
1

2
√
2
−
√
2x− z

√
3

)s−3

dz.

Evaluating the last integral in (4.2.21), we obtain by direct computation that

(4.2.22)

ζ∂Ω3,0,Ω3,0(s) = 16
(
√
3)3−s

s− 2

∫ 1/4

0

( 1

2
√
2
−
√
2 x
)s−2

xdx

= 8
(
√
3)3−s

s− 2

∫ 1/(2
√
2)

0

us−2
( 1

2
√
2
− u
)
du

=
8(
√
3)3−s(2

√
2)−s

s(s− 1)(s− 2)
,

for any complex number s such that Re s > 2. Therefore, we deduce from (4.2.11)
that the distance zeta function of the thetrahedral RFD in R3 can be meromorphi-
cally extended to the whole complex plane and is given for all s ∈ C by

(4.2.23) ζA3,Ω3
(s) =

8(
√
3)3−s(2

√
2)−s

s(s− 1)(s− 2)(1− 4 · 2−s)
.

It is worth noting that s = 2 is the only pole of order 2, since s = 2 is the simple
pole of both (s − 2)−1 and (1 − 4 · 2−s)−1. More specifically, since the derivative
of 1 − 4 · 2−s computed at s = 2 is nonzero (and, in fact, is equal to 4 log 2), then
s = 2 is a simple zero of 1− 4 · 2−s; that is, it is a simple pole of 1/(1− 4 · 2−s).

Moreover, it immediately follows from Equation (4.2.23) that

(4.2.24) ζA3,Ω3
(s) ∼ 1

(s− 2)(1− 4 · 2−s)
.

In particular, as we have already seen in Equation (4.2.17), we have

(4.2.25) dimPC(A3,Ω3) = 2 +
2π

log 2
iZ.

Since D = 2 is a simple pole of both 1/(s − 2) and 1/(1 − 4 · 2−s), we conclude
that D = 2 is the only complex dimension of order two of the RFD (A3,Ω3).
Consequently, the case of the relative Sierpiński 3-gasket (A3,Ω3) reveals a new
phenomenon: its relative box dimensionD = 2 is a complex dimension of order (i.e.,
multiplicity) two, while all the other complex dimensions of the relative Sierpiński 3-
gasket (including the double sequence of nonreal complex dimensions on the critical
line of convergence {Re s = 2}) are simple.
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By using arguments similar to those used when N = 3, one can show that for
any N ≥ 3, the distance zeta function of the relative N -plex (∂ΩN,0,ΩN,0) is of the
form

(4.2.26) ζ∂ΩN,0,ΩN,0(s) =
g(s)

s(s− 1) . . . (s− (N − 1))
,

where g(s) is a nonvanishing entire function. In the special case when N = 3, this
is in accordance with Equation (4.2.22) above. Therefore, from Equations (4.2.11)
and (4.2.13) above, we conclude that

(4.2.27) ζAN ,ΩN (s) =
g(s)

s(s− 1) . . . (s− (N − 1))(1− (N + 1)2−s)
.

This extends Equation (4.2.23) to any N ≥ 3.
In the case when N ≥ 4, D = N − 1 is the only principal complex dimension

of the relative Sierpiński N -gasket. (Indeed, for N ≥ 4 we have that log2(N +
1) < N − 1 (i.e., N + 1 < 2N−1), which can be easily proved, for example, by
using mathematical induction.) Also, all the other complex dimensions are simple.
Furthermore, we immediately deduce from Equation (4.2.27) that

(4.2.28) ζAN ,ΩN (s) ∼ 1

s− (N − 1)
.

Moreover, if N ≥ 4 is of the form N = 2k − 1 for some integer k ≥ 3, then
s = k (note that it is smaller than D = N − 1) is the only complex dimension of
order two (since it is a simple pole of both (s−k)−1 and (1− (N+1)2−s)−1), while
all the other complex dimensions are simple.

On the other hand, if N ≥ 4 is not of the form N = 2k − 1 for any integer
k ≥ 3, then all of the complex dimensions of the relative Sierpiński N -gasket are
simple.

Roughly speaking, in the case when N = 3, the fact that s = 2 has multiplicity
two can be explained geometrically as follows: firstly, s = 2 is a simple pole arising
from the self-similarity of the RFD (A3,Ω3),

3 while at the same time, s = 2 is
a simple pole arising from the geometry of the boundary of the first (deleted)
octahedron, which is also 2-dimensional.

In the case of the ordinary Sierpiński gasket, i.e, of the relative Sierpiński
2-gasket, the value of s = log2 3 (which is the simple pole arising from the self-
similarity of (A2,Ω2)) is strictly larger than the dimension s = 1 of the boundary
of the deleted triangle (i.e., of the 2-plex Ω2,0). Moreover, the relative Sierpiński
2-gasket is Minkowski nondegenerate and Minkowski nonmeasurable, while the rela-
tive Sierpiński 3-gasket is Minkowski degenerate, with its 2-dimensional Minkowski
content being equal to +∞.

On the other hand, when N ≥ 4, the dimension N − 1 of the boundary of
the N -plex ΩN,0 is larger than the similarity dimension log2(N + 1) arising from
fractality. Since D = log2(N +1) is the only complex dimension on the critical line
(and it is simple), we conclude that for N ≥ 4, the RFD (AN ,ΩN ) is Minkowski
measurable (see [LapRaŽu5]). Thus, the case when N = 3 is indeed very special
among all relative Sierpiński N -gaskets.

3Indeed, the similarity dimension of the 3-gasket A3 is equal to 2.
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We refer the interested reader to [LapRaŽu5] and [LapRaŽu8] (as well as to
the relevant part of [LapRaŽu1, §5.5]) for a detailed discussion of the property of
Minkowski measurability (or of Minkowski nonmeasurability) of the N -gasket RFD
(AN ,ΩN ), for any N ≥ 2 and for the corresponding fractal tube formulas. Let us
simply mention here that for N = 3, a suitable gauge function can be found with
respect to which A3 is not only Minkowski nondegenerate but is also Minkowki
measurable. (Note that for N 6= 3, AN is Minkowski nondegenerate in the usual
sense, that is, relative to the trivial gauge function.)

Let σ0 be the common similarity dimension of the inhomogneous Sierpiński N -
gasket AN , the relative Sierpiński N -gasket (AN ,ΩN ) (where the latter is viewed
as a self-similar fractal spray or RFD) and the classic Sierpiński N -gasket SN

(to be discussed below). Since the corresponding scaling ratios {rj}N+1
j=1 satisfy

r1 = · · · = rN+1 = 1/2, the similarity dimension σ0, defined as being the unique

real solution s of the Moran equation
∑N+1

j=1 rsj = 1 (i.e., here, 2s = N + 1, s ∈ R),
is given by

(4.2.29) σ0 = log2(N + 1).

In light of Equation (4.1.10) and since dimB(AN,0,ΩN,0) = N − 1 (by Equation
(4.2.15)), we see that dimB(AN ,ΩN ) = σ0 for N = 2 or N = 3, that

(4.2.30) σ0 = dimB(AN ,ΩN ) > dimB(AN,0,ΩN,0)

for N = 2,

(4.2.31) σ0 = dimB(AN ,ΩN ) = dimB(AN,0,ΩN,0) (= 2)

for N = 3, whereas for every N ≥ 4, we have that

(4.2.32) σ0 = log2(N + 1) < dimB(AN ,ΩN ) = dimB(AN,0,ΩN,0) = N − 1.

(Recall from (4.2.19) that dimB AN = dimB(AN ,ΩN ).) On the other hand, if SN

denotes the classic Sierpiński N -gasket in RN (to be further discussed below), then
for every N ≥ 2, we have that

(4.2.33) dimB SN (= dimH SN) = σ0 = log2(N + 1).

The latter statement follows from a classic result of Hutchinson in [Hut] for self-
similar sets satisfying the open set condition (which is the case of SN for every
N ≥ 2) and extending to higher dimensions the basic result of Moran [Mora] for
one-dimensional self-similar sets.4 (See [Fal1, Theorem 9.3] for the statement and
a detailed proof of this theorem.)

We close this discussion of the N -gasket RFD (AN ,ΩN ) by explaining the dis-
crepancy between the results obtained in (4.2.30), (4.2.31) and, especially, (4.2.32)
for the self-similar spray (AN ,ΩN ) and the usual result (4.2.33) for the self-similar
set SN , the classic Sierpiński N -gasket.

4Note that S1 ⊂ R is just the unit interval, viewed as a self-similar set with scaling ratios
r1 = r2 = 1/2. However, in the present discussion, we consider the more interesting case when
N ≥ 2.
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First of all, note that in light of (4.2.11) and (4.2.13) (see also Theorem 4.6),
we must have

(4.2.34)

dimB(AN ,ΩN) (= dimBAN )

= max{σ0, dimB(AN,0,ΩN,0)}
= max{log2(N + 1), N − 1},

and that, in the present case, the upper Minkowski dimensions can be replaced by
the Minkowski dimensions in Equation (4.2.34).

Indeed, by (4.2.11), we have

(4.2.35) D(ζAN ,ΩN ) = max{D(ζS), D(ζAN,0,ΩN,)}
and by part (b) of Theorem 2.1, we have

D(ζAN ,ΩN ) = dimBD(AN ,ΩN )

and

D(ζAN,0,ΩN,0) = dimBD(AN,0,ΩN,0),

from which (4.2.34) follows since σ0 = log2(N + 1). (See Theorem 4.6.)
Identity (4.2.34) explains why (4.2.30), (4.2.31) and (4.2.32) hold. Indeed,

if we let DG := dimB(AN,0,ΩN,0) (the Minkowski dimension of the base RFD
(AN,0,ΩN,0) generating the self-similar RFD (AN ,ΩN )) and D := dimB(AN ,ΩN ),
we deduce from (4.2.34) and an elementary computation that D = σ0 if N = 2,
D = σ0 = DG if N = 3, whereas D = DG if N ≥ 4, in agreement with (4.2.30),
(4.2.31) and (4.2.32), respectively.

From the geometric point of view, the difference between AN and SN can
be explained as follows. As is well known (see, e.g., [KiLap] and the relevant
references therein), the (homogeneous) Sierpiński N -gasket SN is a self-similar set
(satisfying the open set condition), associated with the iterated function system

(IFS) {Φj}N+1
j=1 , where (for j = 1, . . . , N + 1) each Φj is a contractive similitude of

RN with fixed point Pj and scaling ratio rj = 1/2; i.e., the associated scaling ratio

list {rj}N+1
j=1 of {Φj}N+1

j=1 is given by r1 = · · · = rN+1 = 1/2. More specifically,

SN is the unique (nonempty) compact subset K of RN which is the solution of the
(homogeneous) fixed point equation

(4.2.36) K = Φ(K) :=

N+1⋃

j=1

Φj(K).

On the other hand, unless N = 2, the inhomogeneous Sierpiński N -gasket
AN is not a self-similar set in the classic sense of [Hut] (see also [Fal1, Chapter
9]). (For N = 2, A2 coincides with the usual Sierpiński gasket S2.) However,
interestingly, it is an inhomogeneous self-similar set, in the sense of Barnsley and
Demko [BarDem] (see also [BarDem, Fra] and the relevant reference therein for
further results about such sets). More specifically, AN is the unique (nonempty)
solution K of the inhomogeneous fixed point equation

(4.2.37) K = Φ(K) ∪B,

where Φ is defined as above and B is a suitable compact subset of RN . For N = 2,
the set A2 = S2 is both homogeneous and inhomogeneous, since it satisfies Equation
(4.2.37) both for B = ∅ and B = ∂A2,0 (the boundary of the unit triangle). By
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Figure 4. On the left is the base relative fractal drum (∂Ω0,Ω0) of
the relative Sierpiński carpet (A,Ω) described in Example 4.15, where
Ω0 is the associated (open) square with sides 1/3. The base relative
fractal drum (∂Ω0,Ω0) can be viewed as the (disjoint) union of eight
RFDs, all of which are congruent to the relative fractal drum (A′,Ω′)
on the right. This figure explains Equation (4.2.39); see Lemma 4.11.

contrast, when N ≥ 3, the compact set B is nonempty and hence, AN is not self-
similar for this IFS {Φj}N+1

j=1 , For N = 3, a description of several possible choices
for B can be found in the caption of Figure 3. When N ≥ 3, let us simply state
that we can choose B to be the boundary of ΩN,0: B = ∂ΩN,0. (Other choices are
possible, however.)

Example 4.15. (Relative Sierpiński carpet). Let A be the Sierpiński carpet
contained in the unit square Ω. Let (A,Ω) be the corresponding relative Serpiński

carpet, with Ω being the unit square. Its distance zeta function ζA,Ω coincides with
the distance zeta function of the following relative fractal spray (see Definition 4.1):

Spray(Ω0, λ = 1/3, b = 8),

where Ω0 is the first deleted open square with sides 1/3. Similarly as in Example
4.12, using Theorem 4.8 and Lemma 4.11, we obtain that ζA,Ω, the relative distance
zeta functions of (A,Ω), has a meromorphic continuation to the entire complex
plane given for all s ∈ C by

(4.2.38) ζA,Ω(s) =
8 · 6−s

s(s− 1)(1− 8 · 3−s)
.

Indeed, clearly, the base relative fractal drum (∂Ω0,Ω0) is the (disjoint) union
of eight relative fractal drums, each of which is congruent to a relative fractal drum
(A′,Ω′), where Ω′ is an appropriate isosceles right triangle; see Figure 4. We then
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deduce from Lemma 4.11 that

(4.2.39)

ζ∂Ω0,Ω0
(s) = 8 ζA′,Ω′(s) = 8

∫

Ω′
d((x, y), A′)s−2dxdy

= 8

∫ 1/6

0

dx

∫ x

0

ys−2dy =
8 · 6−s

s(s− 1)

for all s ∈ C with Re s > 1, and hence, in light of Theorem 4.8, that ζA,Ω(s) is
given by (4.2.38). Note that, after analytic continuation, we also have

(4.2.40) ζ∂Ω0,Ω0
(s) =

8 · 6−s

s(s− 1)
, for all s ∈ C.

Since by (4.2.40),

ζA,Ω(s) ∼
1

1− 8 · 3−s
,

one deduces from this equivalence that the abscissa of convergence of ζA,Ω is given
by D = log3 8 = dimB(A,Ω), where the equality follows from Theorem 2.1(b).

Here, the relative box dimension of A coincides with its usual box dimension,
namely, log3 8. Moreover, the set Pc(ζA,Ω) of relative principal complex dimensions
of the Sierpiński carpet A with respect to the unit square Ω is given by

(4.2.41) dimPC(A,Ω) = log3 8 + piZ,

where p := 2π/ log 3 is the oscillatory period of the Sierpiński carpet A.
Observe that it follows immediately from (4.2.38) that the set P(ζA,Ω) of all

relative complex dimensions of the Sierpiński carpet A (with respect to the unit
square Ω) is given by

P(ζA,Ω) = dimPC A ∪ {0, 1} = (log3 8 + piZ) ∪ {0, 1},
where {0, 1} can be viewed as the set of ‘integer dimensions’ of A (in the sense of
[LapPe2–3] and [LapPeWi1], see also [Lap-vFr3, §13.1]). Furthermore, each of
these relative complex dimensions is simple (i.e., is a simple pole of ζA,Ω). Interest-
ingly, these are exactly the complex dimensions which one would expect to be associ-
ated with A, according to the theory developed in [LapPe2–3] and [LapPeWi1–2]
(as described in [Lap-vFr3, §13.1]) via self-similar tilings (or sprays) and associated
tubular zeta functions.

In light of (4.2.38), the residue of the distance zeta function of the relative
Sierpiński carpet (A,Ω) computed at any principal pole sk := log3 8 + pik, k ∈ Z

is given by

res(ζA,Ω, sk) =
2−sk

(log 3)sk(sk − 1)
.

In particular,

| res(ζA,Ω, sk)| ∼
2−D

D log 3
k−2 as k → ±∞,

where D := log3 8.

Similarly as in the case of the relative Sierpiński gasket (see Proposition 4.13),
the relative Sierpiński carpet can be viewed as a fractal spray generated by the base
RFD appearing in Figure 4 on the right.
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Proposition 4.16 (Relative Sierpiński carpet). Let (A′,Ω′) be the RFD

defined on the right-hand side of Figure 4. Let (A,Ω) be the relative fractal spray

generated by the base relative fractal drum (A′,Ω′), with scaling ratio λ = 1/3 and

with multiplicities mk = 8k for any positive integer k:

(4.2.42) (A,Ω) = Spray((A′,Ω′), λ = 1/3, mk = 8k for k ∈ N).

(Note that we assume here that the base relative fractal drum (A′,Ω′) has a multi-

plicity equal to 8.) Then, the relative distance zeta function of the relative fractal

spray (A,Ω) is equal to the relative distance zeta function of the relative Sierpiński

carpet. (See Equation (4.2.38).)

Example 4.17. (Sierpiński N -carpet). It is easy to generalize the example
of the standard Sierpiński carpet (which is a compact subset of the unit square
[0, 1]2 ⊂ R2, see Example 4.15 above), to the Sierpiński N -carpet (or N -carpet, for
short), defined analogously as a compact subset A of the unit N -dimensional cube
[0, 1]N ⊂ RN . More precisely, we divide [0, 1]N into the union of 3N congruent
N -dimensional subcubes of length 1/3 and with disjoint interiors and then remove
the middle open subcube. The remaining compact set is denoted by F1. We then
remove the middle open N -dimensional cubes of length 1/32 from the remaining
3N − 1 subcubes. The resulting compact subset is denoted by F2. Proceeding
analogously ad infinitum, we obtain a decreasing sequence of compact subsets Fk

of [0, 1]N , for k ≥ 1. The Sierpiński N -carpet A is then defined by

(4.2.43) A :=

∞⋂

k=1

Fk.

(Note that the Sierpiński 1-carpet coincides with the usual ternary Cantor set,
while the Sierpiński 2-carpet coincides with the usual Sierpiński carpet discussed
in Example 4.15; furthermore, the Sierpiński 3-carpet is discussed in [LapRaŽu6,
Example 2].)

It is clear that the Sierpiński N -carpet RFD (A,Ω), where A is the Sierpiński
N -carpet and Ω := (0, 1)N is the open unit cube, can be viewed as the following
relative fractal spray; see the end of Definition 4.1:

(4.2.44) (A,Ω) = Spray ((∂Ω0,Ω0), λ = 1/3, b = 3N − 1).

(Here, the cube Ω0 = (0, 1/3)N is obtained by a suitable translation of the middle
open subcube from the first step of the construction of the set A.) According to
Theorem 4.8, we then have that

(4.2.45)

ζA,Ω(s) = f(s) · ζ∂Ω0,Ω0
(s)

=
ζ∂Ω0,Ω0

(s)

1− (3N − 1)3−s
∼ 1

1− (3N − 1)3−s
.

Since Ω0 has a Lipschitz boundary and log1/λ b = log3(3
N − 1) ∈ (N − 1, N), we

deduce from (4.1.16) in Theorem 4.8 that the set of principal complex dimensions
of the relative Sierpiński N -carpet spray is given by

(4.2.46) dimPC(A,Ω) = log3(3
N − 1) +

2π

log 3
iZ

and hence,

dimPC(A,Ω) ⊂ {Re s = log3(3
N − 1)} ⊂ {N − 1 < Re s < N}.
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In particular, according to Theorem 2.1(b), we have that

(4.2.47) dimB(A,Ω) = log3(3
N − 1).

Furthermore, it can be shown that in the present case of the Sierpiński N -carpet
RFD, we have that dimB A and dimB(A,Ω) exist and

(4.2.48) dimB(A,Ω) = dimB(A,Ω) = dimB A = log3(3
N − 1).

It is easy to see that the set of principal complex dimensions dimPC A of the
Sierpiński N -carpet A in RN coincides with the set dimPC(A,Ω) appearing in
Equation (4.2.46). As simple special cases, we obtain the set of principal complex
dimensions of the ternary Cantor set or of the usual Sierpiński carpet appearing in
Equation (4.2.41), for N = 1 or N = 2, respectively.

Since the set of all complex dimensions of the RFD (∂Ω0,Ω0) is equal to
{0, 1, . . . , N − 1},5 it follows from Equation (4.2.45) that the set of all complex
dimensions of the Sierpiński N -carpet relative fractal spray (A,Ω) is given by

(4.2.49)

P(ζA,Ω) = dimPC(A,Ω) ∪ {0, 1, . . . , N − 1}

=
(
log3(3

N − 1) +
2π

log 3
iZ

)
∪ {0, 1, . . . , N − 1}.

This concludes our study of the relative fractal drum (A,Ω) naturally associated
with the N -dimensional Sierpiński carpet.

4.3. Self-similar sprays and RFDs

Let us now recall the definition of a self-similar spray or tiling (see [LapPe2–
3], [LapPeWi1–2], [Lap-vFr3, §13.1]). More precisely, let us state this definition
slightly more generally and in the context of relative fractal drums.

Definition 4.18. (Self-similar spray or tiling). Let G be a given open subset
(base set or generator) of RN of finite N -dimensional Lebesgue measure and let
{r1, r2, . . . , rJ} be a finite multiset (also called a ratio list) of positive real numbers
such that J ∈ N, J ≥ 2 and

(4.3.1)

J∑

j=1

rNj < 1.

Furthermore, let Λ be the multiset consisting of all the possible ‘words’ of multiples
of the scaling factors r1, . . . , rJ ; that is, let

(4.3.2)
Λ := {1, r1, . . . , rJ , r1r1, . . . , r1rJ , r2r1, . . . , r2rJ , . . . , rJr1, . . . , rJrJ ,

r1r1r1, . . . , r1r1rJ , . . .}
and arrange all of the elements of the multiset Λ into a scaling sequence (λi)i≥0,
where λ0 := 1. (Note that 0 < λi < 1, for every i ≥ 1.)

A self-similar spray (or tiling), generated by the base set G and the ratio list
{r1, r2, . . . , rJ} is an RFD (∂Ω,Ω) in RN , where Ω is a disjoint union of open sets

5Note that the relative zeta function ζA,Ω(s) appearing in Equation (4.2.45) can be mero-
mophically extended in a unique way to the whole complex plane C since the same can be done
with ζ∂Ω0,,Ω0

(s). See, for example, Equation (4.2.40) dealing with the case when N = 2.
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Gi; i.e.,

(4.3.3) Ω :=

∞⊔

i=0

Gi,

such that each Gi is congruent to λiG, for every i ≥ 0. Here, the disjoint union
⊔ can be understood as the disjoint union of RFDs given in Definition 2.18, with
(Ai,Ωi) := (∂Gi, Gi) for each i ≥ 0, in the notation of that definition. In the sequel,
(∂G,G) is also referred to as a self-similar RFD.

Remark 4.19. Note that in the above definition, the scaling sequence (λi)i≥0

consists of all the products of ratios r1, . . . , rJ appearing in the infinite sum

(4.3.4)
∞∑

n=0

( J∑

j=1

rj

)n

,

after expanding the powers and counted with their multiplicities. More precisely,
we have that for every multi-index α = (α1, . . . , αJ) ∈ NJ

0 , the multiplicity of
rα1

1 rα2

2 . . . rαJ

J in the multiset Λ is equal to the multinomial coefficient

(4.3.5)

( |α|
α1, α2, . . . , αJ

)
=

|α|!
α1!α2! · · ·αJ !

,

where |α| := ∑J
j=1 αj . Of course, depending on the ratios r1, . . . , rJ , some of the

numbers rα1

1 rα2

2 . . . rαJ

J may be equal for different multi-indices α ∈ NJ
0 .

Furthermore, the condition (4.3.1) ensures that the set Ω = ⊔i≥0Gi has finite
N -dimensional Lebesgue measure. Indeed, we have

(4.3.6)

|Ω| =
∞∑

i=0

|Gi| =
∞∑

i=0

|λiG| = |G|
∞∑

i=0

λN
i

= |G|
∞∑

n=0

( J∑

j=1

rNj

)n

=
|G|

1−
(∑J

j=1 r
N
j

)n ,

since (4.3.1) is satisfied. Note that the second to last equality above follows from
the construction of the scaling sequence (λi)i≥0.

Consider now a self-similar spray as a relative fractal drum (A,Ω); that is, let
A := ∂Ω and Ω := ⊔i≥0Gi (see Definition 4.18). The ‘self-similarity’ of (A,Ω) is
nicely exhibited by the scaling relation (4.3.7) given in the following lemma.

Lemma 4.20. Let (A,Ω) be a self-similar spray in RN , as in Definition 4.18.

Then, the relative fractal drum (A,Ω) satisfies the following ‘self-similar identity’:

(4.3.7) (A,Ω) = (∂G,G) ⊔
J⊔

j=1

rj(A,Ω),

where (with the exception of the first term on the right-hand side of (4.3.7)) the

symbol ⊔J
j=1 indicates that this represents a disjoint union of copies of (A,Ω) scaled

by factors r1, . . . , rJ and displaced by isometries of RN .
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Proof. Let us re-index the scaling sequence (λi)i≥0 in a way that keeps track
of the actual construction of the numbers λi out of the scaling ratios r1, . . . , rJ ; see
Equation (4.3.2) above. We let

(4.3.8) I := {∅} ∪
∞⋃

m=1

{1, . . . , J}m

be the set of all finite sequences consisting of numbers 1, . . . , J (or, equivalently, of
all finite words based on the alphabet {1, . . . , J}). Furthermore, for every α ∈ I,
define

(4.3.9) λα :=

{
1, α = ∅
rα1

rα2
· · · rαm , α 6= ∅.

We then deduce from the construction of (A,Ω) that

(A,Ω) =

∞⊔

i=0

(∂Gi, Gi) =

∞⊔

i=0

λi(∂G,G)

=
⊔

α∈I

λα(∂G,G) = (∂G,G) ⊔
⊔

α∈I\{∅}
λα(∂G,G).

Observe now that in the last disjoint union above, every α ∈ {1, . . . , J}m can
be written as {j} × {1, . . . , J}m−1, for some j ∈ {1, . . . , J}, if we identify {j} with
{j}×{∅} when m = 1. Note that this identification is consistent with the definition
of λα, in the sense that λ{j}×β = rjλβ for all j ∈ {1. . . . , J} and β ∈ I. In light
of this, we can next partition the last union above with respect to which number
j ∈ {1, . . . , J} the sequence α begins with:

(A,Ω) = (∂G,G) ⊔
J⊔

j=1

⊔

α∈{j}×I

λα(∂G,G) = (∂G,G) ⊔
J⊔

j=1

⊔

β∈I

rjλβ(∂G,G)

= (∂G,G) ⊔
J⊔

j=1

rj

( ⊔

β∈I

λβ(∂G,G)

)
= (∂G,G) ⊔

J⊔

j=1

rj(A,Ω).

This completes the proof of the lemma. �

In light of the identity (4.3.7), it is now clear that the distance zeta function of
(A,Ω) satisfies the following functional equation, which itself can be considered as
a self-similar identity:

(4.3.10) ζA,Ω(s) = ζ∂G,G(s) +

J∑

j=1

ζrj(A,Ω)(s),

for all s ∈ C with Re s sufficiently large.6 Furthermore, for such s, by using the
scaling property of the relative distance zeta function (Theorem 2.16), we deduce
that the above equation then becomes

(4.3.11) ζA,Ω(s) = ζ∂G,G(s) +
J∑

j=1

rsjζA,Ω(s).

6For instance, it suffices to assume that Re s > N since, by Theorem 2.1, all of the zeta
functions appearing in (4.3.10) are holomorphic on the right half-plane {Re s > N}.
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Finally, this last identity together with an application of the principle of analytic
continuation now yields the following theorem.

Theorem 4.21. Let G be the generator of a self-similar spray in RN , and let

{r1, r2, . . . , rJ}, with rj > 0 (for j = 1, . . . , J , J ≥ 2) and such that
∑J

j=1 r
N
j < 1,

be its scaling ratios. Furthermore, let (A,Ω) := (∂Ω,Ω) be the self-similar spray

generated by G, as in Definition 4.18. Then, the distance zeta function of (A,Ω)
is given by

(4.3.12) ζA,Ω(s) =
ζ∂G,G(s)

1−∑J
j=1 r

s
j

,

for all s ∈ C with Re s sufficiently large. In addition,

(4.3.13) D(ζA,Ω) = max{dimB(∂G,G), D},

where D > 0 is the unique real solution of
∑J

j=1 r
D
j = 1 (i.e., D is the similarity

dimension of the self-similar spray (∂Ω,Ω)).
More specifically, given a connected open neighborhood U of the critical line

{Re s = D}, ζA,Ω has a meromorphic continuation to U if and only if ζ∂G,G does,

and in that case, ζA,Ω(s) is given by (4.3.12) for all s ∈ U . Consequently, the visible

complex dimensions of (A,Ω) satisfy

(4.3.14) P(ζA,Ω, U) ⊆ (D ∩ U) ∪ P(ζ∂G,G, U),

where D is the set of all the complex solutions of the Moran equation
∑J

j=1 r
s
j = 1

(i.e., the scaling complex dimensions of the fractal spray). Finally, if there are no

zero-pole cancellations in (4.3.12), then we have an equality in (4.3.14).

Remark 4.22. (Complex dimensions and the definition of fractality). In [Lap-
vFr1–3], a geometric object is said to be “fractal” if the associated zeta function has
at least one nonreal complex dimension (with positive real part). (See [Lap-vFr3,
§12.1 and §12.2] for a detailed discussion.) In [Lap-vFr2, Lap-vFr3], in order,
in particular, to take into account some possible situations pertaining to random
fractals (see [HamLap], partly described in [Lap-vFr3, §13.4]), the definition of
fractality (within the context of the theory of complex dimensions) was extended so
as to allow for the case described in part (i) of Definition 2.38 just above, namely,
the existence of a natural boundary along a screen. (See [Lap-vFr3, §13.4.3].)

We note that in [Lap-vFr3] (and the other aforementioned references), the
term “hyperfractal” was not used to refer to case (i) (or to any other situation).
More important, except for fractal strings and in very special higher-dimensional sit-
uations (such as suitable fractal sprays), one did not have to our disposal (as we now
do, thanks to the general theory developed in this memoir and in [LapRaŽu1–7])
a general definition of “fractal zeta function” associated with an arbitrary bounded
subset of RN , for every N ≥ 1. Therefore, we can now define the “fractality” of any
bounded subset of RN (including Julia sets and the Mandelbrot set) and, more gen-
erally, of any relative fractal drum, by the presence of a nonreal complex dimension
or else by the “hyperfractality” (in the sense of part (i) of Definition 2.38) of the
geometric object under consideration. Here, “complex dimension” is understood
as a (visible) pole of the associated fractal zeta function (the distance or tube zeta
function of a bounded subset or a relative fractal drum of RN , or else, as was the
case in most of [Lap-vFr3], the geometric zeta function of a fractal string).
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Much as in [Lap-vFr1–3] and [Lap3–8], this terminology (concerning fractal-
ity, hyperfractality, and complex dimensions), can be extended to ‘virtual geome-
tries’, as well as to (absolute or) relative fractal drums, noncommutative geometries,
dynamical systems, and arithmetic geometries, via suitably associated ‘fractal zeta
functions’, be they absolute or relative distance or tube zeta functions, spectral
zeta functions, dynamical zeta functions, or arithmetic zeta functions (or their log-
arithmic derivatives thereof).

We will return to the discussion of the notion of fractality in the closing chapter
of this memoir, namely, Chapter 5.

Example 4.23. (The 1/2-square fractal). In this planar example, we will fur-
ther investigate and illustrate the new interesting phenomenon which occurs in the
case of the Sierpiński 3-gasket RFD discussed in Example 4.14. Namely, we start
with the closed unit square I = [0, 1]2 in R2 and subdivide it into 4 smaller squares
by taking the centerlines of its sides. We then remove the two diagonal open smaller
squares, denoted by G1 and G2 in Figure 5, so that G := G1∪G2 is our generator in
the sense of Definition 4.18. Next, we repeat this step with the remaining two closed
smaller squares and continue this process, ad infinitum. The 1/2-square fractal is
then defined as the set A which remains at the end of the process; see Figure 5,
where the first 6 iterations are shown. More precisely, the set A is the closure of the
union of the boundaries of the disjoint family of open squares appearing in Figure
5 and packed in the unit square I. If we now let Ω := (0, 1)2, we have that (A,Ω)
is an example of a self-similar spray (or tiling), in the sense of Definition 4.18, with
generator G = G1 ∪ G2 and scaling ratios r1 = r2 = 1/2. Note, however, that A
is not a (homogeneous) self-similar set in the usual sense (see, e.g., [Fal1, Hut]),
defined via iterated function systems (or, in short, IFS), but it is an inhomogeneous

self-similar set.
More specifically, the set A is the unique nonempty compact subset of R2 which

is the solution of the inhomogeneous fixed point equation

(4.3.15) A =

2⋃

j=1

Φj(A) ∪B,

where Φ1 and Φ2 are contractive similitudes of R2 with fixed points located at the
lower left vertex and the upper right vertex of the unit square, respectively, and
with a common scaling ratio equal to 1/2 (i.e., r1 = r2 = 1/2, where {rj}2j=1 are the

scaling ratios of the self-similar RFD (A,Ω)). Furthermore, the nonempty compact
set B in Equation (4.3.15) is the union of the left and upper sides of the square
G1 and the right and lower sides of the square G2; see Figure 5. We note that
here, the corresponding (classic or homogeneous) self-similar set (i.e., the unique
nonempty compact subset C of R2 which is the solution of the homogeneous fixed
point equation, C = ∪2

j=1Φj(C)), is the diagonal C of the unit square connecting
the lower left and the upper right vertices of the unit square.

Let us now compute the distance zeta function ζA of the 1/2-square fractal.
Without loss of generality, we may assume that δ > 1/4; so that we have

(4.3.16) ζA(s) = ζA,Ω(s) + ζI(s),

where, intuitively, ζI denotes the distance zeta function corresponding to the ‘outer’
δ-neighborhood of A. Clearly, ζI is equal to the distance zeta function of the unit
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Figure 5. The 1/2-square fractal A from Example 4.23. The first 6
iterations are depicted. Here, G := G1∪G2 is the single generator of the
corresponding self-similar spray or RFD (A,Ω), in the sense of Definition

4.18.

square I := [0, 1]2; it is straightforward to compute it and show that it has a
meromorphic extension to all of C given by

(4.3.17) ζI(s) =
4δs−1

s− 1
+

2πδs

s
,

for all s ∈ C.
Furthermore, by using Theorem 4.21, we obtain that

(4.3.18) ζA,Ω(s) =
ζ∂G,G(s)

1− 2 · 2−s
=

2sζ∂G,G(s)

2s − 2
,

for all s ∈ C with Re s sufficiently large. Next, we compute the distance zeta
function of (∂G,G) by subdividing G = G1 ∪ G2 into 16 congruent triangles (see
also Figure 4, which describes the way we subdivide both G1 and G2) and by using
local Cartesian coordinates (x, y) ∈ R2 to deduce that

ζ∂G,G(s) = 16

∫ 1/4

0

dx

∫ x

0

ys−2dy =
4−s

s(s− 1)
,

for all s ∈ C with Re s > 1. Hence,

(4.3.19) ζ∂G,G(s) =
4−s

s(s− 1)
,

an identity valid initially for all s ∈ C such that Re s > 1, and then, after meromor-
phic continuation, for all s ∈ C. Finally, by combining Equations (4.3.16)–(4.3.19),
we conclude that the distance zeta function ζA is meromorphic on all of C and is
given by

(4.3.20) ζA(s) =
2−s

s(s− 1)(2s − 2)
+

4δs−1

s− 1
+

2πδs

s
,
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for all s ∈ C.
Consequently, we have that dimB A exists,7

(4.3.21)
D(ζA) = dimB A = 1,

P(ζA) := P(ζA,C) = {0} ∪ (1 + piZ)

and

(4.3.22) dimPC A := Pc(ζA) = 1 + piZ,

where the oscillatory period p of A is given by p := 2π
log 2 . All of the complex dimen-

sions in P(ζA) are simple except for ω = 1, which is a double pole of ζA. Finally,
we note that in light of Equation (4.3.21) (and hence, in light of the presence of
nonreal complex dimensions), the set A is indeed fractal according to our proposed
definition of fractality given in Remark 4.22 and further discussed in Chapter 5
below. In fact, according to Equation (4.3.22), it is critically fractal (i.e., fractal in
dimension d := 1 = dimB A, in the sense of Chapter 5).

Example 4.24. (The 1/3-square fractal). In the present planar example, we
illustrate a situation which is similar to that of the inhomogeneous Sierpiński N -
gasket RFD discussed in Example 4.14 for N ≥ 4. Again, we start with the closed
unit square I = [0, 1]2 in R2 and subdivide it into 9 smaller congruent squares
(similarly as in the case of the Sierpiński carpet). Next, we remove 7 of those
smaller squares; that is, we only leave the lower left and the upper right squares
(see Figure 6). In other words, our generator G (in the sense of Definition 4.18) is
the (nonconvex) open polygon depicted in Figure 6.

As usual, we proceed by iterating this procedure with the two remaining closed
squares and then continue this process ad infinitum. (The first 4 iterations are
depicted in Figure 6.) The 1/3-square fractal is then defined as the set A which
remains at the end of the process. We now let Ω := (0, 1)2, which makes the RFD
(A,Ω) a self-similar spray (or tiling), in the sense of Definition 4.18, with generator
G and scaling ratios {rj}2j=1 such that r1 = r2 = 1/3. Again, the set A is not a
homogeneous self-similar set, but is instead an inhomogeneous self-similar set.

More specifically, the set A is the unique nonempty compact subset of R2 which
is the solution of the inhomogeneous equation

(4.3.23) A =

2⋃

j=1

Φj(A) ∪B,

where Φ1 and Φ2 are contractive similitudes of R2 with fixed points located at the
lower left vertex and the upper right vertex of the unit square, respectively, and
with a common scaling ratio equal to 1/3. Furthermore, the set B in Equation
(4.3.23) is equal to the boundary of G without the part belonging to the boundary
of the two smaller squares which are left behind in the first iteration; see Figure 6.
We also observe that here, the corresponding (classic or homogeneous) self-similar
set generated by the IFS consisting of Φ1 and Φ2, is the ternary Cantor set located
along the diagonal of the unit square.

7The existence of dimB A in Example 4.23 (as well as in Examples 4.24 and 4.25 below)
follows from [LapRaŽu1, Theorem 5.4.30] (see also [LapRaŽu8, Theorem 4.2].)
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Figure 6. The 1/3-square fractal A from Example 4.24. The first 4
iterations are depicted. Here, G is the single generator of the corre-
sponding self-similar spray or RFD (A,Ω), in the sense of Definition
4.18.

We now proceed by computing the distance zeta function ζA of the 1/3-square
fractal. Without loss of generality, we may assume that δ > 1/4; so that we have

(4.3.24) ζA(s) = ζA,Ω(s) + ζI(s),

where, as before in Example 4.23, ζI denotes the distance zeta function correspond-
ing to the ‘outer’ δ-neighborhood of A and coincides with the distance zeta function
of the unit square I := [0, 1]2. Recall that ζI was computed in Example 4.23 and
is given by Equation (4.3.17).

Furthermore, by using Theorem 4.21, we obtain that

(4.3.25) ζA,Ω(s) =
ζ∂G,G(s)

1− 2 · 3−s
=

3sζ∂G,G(s)

3s − 2
,

for all s ∈ C with Re s sufficiently large.
Next, we compute the distance zeta function of (∂G,G) by subdividing G into

14 congruent triangles denoted by Gi, for i = 1, . . . , 14 (see Figure 6). Therefore,
by symmetry, we obtain the following functional equation:

(4.3.26) ζ∂G,G(s) = 12ζ∂G,G1
(s) + 2ζ∂G,G13

,

valid initially for all s ∈ C such that Re s is sufficiently large.
We use local Cartesian coordinates (x, y) ∈ R2 in order to compute ζ∂G,G1

and
obtain that

ζ∂G,G1
=

∫ 1/3

0

dx

∫ x

0

ys−2dy =
3−s

s(s− 1)
.

Hence,

(4.3.27) ζ∂G,G1
=

3−s

s(s− 1)
,
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an identity valid initially for all s ∈ C such that Re s > 1, and then, after meromor-
phic continuation, for all s ∈ C. In order to compute ζ∂G,G13

, we use local polar
coordinates and deduce that

(4.3.28)

ζ∂G,G13
(s) =

∫ π/2

0

dθ

∫ 3−1(sin θ+cos θ)−1

0

rs−1dr

=
3−s

s

∫ π/2

0

(cos θ + sin θ)−sdθ,

valid, initially, for all s ∈ C such that Re s > 0 and then, after meromorphic
continuation, for all s ∈ C. It is easy to check that

(4.3.29) Z(s) :=

∫ π/2

0

(cos θ + sin θ)−sdθ

is an entire function, since it is a generalized DTI f(s) :=
∫
E ϕ(θ)sdµ(θ), where

E := [0, π/2], ϕ(θ) := (cos θ + sin θ)−1 for all θ ∈ E is uniformly bounded by
positive constants both from the above and below, and dµ(θ) := dθ.

Finally, by combining Equation (4.3.17) and Equations (4.3.24)–(4.3.29), we
obtain that ζA is given by

(4.3.30) ζA(s) =
2

s(3s − 2)

(
6

s− 1
+ Z(s)

)
+

4δs−1

s− 1
+

2πδs

s
,

an identity valid initially for all s ∈ C with Re s > 1 and then, after meromorphic
continuation, for all s ∈ C.

Consequently, we deduce that dimB A exists,

(4.3.31)
D(ζA) = dimB A = 1,

P(ζA) := P(ζA,C) ⊆ {0} ∪ (log3 2 + piZ) ∪ {1}
and

(4.3.32) dimPC A := Pc(ζA) = {1},
where the oscillatory period p of A is given by p := 2π

log 3 . In Equation (4.3.31), we

only have an inclusion since, in principle, some of the complex dimensions with real
part log3 2 may be canceled by the zeros of 6/(s − 1) + Z(s). However, it can be
checked numerically that log3 2 ∈ P(ζA) and that there also exist nonreal complex
dimensions with real part log3 2 in P(ζA). All of the complex dimensions in P(ζA)
are simple. We also note that A is indeed fractal, according to our proposed defini-
tion of fractality (see Remark 4.22 above and Chapter 5 below). More precisely, in
light of Equations (4.3.31) and (4.3.32), it is strictly subcritically fractal and fractal

in dimension d = log3 2, in the sense of Chapter 5.

Example 4.25. (A self-similar fractal nest). In the final planar example of
this section, we investigate the case of a self-similar fractal nest.8 The set A which
we now define is an inhomogeneous self-similar set. Similarly as in Example 4.24,
the set A will be fractal in the sense of our proposed definition of fractality given
in Remark 4.22 and, moreover, will be strictly subcritically fractal in the sense of
Chapter 5.

8As we shall see, throughout this example, the use of the adjective “self-similar” is somewhat
abusive since only one similarity transformation is involved.
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Let a ∈ (0, 1) be a real parameter. We define the set A as the union of con-
centric circles with center at the origin and of radius ak for k ∈ N0 (see Figure
7). Furthermore, let G be the open annulus such that ∂G consists of the circles of
radius 1 and a, as depicted in Figure 7, and let Ω := B1(0). We can now consider
the RFD (A,Ω) as a self-similar spray with generator G, in the sense of Definition
4.18.

We note that even though (A,Ω) is a fractal spray, with a single generator G,
it is not (strictly speaking) self-similar in the traditional sense because it only has
one scaling ratio r = a (associated with a single contractive similitude). However,
we will continue using this abuse of language throughout this example. Also, a
moment’s reflection reveals that this fact does not affect any of the conclusions
relevant to the distance zeta function of such an RFD. Namely, we obviously have

Figure 7. The self-similar fractal nest from Example 4.25.

that

(4.3.33) (A,Ω) = (∂G,G) ⊔ a(A,Ω);

so that

(4.3.34) ζA,Ω(s) = ζ∂G,G(s) + ζa(A,Ω)(s),

for all s ∈ C such that Re s is sufficiently large. Furthermore, by using the scaling
property of the relative distance zeta function (see Theorem 2.16), we conclude that

(4.3.35) ζA,Ω(s) =
ζ∂G,G(s)

1− as
,

again, for all s ∈ C such that Re s is sufficiently large.
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Next, we compute the distance zeta function of the generator by using polar
coordinates (r, θ):

(4.3.36)

ζ∂G,G(s) =

∫ 2π

0

dθ

∫ (1+a)/2

a

(r − a)s−2r dr

+

∫ 2π

0

dθ

∫ 1

(1+a)/2

(1− r)s−2r dr

=
22−sπ(1 + a)(1− a)s−1

s− 1
,

an identity valid, after meromorphic continuation, for all s ∈ C.
Equation (4.3.36) combined with Equation (4.3.35) now yields that ζA,Ω is

meromorphic on all of C and is given for all s ∈ C by

(4.3.37) ζA,Ω(s) =
22−sπ(1 + a)(1− a)s−1

(s− 1)(1− as)
.

Finally, we fix an arbitrary δ > (1−a)/2 and observe that for the distance zeta
function of A, we have

(4.3.38) ζA(s) = ζA,Ω(s) + ζA,B1+δ(0)\Ω(s),

for all s ∈ C with Re s sufficiently large. Furthermore, we have that

(4.3.39) ζA,B1+δ(0)\Ω(s) =

∫ 2π

0

dθ

∫ 1+δ

1

(r − 1)s−2r dr =
2πδs−1

s− 1
+

2πδs

s
,

where the last equality is valid, initially, for all s ∈ C such that Re s > 1, and then,
after meromorphic continuation, for all s ∈ C.

Combining now the above equation with (4.3.38), we finally obtain that ζA is
meromorphic on all of C and is given by

(4.3.40) ζA(s) =
22−sπ(1 + a)(1 − a)s−1

(s− 1)(1− as)
+

2πδs−1

s− 1
+

2πδs

s
,

for all s ∈ C.
Consequently, we have that dimB A exists,

(4.3.41)
D(ζA) = dimB A = 1

P(ζA) := P(ζA,C) = piZ ∪ {1}

and

(4.3.42) dimPC(A) := Pc(ζA) = {1},

where the oscillatory period p of A is given by p := 2π
log a−1 and all of the complex

dimensions in P(ζA) are simple.
In closing, we mention that A is indeed fractal according to our proposed defi-

nition of fractality (see Remark 4.22 and Chapter 5). More specifically, in light of
Equation (4.3.41), A is strictly subcritically fractal and fractal in dimension d := 0,
in the sense of Chapter 5 below.
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4.4. Generating principal complex dimensions of relative fractal drums
of any multiplicity

A key tool in generating (principal) complex dimensions of higher multiplicities
is the tensor product of bounded fractal strings, which we now briefly define; see
[LapRaŽu3] for more details. If L1 := (ℓ1j)j≥1 and L2 := (ℓ2k)k≥1 are two
given bounded fractal strings, then the tensor product L1 ⊗ L2 is defined as the
multiset consisting of all possible products of the form ℓ1jℓ1k for all ordered pairs
(j, k) ∈ N2; hence, we take into account the multiplicities. It is easy to see that the
tensor product L1⊗L2 is also a bounded fractal string. Furthermore, we have that
the geometric zeta function of the tensor product is equal to the product of each of
the component geometric zeta functions. More specifically, we have that

(4.4.1) ζL1⊗L2
(s) = ζL1

(s) · ζL2
(s)

for all s ∈ C with Re s > max{D(ζL1
), D(ζL2

)} and

D(ζL1⊗L2
) = max{D(ζL1

), D(ζL2
)};

see [LapRaŽu3, Lemma 4.36].
The following example provides a class of bounded relative fractal drums, gen-

erated by an a-string, which illustrates Theorem 2.24 above. Note that here, we
have a unique, nonsimple, principal complex dimension, D, on the critical line,
and that its multiplicity is equal to an arbitrarily prescribed positive integer m.
We shall need the notion of the disjoint union (of an at most countable family) of
bounded fractal strings Lm = (ℓmj)j≥1 for m ∈ N:

(4.4.2) L :=

∞⊔

m=1

Lm,

defined as the multiset L consisting of elements of the union of fractal strings,
counting their multiplicities. Assuming, additionally, that ℓm1 → 0+ as m → ∞,
it is easy to see that the mulitplicity of each of the elements of the multiset L :=
⊔∞
m=1Lm is finite, so that L is indeed a bounded fractal string.

Example 4.26. (m-th order a-string) Let L(a) := {ℓk := k−a − (k + 1)−a}∞k=1

be the a-string, where a > 0 (see [Lap1, Example 5.1] and [Lap-vFr3, §6.5.1]),
and let m be a positive integer. Let Lm(a) be defined by L1(a) := L(a) for m = 1
and as the (m− 1)-fold tensor product for m ≥ 2; that is,

(4.4.3) Lm(a) :=

{
L(a) for m = 1,

L(a)⊗ · · · ⊗ L(a) for m ≥ 2,

which we call them-th order a-string. ThenD = 1/(1+a) is the only principal com-
plex dimension of Lm(a), and it is of multiplicity m. Defining h(t) := (log t−1)m−1

for all t ∈ (0, 1), and using [LapRaŽu5, Theorem 6.13], we obtain that the fractal
string Lm(a) is h-Minkowski measurable. Moreover, also according to [LapRaŽu5,
Theorem 6.13] (see also [LapRaŽu1, Theorem 5.5.19]), we have that Lm(a) has
the following tube asymptotics:

(4.4.4) |At| = t1−Dh(t) (M+ o(1)) as t → 0+,

whereM ∈ (0,+∞) is the h-Minkowski content of Lm(a) and can be explicitly com-
puted in terms of the −m-th coefficient c−m of the Laurent expansion of the tube
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zeta function ζ̃A around s = D, as follows: M = c−m/(m − 1)!; see [LapRaŽu5,
Theorem 6.13]. In particular, Lm(a) is h-Minkowski measurable.

In [LapRaŽu3, §4.4], we have constructed a (Cantor-type) bounded fractal
string Lm which has infinitely many principal complex dimensions of arbitrary
prescribed multiplicity m ≥ 2. The bounded fractal string was obtained by taking
m−1 consecutive tensor products of the usual Cantor string LCS ; i.e., the (m−1)-
fold tensor product:

(4.4.5) Lm :=

{
LCS for m = 1,

LCS ⊗ · · · ⊗ LCS for m ≥ 2,

which we call m-th order Cantor string or the m-Cantor string in short. The
corresponding multiset of principal complex dimensions is

(4.4.6) dimPC Lm = log3 2 +
2π

log 3
iZ,

and each of its elements has multiplicity m. Note that by [LapRaŽu8, Theorem
3.1] (see also [LapRaŽu1, Theorem 5.4.20]), the m-th order Cantor string Lm

is not Minkowski measurable. Instead, it can be shown that as a consequence of
[LapRaŽu1, Theorem 5.3.16] or [LapRaŽu5, Theorem 5.16], it is h-Minkowski
nondegenerate with h(t) := (log t−1)m−1 for all t ∈ (0, 1).

Furthermore, by letting

(4.4.7) L∞ :=

∞⊔

m=1

3−m

m!
Lm,

we obtain a bounded fractal string L∞, called the Cantor string of infinite order

or the ∞-Cantor string, such that its geometric zeta function ζL∞ has an infinite
sequence of essential singularities along the critical line {Re s = D}, located at each
of the points D + ipk (with k ∈ Z, D := log3 2 and p := 2π/ log 3) of the periodic
set defined by the right-hand side of (4.4.6).

Example 4.27. Let m be a fixed positive integer and let a be a positive real
number chosen small enough, so that D := 1/(1 + a) > log3 2. Consider the
following bounded fractal string L defined by

(4.4.8) L := Lm(a) ⊔ L∞,

where the bounded fractal strings Lm(a) (m-th order a-string) and L∞ (∞-Cantor
string) are defined by Equations (4.4.3) and (4.4.7), respectively, and generated by
tensor products of a-strings and Cantor strings, respectively. Here, we have that
Dmer(ζL) = log3 2, since the geometric zeta function

(4.4.9) ζL(s) = ζLm(a)(s) + ζL∞(s)

is holomorphic on the connected open set {Re s > 0} \
(
{D} ∪ (log3 2 +

2π
log 3 iZ)

)
,

where D = dimB L and is the (unique) pole of ζL of order m in the open right
half-plane {Re s > 0}, while log3 2 + 2π

log 3 iZ is the set of essential singularities of

ζL in {Re s > 0}. Denoting by AL := {ak :=
∑∞

j=k ℓj : k ∈ N} the standard rep-

resentation of the fractal string L := {ℓj}∞j=1, and applying [LapRaŽu1, Theorem

5.4.27] to the RFD (AL, (AL)δ) (for any fixed positive real number δ),9 we obtain

9The open right half-plane {Re s > Dmer(ζL)} does not contain any other poles of ζL, except
for s = D.
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the following asymptotic expansion of the tube function of the set AL:

(4.4.10) |(AL)t| = t1−Dh(t)
(
M+O(tD−Dmer(ζL)−ε

)
as t → 0+,

for any ε > 0, where h(t) := (log t−1)m−1 for all t ∈ (0, 1); i.e.,

(4.4.11) |(AL)t| = ta/(1−a)h(t)
(
M+O(t

1
1+a−log3 2−ε

)
as t → 0+,

where M is a positive real number (the h-Minkowski content) and can be computed
( see [LapRaŽu1, Theorem 5.4.27]). According to [LapRaŽu1, Theorem 5.4.29],
the exponent 1

1+a − log3 2 appearing on the right-hand side of Equation (4.4.11), is
optimal; i.e., it cannot be replaced by a larger exponent.

In Examples 4.28 and 4.29 below, we construct Minkowski measurable RFDs
which possess infinitely many complex dimensions of arbitrary multiplicity m, with
m ≥ 1, or even essential singularities.

Example 4.28. Let us first define the unit square RFD (A0,Ω0) by Ω0 := [0, 1]2

and A0 := ∂Ω0. We introduce the RFD

(4.4.12) (A′
m,Ω′

m) := (A0,Ω0) ⊔ Lm,

where we embed Lm via its canonical geometric representation ALm into the x-axis
of the 2-dimensional plane R2. Since ζA′

m,Ω′
m
(s) = ζA0,Ω0

(s)+ ζLm(s), we have that

(4.4.13) P(ζ̃A′
m,Ω′

m
) = {0, 1} ∪ P ′,

where P ′ := log3 2 + 2π
log 3 iZ and each of the complex dimensions D + ipk (with

k ∈ Z, D := log3 2) of P ′ is of multiplicity m. On the other hand, the only
principal complex dimension of (A′

m,Ω′
m) is 1, and it is simple (i.e., of multiplicity

1). Therefore, according to [LapRaŽu5, Theorem 5.2], the RFD (A′
m,Ω′

m) is
Minkowski measurable.

Example 4.29. Let us again define the unit square RFD (A0,Ω0) by Ω0 :=
[0, 1]2 and A := ∂Ω. We introduce the RFD

(4.4.14) (Am,Ωm) := (A0,Ω0)⊗ Lm,

where Lm is the m-th order Cantor string defined by (4.4.5), and the tensor product
of the RFD (A0,Ω0) and Lm is defined analogously as in Example 4.3 above. Using
Equation (4.1.9) from Theorem 4.6 above (see also Equation (4.1.14) from Theorem
4.8), we obtain that

(4.4.15) ζAm,Ωm(s) = ζA0,Ω0
(s) · ζLm(s) =

g(s)

s(s− 1)(3s − 2)m
.

Here, g(s) is an entire function without zeros at 0, 1 or at any point of the arithmetic
set

(4.4.16) P ′ := log3 2 +
2π

log 3
iZ.

In other words,

(4.4.17) dimPC(Am,Ωm) = {1}, P(Am,Ωm) = {0, 1} ∪ P ′,

and each complex dimension of (A,Ω) lying in the arithmetic set P ′ has multi-
plicity m. The value of D := dimB(Am,Ωm) = 1 is the only complex dimension
located on the critical line {Re s = 1}, while the infinite set P ′ is contained in
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the line {Re s = log3 2} located strictly to the left of the critical line. It fol-
lows from [LapRaŽu5, Theorem 6.13] (or [LapRaŽu1, Theorem 5.4.29]) that
the RFD (A,Ω) is h-Minkowski measurable with respect to the gauge function
h(t) := (log t−1)m−1, for all t ∈ (0, 1).

We can further define the RFD

(4.4.18) (A∞,Ω∞) :=

∞⊔

m=2

3−m

m!
· (Am,Ωm).

Similarly as above, we have that (with P ′ given by (4.4.16))

(4.4.19) dimPC(A∞,Ω∞) = {1}, P(A∞,Ω∞) = {0, 1} ∪ P ′,

and each complex dimension of (A∞,Ω∞) lying in the arithmetic set P ′ = log3 2+
2π
log 3 iZ is an essential singularity of ζA∞,Ω∞ .





CHAPTER 5

Fractality, complex dimensions and singularities

We close this memoir by specifying, within the general theory of fractal zeta
functions developed here and in [LapRaŽu1–7], the elusive notion of “fractality”.
Much as in [Lap-vFr1–3] (see, especially, [Lap-vFr3, §12.1 and §13.4.3]), but now
using the general higher-dimensional notion of fractal zeta function and associated
notion of complex dimensions, we say that a bounded set A (or, more generally,
an RFD (A,Ω)) in RN is fractal if it has at least one nonreal (visible) complex
dimension (i.e., a nonreal pole for its associated fractal zeta function),1 relative
to some screen S, or else if there exists a screen S which is a natural boundary
for its fractal zeta function (i.e., such that the fractal zeta function cannot be
meromorphically extended to the left of S). In the latter situation, A (or, more
generally, (A,Ω)) is said to be hyperfractal. In particular, it is said to be strictly

hyperfractal if we may choose S = {Re s = D}, and maximally hyperfractal if the
critical line S = {Re s = D} consists entirely of nonremovable singularities of the
fractal zeta function; see Definition 2.38. Here, as before, we let D := dimBA (or

D := dimB(A,Ω). Recall that in Theorem 2.40, we have constructed a family of
maximally hyperfractal RFDs.

5.1. Fractal and subcritically fractal RFDs

In this memoir, we have seen many examples of fractals (that are not hyper-
fractal), for instance, the Cantor string or set, the relative Sierpiński gasket and
carpet (Examples 4.12 and 4.15) or, more generally, the relative N -gasket RFD and
the N -carpet RFD (Examples 4.14 and 4.17), along with the examples discussed in
§4.3. Among these examples, some have nonreal complex dimensions located on the
critical line (such as, for instance, the Cantor string, the inhomogeneous Sierpiński
gasket and carpet RFDs, the N -carpet RFD for any N ≥ 2, as well as the inhomo-
geneous N -gasket (AN ,ΩN ) when N = 2 or 3). These are called critically fractal.
Yet others only have nonreal complex dimensions with real parts strictly less than
D. The latter are called subcritically fractal. In addition, strictly subcritical fractals

are subcritical fractals which do not have any nonreal principal complex dimensions
(i.e., complex dimensions with real partD). Examples of strictly subcritical fractals
include the inhomogeneous Sierpiński N -gasket RFD when N ≥ 4 (see Example
4.12 above) as well as the modified devil’s staircase (or Cantor graph) RFD to be
discussed in Example 5.1 below.

Finally, we complete this list of definitions by stating that, given d ∈ R, the
bounded set A (or, more generally, the RFD (A,Ω)) is fractal in dimension d if it
has nonreal complex dimensions of real parts d. (In light of Theorem 2.1, we must

1Provided D := dimBA (resp., dimB(A,Ω)) < N , it does not matter whether we use ζA or

ζ̃A (resp., ζA,Ω or ζ̃A,Ω) throughout this definition.
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then necessarily have d ≤ N .) Hence, a critical fractal is such that d := D, while
a strictly subcritical fractal is such that d < D. For instance, with the notation
of Example 4.14, for N ≥ 4, the Sierpiński N -gasket RFD (AN ,ΩN) is fractal in
dimension

(5.1.1) d = σ0 = log2(N + 1) < D = N − 1 = dimB(AN,0,ΩN,0)

but not in dimension D, and therefore, it is strictly subcritically fractal. By con-
trast, when N = 2 or 3, it is critically fractal (indeed, in those cases, it is fractal in
dimension d := D = σ0, the similarity dimension).

We point out that, much as as was the case in the one-dimensional situation
in [Lap-vFr3, Chapter 12], based on the general explicit formulas and fractal tube
formulas obtained in [Lap-Fr1–3] (see, especially, [Lap-vFr3, Chapters 5 and 8]),
the definitions of fractality, critical fractality and (strict) subcritical fractality are
justified in part by the general fractal tube formulas obtained in [LapRaŽu5] (see
also [LapRaŽu1, Chapter 5]).2 Indeed, the latter tube formulas show that, under
mild assumptions, the presence of nonreal complex dimensions of real part d ∈ R

corresponds to oscillations of order d in the geometry of A (or of (A,Ω)). Similarly,
roughly speaking, critical fractality (along with the simplicity of D) corresponds to
the Minkowski nonmeasurability of A (or (A,Ω)), while strict subcritical fractality
(still assuming the simplicity of D) not only corresponds to (critical) Minkowski
measurability but also to (strictly subcritical) Minkowski nonmeasurability in di-
mension d < D. This is the case, for instance, for the inhomogeneous Sierpiński
N -gasket RFD (see Example 4.12) whenever N ≥ 4 (and avoiding nongeneric val-
ues of N), for the RFDs of Examples 4.24 and 4.25, as well as for the (modified)
devil’s staircase RFD, which we discuss in Example 5.1 just below.

Finally, we mention that in reference [Lap-vF6] of [Lap-vFr2–3], it was con-
jectured that a generic nonlattice self-similar string is fractal in a countably infi-
nite set of dimensions which is dense in some compact interval [Dmin, D], where
Dmin < D. (See also §3.7 of [Lap-vFr2–3].) This conjecture has now been proved
in [MorSepVi1], along with the fact (also observed independently in [Lap-vFr3,
§3.7.1]) that in the nongeneric case, the above set of fractality is dense in finitely
many compact intervals (rather than in a single one). According to the results
of [LapPe3] and [LapPeWi1] (or, more generally, in light of Theorem 4.21 of
§4.3 in the present work), the same conclusions hold for (generic and nongeneric)
self-similar sprays and tilings (see Definition 4.18). More generally, we expect that
under suitable mild assumptions, self-similar sets and RFDs (satisfying the open
set condition) enjoy the same properties.

5.2. The Cantor graph relative fractal drum

Example 5.1. (The Cantor graph RFD). In this example, we compute the
distance zeta function of the RFD (A,Ω) in R2, where A is the graph of the Cantor

function and Ω is the union of triangles △k that lie above and the triangles △̃k

that lie below each of the horizontal parts of the graph denoted by Bk. (At each

2These fractal tube formulas generalize to any N ≥ 1 and to arbitrary bounded sets A (or,

more generally, RFDs) in RN the ones obtained for fractal strings (i.e., when N = 1) in [Lap-
vFr1–3] (see, especially, [Lap-vFr3, Chapter 8]), as well as for the very special but important
case of fractal sprays, in [LapPe2–3] and, more generally, in [LapPeWi1–2] (see [Lap-vFr3,
§13.1] for an exposition).
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step of the construction there are 2k−1 mutually congruent triangles △k and △̃k.)
Each of these triangles is isosceles, has for one of its sides a horizontal part of the
Cantor function graph, and has a right angle at the left end of Bk, in the case of
△k, or at the right end of Bk, in the case of △̃k. (See Figure 1.)

Figure 1. The third step in the construction of the Cantor graph rel-
ative fractal drum (A,Ω) from Example 5.1. One can see, in particular,

the sets Bk, △k and △̃k for k = 1, 2, 3.

For obvious geometric reasons and by using the scaling property of the relative
distance zeta function of the resulting RFD (A,Ω) (see Theorem 2.16), we then
have the following identity:

(5.2.1)

ζA,Ω(s) =

∞∑

k=1

2kζBk,△k
(s) =

∞∑

k=1

2kζ3−kB1,3−k△1
(s)

= ζB1,△1
(s)

∞∑

k=1

2k

3ks
=

2ζB1,△1
(s)

3s − 2
,

valid for all s ∈ C with Re s sufficiently large. Here, (B1,△1) is the relative fractal
drum described above with two perpendicular sides of length equal to 1. It is
straightforward to compute its relative distance zeta function:

(5.2.2) ζB1,△1
(s) =

∫ 1

0

dx

∫ x

0

ys−2dy =
1

s(s− 1)
,

valid, initially, for all s ∈ C such that Re s > 1 and then, upon meromorphic
continuation, for all s ∈ C. This fact, combined with (the last equality of) Equation
(5.2.1), yields the distance zeta function of (A,Ω), which is clearly meromorphic on
all of C:

(5.2.3) ζA,Ω(s) =
2

s(3s − 2)(s− 1)
, for all s ∈ C.

We therefore deduce that the set of complex dimensions of the RFD (A,Ω) is given
by

(5.2.4) P(ζA,Ω) := P(ζA,Ω,C) = {0, 1} ∪
(
log3 2 +

2π

log 3
iZ

)
,
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with each complex dimension being simple. Hence, its set of principal complex
dimensions is given by

(5.2.5) dimPC(A,Ω) := Pc(ζA,Ω) = {1}.
We conclude from part (b) of Theorem 2.1 that dimB(A,Ω) = 1 and that the

RFD (A,Ω) is Minkowski measurable. Moreover, one also deduces from [LapRaŽu8,
Theorem 4.2] (or [LapRaŽu1, Theorem 5.4.2]) that the (one-dimensional) Minkowski
content of (A,Ω) is given by

(5.2.6) M1(A,Ω) =
res(ζA,Ω, 1)

2− 1
= 2,

which coincides with the length of the Cantor graph (i.e., the graph of the Cantor
function, also called the devil’s staircase in [Man]).

In the sequel, we associate the RFD (A,A1/3) in R2 to the classic Cantor
graph. We do not know if the right-hand side of (5.2.4) coincides with the set
of complex dimensions of the ‘full’ graph of the Cantor function (i.e., the original
devil’s staircase), or equivalently, the RFD (A,A1/3), but we expect that this is
indeed the case since (A,Ω) is a ‘relative fractal subdrum’ of (A,A1/3). Moreover,
it is obvious that for the distance zeta function of the RFD (A,A1/3) associated
with the graph of the Cantor function, one has

(5.2.7) ζA,A1/3
(s) = ζA,Ω(s) + ζA,A1/3\Ω(s).

In order to prove that P(ζA,Ω), given by (5.2.4), is a subset of the set of com-
plex dimensions of the ‘full’ Cantor graph, it would therefore remain to show that
ζA,A1/3\Ω has a meromorphic continuation to some connected open neighborhood

U of the critical line {Re s = 1} such that U contains the set of complex dimensions
of (A,Ω), as given by (5.2.4), and that there are no pole-pole cancellation in the
right-hand side of (5.2.7).

We now return to the RFD (A,Ω) (that is, the version of the Cantor graph). As
clearly follows from (5.2.4), (A,Ω) is fractal. More specifically, in light of (5.2.5),
it is not critically fractal (because its only complex dimension of real part DCG (=
D = dimB(A,Ω)) = 1 is 1 itself, the Minkowski dimension of the Cantor graph, and
it is simple) but it is strictly subcritically fractal. In fact, it is subcritically fractal
in a single dimension, namely, in dimension d := DCS = log3 2, the Minkowski
dimension of the Cantor set.

We expect the same result to hold for the devil’s staircase itself (i.e., the ‘full’
graph of the Cantor function), represented by the RFD (A,A1/3) and of which
(A,Ω) is a ‘relative fractal subdrum’, as was explained above. Clearly, in light of
(5.2.7) and (5.2.4), we have the following inclusions (between multisets):

(5.2.8)

P(ζA,A1/3
) ⊆ P(ζA,Ω) ∪ P(ζA,A1/3\Ω)

⊆ {0, 1} ∪
{
DCS +

2π

log 3
iZ

}
.

Also, we know for a fact that dimB(A,A1/3) exists and

(5.2.9) D(ζA,A1/3
) = dimB(A,A1/3) = 1,

so that

(5.2.10) dimPC(A,A1/3) := Pc(ζA,A1/3
) = {1}.
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(Thus, we have that {1} ⊆ P(ζA,A1/3
) in (5.2.8).) Note that (5.2.9) (and hence,

(5.2.10)) follows from the rectifiability of the devil’s staircase, combined with a
well-known result in [Fed2] and with part (b) of Theorem 2.1.

As was predicted in [Lap-vFr3, §12.1.2 and §12.3.2] (see also [Lap-vFr1–2]),
based on an ‘approximate tube formula’, we expect that P(ζA,A1/3

) = P(ζA,Ω), as

given by (5.2.4), and hence, that we actually have equalities instead of inclusions
in (5.2.8), even equalities between multisets. If so, then the ‘full’ Cantor graph
(A,A1/3) is fractal, not critically fractal, but (strictly) subcritically fractal in the
single dimension d := DCS = log3 2.

Clearly, both (A,Ω) and (A,A1/3) should be fractal for a proper definition of
fractality. This would completely resolve the following apparent paradox: the RFD
(A,A1/3) is not “fractal” according to Mandelbrot’s original definition of fractality

given in [Man],3 even though everyone feels and expects it to be “fractal” simply
after having glanced at the ‘full’ Cantor graph (A,A1/3) (the ‘devil’s staircase’ in
the terminology of [Man]). The same is true for the ‘partial’ Cantor graph (A,Ω),
for which we can now rigorously prove that it is “fractal” (in the sense of the
theory of complex dimensions) even though it is only (strictly) subcritically fractal,
which may explain, in hindsight, why some practitioners refer to it as a “borderline
fractal”.

We conclude this discussion by quoting (as in [Lap-vFr3, p. 335]) Mandelbrot
[Man, p. 82] writing about the devil’s staircase (the ‘full’ Cantor graph, depicted
in [Man, Plate 83, p. 83]):

One would love to call the present curve a fractal, but to achieve

this goal we would have to define fractals less stringently, on the

basis of notions other than D [the Hausdorff dimension] alone.

Thanks to the higher-dimensional theory of complex dimensions of fractals and
associated fractal tube formulas developed in this memoir and in [LapRaŽu1–7],
building on the corresponding theory for fractal strings developed in [Lap-vFr1–3],
we are now tentatively close to having resolved this apparent paradox. Furthermore,
if we use the ‘partial’ Cantor graph (A,Ω) as a suitable substitute for the ‘full’
Cantor graph, viewed as the RFD (A,A1/3), the corresponding paradox is indeed
completely resolved here. We invite the interested reader to extend the conclusions
of the present example (i.e., Example 5.1) from (A,Ω) to (A,A1/3), and thereby,
to fully prove the conjectures and statements made in [Lap-vFr3, §12.1.2] as well
as here about the devil’s staircase itself.

3Indeed, Mandelbrot’s definition, given in [Man, p. 15], can be stated as follows. A geometric
object is “fractal” if its Hausdorff dimension is strictly greater than (i.e., is not equal to) its
topological dimension. However, note that the Hausdorff, Minkowski and topological dimensions
coincide and are equal to 1 in the case of (either the ‘full’ or the ‘partial’) Cantor graph. If, in
addition, we replaced “Hausdorf dimension” by (relative, upper) “Minkowski dimension” in the
above definition and we interpreted the topological dimension in the obvious way, we would also
reach the analogous conclusion for both (A,A1/3) and (A,Ω), which therefore would still not be

fractal according to this modified Mandelbrot definition.
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Sierpiński relative fractal drum (or spray),
57

similarity dimension, 68, 76
N-simplex, 63
1/2-square fractal, 77
1/3-square fractal, 79
strict hyperfractal, 89
strictly subcritical fractal, 81
strictly subcritically fractal, 81, 83
strong hyperfractal, 36
subcritically Minkowski nonmeasurable

RFD, 56
support

of an integer, 35
of the exponent sequence, 35

tamed Dirichlet-type integral (tamed DTI),
9

tensor product
(∂Ω0,Ω0)⊗ L, 56
of fractal strings, L1 ⊗L2, 56, 84

tetrahedral inhomogeneous gasket, A3, 63
torus RFD, 25
transcendentally ∞-quasiperiodic function,

35

Weyl’s curvatures, 26
window, 10

zeta function, see also fractal zeta function


