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Nonuniform Spectrum on the Half Line
and Perturbations
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Abstract. For a one-sided nonautonomous dynamics defined by a sequence
of invertible matrices, we develop a spectral theory (in the sense of Sacker
and Sell) for the notion of a nonuniform exponential dichotomy with an
arbitrarily small nonuniform part. We emphasize that this notion is ubiq-
uitous in the context of ergodic theory, unlike the notion of a uniform
exponential dichotomy. In particular, we show that each Lyapunov expo-
nent belongs to one interval of the spectrum. We also consider a class of
sufficiently small nonlinear perturbations of a linear dynamics satisfying
a nonuniform bounded growth condition and we show that each solution
is either eventually zero or the Lyapunov exponents belong to one interval
of the spectrum.
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1. Introduction

For a one-sided nonautonomous dynamics defined by a sequence of invertible
d × d matrices (Am)m∈N, we consider the notion of a nonuniform exponential
dichotomy with an arbitrarily small nonuniform part. Our main objective is
to develop a spectral theory (in the sense of Sacker and Sell) with respect to
this notion and to study its relation to the theory of Lyapunov exponents.
The original Sacker–Sell spectrum (see [14]) was introduced for linear cocycles
over a flow (or, equivalently, for linear skew-product flows) with respect to
the notion of a uniform exponential dichotomy. The underlying ideas where
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later used by Siegmund [15] and Aulbuch and Siegmund [2] to develop corre-
sponding spectral theories, respectively, for nonautonomous linear differential
and difference equations. We emphasize that in all these works the spectrum
is computed with respect to the notion of a uniform exponential dichotomy.

The notion of a nonuniform exponential dichotomy with an arbitrarily
small nonuniform part contains the notion of a uniform exponential dichotomy
as a very special case. Moreover, the notion is ubiquitous in the context of
smooth ergodic theory. Indeed, let f : Rd → R

d be a diffeomorphism preserving
a probability measure μ. This means that

μ(f(A)) = μ(A)

for every measurable set A ⊂ R
d. Then the trajectory of μ-almost every point

x ∈ R
d with nonzero Lyapunov exponents gives rise to a sequence of invertible

matrices

Am = dfm(x)f, m ∈ N

that admits a nonuniform exponential dichotomy with an arbitrarily small
nonuniform part. In addition, if the diffeomorphism f is not uniformly hyper-
bolic, then the above construction gives examples of trajectories that admit a
nonuniform exponential dichotomy with an arbitrarily small nonuniform part
but not a uniform exponential dichotomy. We refer to [3] for details and for
many examples of diffeomorphisms with those properties. In particular, if Σ′

is the spectrum introduced in [1], that is, the set of all a ∈ R for which the
sequence (e−aAm)m∈N admits a uniform exponential dichotomy, and Σ is the
set of all a ∈ R for which the sequence (e−aAm)m∈N admits a nonuniform ex-
ponential dichotomy with an arbitrarily small nonuniform part, then Σ ⊂ Σ′

and in general Σ �= Σ′.
Now we briefly summarize the results of the paper. In Sect. 3, we give a

complete description of the structure of Σ. In particular, we show that Σ can
be the empty set, the whole R or a finite union

I1 ∪ [a2, b2] ∪ · · · ∪ [ak−1, bk−1] ∪ Ik,

where I1 = [a1, b1] or I1 = (−∞, b1] and Ik = [ak, bk] or Ik = [ak,+∞), for
some finite numbers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk

and some integer k ≤ d. Moreover, under a certain nonuniform bounded growth
condition (see condition (17)), the spectrum Σ is compact and for each vector
v ∈ R

d\{0}, both Lyapunov exponents

λ−(v) = lim inf
n→+∞

1
n

log‖Anv‖ and λ+(v) = lim sup
n→+∞

1
n

log‖Anv‖,

where An = An · · · A1, belong to same interval Ii. In addition, if the sequence
(Am)m∈N is Lyapunov regular, in which case λ−(v) = λ+(v) for every v ∈
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R
d\{0}, then Σ is simply the finite set formed by all values of the Lyapunov

exponents (see Sect. 5).
In Sect. 4 we show that our original linear dynamics and the nonlinear

dynamics obtained from a small nonlinear perturbation essentially share the
same asymptotic properties. More precisely, given a sequence of continuous
functions fn : Rd → R

d, we consider the dynamics

x(n + 1) = Anx(n) + fn(x(n)), n ∈ N. (1)

Under a certain growth assumption on the functions fn (see conditions (20)
and (21)), we show that each solution (x(n))n∈N of (1) is either eventually zero
or its Lyapunov exponents

λ− = lim inf
n→+∞

1
n

log‖x(n)‖ and λ+ = lim sup
n→+∞

1
n

log‖x(n)‖

belong to the same interval Ii. In particular, when the sequence (Am)m∈N is
Lyapunov regular, each solution of (1) is either eventually zero or the numbers
λ− and λ+ coincide and are equal to some Lyapunov exponent of the linear
dynamics defined by (Am)m∈N. For perturbations of the equation x′ = Ax,
an equivalent result was obtained by Coppel [7]. Former results were obtained
by Perron [11], Lettenmeyer [9] and Hartman and Wintner [8]. For perturba-
tions of an autonomous delay equation see Pituk [12,13] (for finite-dimensional
spaces and finite delay) and Matsui, Matsunaga and Murakami [10] (for Banach
spaces and infinite delay). Related results for autonomous difference equations
were obtained by Coffman [6].

2. Preliminaries

We first introduce the notion of a nonuniform exponential dichotomy with an
arbitrarily small nonuniform part. Let (Am)m∈N be a sequence of invertible
d × d matrices. For each m,n ∈ N we define

A(m,n) =

⎧
⎪⎨

⎪⎩

Am−1 · · · An if m > n,
Id if m = n,

A−1
m · · · A−1

n−1 if m < n.

We say that the sequence (Am)m∈N admits a nonuniform exponential di-
chotomy with an arbitrarily small nonuniform part if there exist projections
Pm for m ∈ N satisfying

PmA(m,n) = A(m,n)Pn for m,n ∈ N, (2)

a constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖A(m,n)Pn‖ ≤ De−λ(m−n)+εn for m ≥ n (3)

and
‖A(m,n)Qn‖ ≤ De−λ(n−m)+εn for m ≤ n, (4)
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where Qm = Id − Pm for each m ∈ N.
The following result shows that the images of the projections Pm are

uniquely determined, that is, are independent of the actual projections Pm

that are taken in the notion of a nonuniform exponential dichotomy with an
arbitrarily small nonuniform part. We note that the same does not happen to
the images of the projections Qm.

Proposition 1. For each n ∈ N, we have

Im Pn =
{

v ∈ R
d : sup

m≥n
‖A(m,n)v‖ < +∞

}

.

Proof. It follows from (3) that

sup
m≥n

‖A(m,n)v‖ < +∞ (5)

for v ∈ Im Pn. Now take a vector v ∈ R
d satisfying (5). Since v = Pnv + Qnv,

it follows from (3) that

sup
m≥n

‖A(m,n)Qnv‖ < +∞. (6)

On the other hand, by (4), for m ≥ n we have

‖Qnv‖ = ‖A(n,m)A(m,n)Qnv‖ ≤ De−λ(m−n)+εm‖A(m,n)Qnv‖
and so,

1
D

eλ(m−n)−εm‖Qnv‖ ≤ ‖A(m,n)Qnv‖.

Hence, whenever Qnv �= 0, taking ε < λ we obtain

sup
m≥n

‖A(m,n)Qnv‖ = +∞.

But this contradicts to (6). Therefore, Qnv = 0 and so v ∈ Im Pn. This com-
pletes the proof of the proposition. �

The following statement specifies the freedom that is allowed when choos-
ing the projections Pm in (2) or, equivalently, the images of the projections Qm.

Proposition 2. Assume that the sequence (Am)m∈N admits a nonuniform ex-
ponential dichotomy with an arbitrarily small nonuniform part with respect to
projections Pm. Moreover, let P ′

m, for m ∈ N, be projections such that

P ′
mA(m,n) = A(m,n)P ′

n for m,n ∈ N. (7)

Then (Am)m∈N admits a nonuniform exponential dichotomy with an arbitrarily
small nonuniform part with respect to the projections P ′

m if and only if Im P1 =
Im P ′

1.
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Proof. If (Am)m∈N admits a nonuniform exponential dichotomy with an ar-
bitrarily small nonuniform part with respect to the projections P ′

m, then it
follows directly from Proposition 1 that

Im P ′
1 =

{

v ∈ R
d : sup

m≥1
‖A(m, 1)v‖ < +∞

}

= ImP1.

Now assume that Im P1 = ImP ′
1. Then

P1P
′
1 = P ′

1 and P ′
1P1 = P1.

In particular,

P1 − P ′
1 = P1(P1 − P ′

1) = (P1 − P ′
1)Q1

and so it follows from (3) and (4) that

‖A(n, 1)(P1 − P ′
1)v‖ = ‖A(n, 1)P1(P1 − P ′

1)v‖
≤ eεDe−λ(n−1)‖(P1 − P ′

1)v‖
= eε+λDe−λn‖(P1 − P ′

1)Q1v‖
≤ eε+λDe−λn‖P1 − P ′

1‖ · ‖Q1v‖
= eε+λDe−λn‖P1 − P ′

1‖ · ‖A(1,m)A(m, 1)Q1v‖
= eε+λDe−λn‖P1 − P ′

1‖ · ‖A(1,m)QmA(m, 1)v‖
≤ eε+2λD2e−λn−λm+εm‖P1 − P ′

1‖ · ‖A(m, 1)v‖
for m,n ∈ N and v ∈ X. Therefore,

‖A(n,m)P ′
mv‖ ≤ ‖A(n,m)Pmv‖ + ‖A(n,m)(Pm − P ′

m)v‖
= ‖A(n,m)Pmv‖ + ‖A(n, 1)(P1 − P ′

1)A(1,m)v‖
≤ De−λ(n−m)+εm‖v‖ + eε+2λD2e−λ(n−m)+εm‖P1 − P ′

1‖ · ‖v‖
= D′e−λ(n−m)+εm‖v‖

for n ≥ m, where

D′ = D + D2eε+2λ‖P1 − P ′
1‖.

Similarly, letting Q′
m = Id − P ′

m we obtain

‖A(n,m)Q′
mv‖ ≤ ‖A(n,m)Qmv‖ + ‖A(n,m)(Pm − P ′

m)v‖
= ‖A(n,m)Qmv‖ + ‖A(n, 1)(P1 − P ′

1)A(1,m)v‖
≤ De−λ(m−n)+εm‖v‖ + eε+2λD2e−λ(m−n)+εm‖P1 − P ′

1‖ · ‖v‖
= D′e−λ(m−n)+εm‖v‖

for n ≤ m. This shows that the sequence (Am)m∈N admits a nonuniform
exponential dichotomy with an arbitrarily small nonuniform part with respect
to the projections P ′

m. �

The following result is a simple consequence of Proposition 2.
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Proposition 3. Assume that the sequence (Am)m∈N admits a nonuniform ex-
ponential dichotomy with an arbitrarily small nonuniform part with respect to
projections Pm. Moreover, let Y ⊂ R

d be a subspace such that

R
d = ImP1 ⊕ Y. (8)

Then the projections

P ′
m = A(m, 1)P ′

1A(1,m),

where P ′
1 and Id − P ′

1 are those obtained from the decomposition in (8), sat-
isfy (7) as well as Im P ′

1 = ImP1, and so the sequence (Am)m∈N admits a
nonuniform exponential dichotomy with an arbitrarily small nonuniform part
with respect to the projections P ′

m.

3. Nonuniform Spectrum

Now we introduce the main object of our work. Given a sequence (Am)m∈N of
invertible d × d matrices, its nonuniform spectrum is the set Σ of all numbers
a ∈ R such that the sequence (e−aAm)m∈N does not admit a nonuniform
exponential dichotomy with an arbitrarily small nonuniform part.

For each a ∈ R and n ∈ N, let

Sa(n) =
{

v ∈ R
d : sup

m≥n

(
e−a(m−n)‖A(m,n)v‖) < +∞

}

.

Moreover, let S−∞(n) = {0} and S∞(n) = R
d. Clearly, each set Sa(n) is a

linear space and

AnSa(n) = Sa(n + 1)

for a ∈ [−∞,+∞] and n ∈ N. In particular, the numbers dimSa(n) are inde-
pendent of n. We denote their common value by dimSa. We also note that if
a < b, then Sa(n) ⊂ Sb(n).

Proposition 4. The set Σ ⊂ R is closed. Moreover, for a ∈ R\Σ we have

Sa(n) = Sb(n)

for all n ∈ Z and b in some open neighborhood of a.

Proof. Take a ∈ R\Σ. Then there exist projections Pn for n ∈ N satisfying (2),
a constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖e−a(m−n)A(m,n)Pn‖ ≤ De−λ(m−n)+εn for m ≥ n

and

‖e−a(m−n)A(m,n)Qn‖ ≤ De−λ(n−m)+εn for m ≤ n.

For each b ∈ R we have

‖e−b(m−n)A(m,n)Pn‖ ≤ De−(λ−a+b)(m−n)+εn for m ≥ n
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and

‖e−b(m−n)A(m,n)Qn‖ ≤ De−(λ+a−b)(n−m)+εn form ≤ n.

This implies that b ∈ R\Σ whenever |a − b| < λ and in particular the set Σ is
closed. Moreover, it follows from Proposition 1 that

Sb(n) = Sa(n) = Im Pn

for n ∈ N and b as above. �

The following result gives a complete description of the structure of the
nonuniform spectrum.

Theorem 5. For a sequence (Am)m∈N of invertible d × d matrices:

1. either Σ = ∅, Σ = R or

Σ = I1 ∪ [a2, b2] ∪ · · · ∪ [ap−1, bp−1] ∪ Ip, (9)

where I1 = [a1, b1] or I1 = (−∞, b1] and Ip = [ap, bp] or Ip = [ap,+∞)
for some numbers

a1 ≤ b1 < a2 ≤ b2 < · · · < ap ≤ bp and p ≤ d;

2. when (9) holds, taking any numbers

ρi ∈ (bi, ai+1) for i = 1, . . . , p − 1

and
δ > 0, ρ0 = inf Σ − δ, ρp = sup Σ + δ (10)

we have:
(a) for each n ∈ N the spaces Sρi

(n), for i = 0, . . . , p − 1, are indepen-
dent of δ, ρ1, . . . , ρp−1;

(b) for each i = 1, . . . , p and v ∈ Sρi
(1)\Sρi−1(1) we have

lim inf
m→+∞

1
m

log‖A(m, 1)v‖ ≥ ai

and

lim sup
m→+∞

1
m

log‖A(m, 1)v‖ ≤ bi,

where −∞ ≤ ai ≤ bi ≤ +∞ are the endpoints of Ii.

Proof. We first establish an auxiliary result.

Lemma 1. For each a1, a2 ∈ R\Σ with a1 < a2, the following statements are
equivalent:

1. Sa1(n) = Sa2(n) for some n ∈ N (and so for all n ∈ N);
2. [a1, a2] ⊂ R\Σ.
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Proof of the lemma. Assume that Sa1(n) = Sa2(n) for all n ∈ N. It fol-
lows from Propositions 1 and 2 that the sequences e−a1Am and e−a2Am ad-
mit nonuniform exponential dichotomies with an arbitrarily small nonuniform
part with respect to the same sequence of projections Pm. Hence, there exist
λ1, λ2 > 0 and for each ε > 0 constants D1 = D1(ε),D2 = D2(ε) > 0 such
that for i = 1, 2 we have

‖e−ai(m−n)A(m,n)Pn‖ ≤ Die
−λi(m−n)+εn for m ≥ n (11)

and
‖e−ai(m−n)A(m,n)Qn‖ ≤ Die

−λi(n−m)+εn for m ≤ n. (12)

For each a ∈ [a1, a2], by (11) we have

‖e−a(m−n)A(m,n)Pn‖ ≤ D1e
−λ1(m−n)+εn for m ≥ n

and similarly, by (12),

‖e−a(m−n)A(m,n)Qn‖ ≤ D2e
−λ2(n−m)+εn for m ≤ n.

Taking the constants λ = min{λ1, λ2} and D = max{D1,D2}, we conclude
that [a1, a2] ⊂ R\Σ.

Now we assume that [a1, a2] ⊂ R\Σ and we proceed by contradiction.
Namely, assume that, in addition, Sa1(n) �= Sa2(n) for some n ∈ N. Let

b = inf
{
a ∈ R\Σ : Sa(n) = Sa2(n) for some n ∈ N

}
.

Since Sa1(n) �= Sa2(n), it follows from Proposition 4 that a1 < b < a2. We show
that b ∈ Σ. Otherwise, we consider two possibilities: either Sb(n) = Sa2(n) or
Sb(n) �= Sa2(n). In the first case, by Proposition 4 we have Sb′(n) = Sa2(n)
and b′ ∈ R\Σ for all b′ ∈ (b − ε, b] and some ε > 0. But this contradicts
to the definition of b. In the second case, again by Proposition 4 we have
Sb′(n) �= Sa2(n) and b′ ∈ R\Σ for all b′ ∈ [b, b + ε) and some ε > 0 that again
contradicts to the definition of b. Hence, b ∈ Σ but this contradicts to the
assumption that [a1, a2] ⊂ R\Σ. �

We proceed with the proof of the theorem. By Proposition 4, the set
Σ is a disjoint union of (possibly infinite) closed intervals. Assume that Σ is
composed of d + 1 disjoint closed intervals. Then there exist c1, . . . , cd ∈ R\Σ
such that the intervals

(−∞, c1), (c1, c2), . . . , (cd−1, cd), (cd,+∞)

intersect Σ. By Lemma 1, we have

0 ≤ dim Sc1 < dim Sc2 < · · · < dim Scd
≤ d. (13)

Now we show that

dim Scd
< d and dim Sc1 > 0. (14)



Nonuniform Spectrum on the Half Line and Perturbations

If dimSc1 = 0, then Sc1(n) = {0} for n ∈ N. Since c1 ∈ R\Σ, there exist a
constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖e−c1(m−n)A(m,n)‖ ≤ De−λ(n−m)+εn for m ≤ n.

Hence, for b < c1 we have

‖e−b(m−n)A(m,n)‖ ≤ De−λ(n−m)+εn for m ≤ n.

This shows that (−∞, c1) ⊂ R\Σ, which is impossible since (−∞, c1) inter-
sects Σ. Now we assume that dim Scd

= d. Then Scd
(n) = R

d for n ∈ N.
Since cd ∈ R\Σ, there exist a constant λ > 0 and for each ε > 0 a constant
D = D(ε) > 0 such that

‖e−cd(m−n)A(m,n)‖ ≤ De−λ(m−n)+εn for m ≥ n.

Hence, for b > cd we have

‖e−b(m−n)A(m,n)‖ ≤ De−λ(m−n)+εn for m ≥ n.

This shows that (cd,+∞) ⊂ R\Σ, which is impossible since (cd,+∞) inter-
sects Σ. Finally, it follows from (14) that (13) cannot hold and so there are at
most d disjoint closed intervals on the right-hand side of (9). This establishes
property 1 in the theorem.

On the other hand, it follows from Lemma 1 that if σi ∈ (bi, ai+1) for i =
1, . . . , p−1, then Sσi

(n) = Sρi
(n) for i = 1, . . . , p−1. In other words, the spaces

Sρi
are independent of the choice of numbers ρi. The same observation applies

to the spaces Sρ0 . Indeed, it follows from Lemma 1 that Sρ(n) = Sinf Σ−δ′(n)
for δ′ > 0. This implies that the space Sρ0 is independent of the choice of δ,
which establishes property 2a.

For each i ∈ {0, 1, . . . , p}, the sequence (e−ρiAm)m∈N admits a nonuni-
form exponential dichotomy with an arbitrarily small nonuniform part, that
is, there exist projections Pn for n ∈ N satisfying (2), a constant λ > 0 and
for each ε > 0 a constant D = D(ε) > 0 such that

‖A(m,n)Pn‖ ≤ De(ρi−λ)(m−n)+εn for m ≥ n (15)

and

‖A(m,n)Qn‖ ≤ De−(λ+ρi)(n−m)+εn for m ≤ n,

where Qn = Id − Pn. It follows from Proposition 1 that Sρi
(n) = ImPn does

not depend on the choice of Pn. Hence, for x ∈ Sρi
(1)\Sρi−1(1) ⊂ Sρi

(1), we
have x ∈ Im P1 and it follows from (15) that

lim sup
n→+∞

1
n

log‖A(n, 1)x‖ ≤ ρi − λ < ρi.

Finally, Lemma 1 allows one to let ρi ↘ bi (except for i = p when Ip is
unbounded) and so,

lim sup
n→+∞

1
n

log‖A(n, 1)x‖ ≤ bi.
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Similarly, since the sequence (e−ρi−1Am)m∈N admits a nonuniform exponential
dichotomy with an arbitrarily small nonuniform part, there exist projections
P̃n satisfying (2), a constant λ̃ > 0 and for each ε > 0 a constant D̃ = D̃(ε) > 0
such that

‖A(m,n)P̃n‖ ≤ D̃e(ρi−1−λ̃)(m−n)+εn for m ≥ n

and
‖A(m,n)Q̃n‖ ≤ D̃e−(λ̃+ρi−1)(n−m)+εn for m ≤ n, (16)

where Q̃n = Id − P̃n. By Proposition 3, one can assume that x ∈ Im Q̃1 and
thus, it follows from (16) that

ρi−1 − ε < λ̃ + ρi−1 − ε ≤ lim inf
n→+∞

1
n

log‖A(n, 1)x‖.

Letting ε → 0 and ρi−1 ↗ ai (except for i = 1 when I1 is unbounded), we
obtain

lim inf
n→+∞

1
n

log‖A(n, 1)x‖ ≥ ai.

This completes the proof of the theorem. �

4. Lyapunov Exponents and Nonuniform Spectrum

In this section we consider the particular case when the dynamics defined
by a sequence (Am)m∈N satisfies a nonuniform bounded growth condition.
Namely, we assume that there exists μ > 0 so that for each ε > 0 there exists
D = D(ε) > 0 such that

‖A(m,n)‖ ≤ Deμ|m−n|+εn (17)

for m,n ∈ N. This implies that Σ ⊂ [−μ, μ] and so, in view of Theorem 5, the
nonuniform spectrum is given by

Σ = [a1, b1] ∪ · · · ∪ [ap, bp] (18)

for some p ≤ d. Moreover, Sρ0(n) = {0} and Sρp
(n) = R

d (see (10)). Hence,
again by Theorem 5, for each v ∈ R

d there exists i ∈ {1, . . . , p} such that

ai ≤ lim inf
k→+∞

1
k

log‖A(k, 1)v‖ ≤ lim sup
k→+∞

1
k

log‖A(k, 1)v‖ ≤ bi.

Now we consider the nonlinear dynamics

x(k + 1) = Akx(k) + fk(x(k)) k ∈ N, (19)

where each function fk : Rd → R
d is continuous and satisfies

‖fk(x)‖ ≤ γk‖x‖, x ∈ R
d, (20)

for some sequence (γk)k∈N ⊂ R
+ such that

lim
k→+∞

eδkγk = 0 for some δ > 0. (21)
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Under these assumptions, the following result shows that the nonlinear dy-
namics in (19) essentially shares the nonuniform spectrum of the unperturbed
linear dynamics. More precisely, each Lyapunov exponent of the nonlinear dy-
namics also belongs to some interval [ai, bi].

Theorem 6. Assume that conditions (17), (18) and (20), (21) hold. Then for
any solution (x(k))k∈N of (19) one of the following alternatives holds:

1. x(k) = 0 for any sufficiently large k;
2. there exists i ∈ {1, . . . , p} such that

ai ≤ lim inf
k→+∞

1
k

log‖x(k)‖ ≤ lim sup
k→+∞

1
k

log‖x(k)‖ ≤ bi.

Proof. We begin with some auxiliary results.

Lemma 2. We have

lim sup
k→+∞

1
k

log‖x(k)‖ ≤ bp.

Proof of the lemma. Take d > bp. Then there exist λ > 0 and for each ε > 0 a
constant D = D(ε) > 0 such that

‖A(m,n)‖ ≤ De(d−λ)(m−n)+εn for m ≥ n. (22)

It follows from (19), (20) and (22) that

‖x(m)‖ ≤ De(d−λ)(m−n)+εn‖x(n)‖ + D′
m−1∑

k=n

e(d−λ)(m−k)+εkγk‖x(k)‖

= De(d−λ)(m−n)+εn‖x(n)‖

+D′e(d−λ)(m−n)
m−1∑

k=n

e−(d−λ)(k−n)+εkγk‖x(k)‖,

where D′ = Deε−d+λ. Therefore,

e−(d−λ)(m−n)‖x(m)‖ ≤ Deεn‖x(n)‖ + D′
m−1∑

k=n

e−(d−λ)(k−n)‖x(k)‖eεkγk

for m ≥ n. One can use induction to show that

‖x(m)‖ ≤ D‖x(n)‖e(d−λ)(m−n)+εne
∑m−1

k=n D′eεkγk (23)

for m ≥ n. Taking ε ≤ δ, it follows from (21) that

lim sup
m→+∞

1
m

log‖x(m)‖ ≤ d − λ < d.

Finally, letting d ↘ bp we obtain the desired result. �
Lemma 3. Assume that the first alternative in the theorem does not hold. Then

lim inf
k→+∞

1
k

log‖x(k)‖ ≥ a1.
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Proof of the lemma. We first note that x(1) �= 0, since otherwise it would
follow from (23) that x(n) = 0 for all n ∈ N. Now take d < a1. Then there
exist λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖A(m,n)‖ ≤ De−(d+λ)(n−m)+εn for m ≤ n.

Proceeding in a similar manner to that in the proof of Lemma 2, we find that

‖x(m)‖ ≤ D‖x(n)‖e−(d+λ)(n−m)+εne
∑n−1

k=m D′eεkγk

for m ≤ n, where D′ = Deε−d+λ. Hence,

lim inf
k→+∞

1
k

log‖x(k)‖ ≥ d + λ − ε > d − ε.

Letting ε → 0 and then d ↗ a we obtain the conclusion of the lemma. �

Now take c ∈ R\Σ. Then the sequence (e−cAm)m∈N admits a nonuni-
form dichotomy with an arbitrarily small nonuniform part and so there exist
projections Pm for m ∈ N satisfying (2), a constant λ > 0 and for each ε > 0
a constant D = D(ε) > 0 such that

‖A(m,n)Pn‖ ≤ De(c−λ)(m−n)+εn for m ≥ n (24)

and

‖A(m,n)Qn‖ ≤ De−(λ+c)(n−m)+εn for m ≤ n. (25)

By Propositions 1 and 4, the projections Pm depend only on the connected
component of R\Σ to which c belongs. For each n ∈ N, we consider the norm

‖x‖n = sup
m≥n

(‖A(m,n)Pnx‖e−(c−λ)(m−n)
)

+ sup
m≤n

(‖A(m,n)Qnx‖e(λ+c)(n−m)
)
.

It follows readily from (24) and (25) that

‖x‖ ≤ ‖x‖n ≤ 2Deεn‖x‖ (26)

for n ∈ N and x ∈ X. Moreover, we have the following bounds.

Lemma 4. For each x ∈ R
d we have

‖A(m,n)Pnx‖m ≤ e(c−λ)(m−n)‖x‖n for m ≥ n (27)

and

‖A(m,n)Qnx‖m ≤ e−(λ+c)(n−m)‖x‖n for m ≤ n. (28)



Nonuniform Spectrum on the Half Line and Perturbations

Proof of the lemma. We have

‖A(m,n)Pnx‖m = sup
k≥m

(‖A(k,m)PmA(m,n)Pnx‖e−(c−λ)(k−m)
)

= sup
k≥m

(‖A(k, n)Pnx‖e−(c−λ)(k−m)
)

= e(c−λ)(m−n) sup
k≥m

(‖A(k, n)Pnx‖e−(c−λ)(k−n)
)

≤ e(c−λ)(m−n)‖x‖n

for m ≥ n and so (27) holds. The proof of (28) is completely analogous. �

We write

xP (k) = Pkx(k) and xQ(k) = Qkx(k).

It follows from (2) and (19) that

xP (k + 1) = AkxP (k) + Pk+1fk(x(k))

and

xQ(k + 1) = AkxQ(k) + Qk+1fk(x(k))

for k ∈ N. By (20), (24), (26) and (27), we obtain

‖xP (k + 1)‖k+1 ≤ ec−λ‖xP (k)‖k + ‖Pk+1fk(x(k))‖k+1

≤ ec−λ‖xP (k)‖k + 2Deε(k+1)‖Pk+1fk(x(k))‖
≤ ec−λ‖xP (k)‖k + 2D2e2ε(k+1)‖fk(x(k))‖
≤ ec−λ‖xP (k)‖k + 2D2e2ε(k+1)γk‖x(k)‖
≤ ec−λ‖xP (k)‖k + 2D2e2ε(k+1)γk

(‖xP (k)‖k + ‖xQ(k)‖k

)
.

Hence,

‖xP (k + 1)‖k+1 ≤ ec−λ‖xP (k)‖k + D′ηk

(‖xP (k)‖k + ‖xQ(k)‖k

)
(29)

for k ∈ N, where

D′ = 2D2e2ε and ηk = e2εkγk.

Similarly, by (20), (25), (26) and (28), we obtain

‖xQ(k + 1)‖k+1 ≥ ec+λ‖xQ(k)‖k − D′ηk

(‖xP (k)‖k + ‖xQ(k)‖k

)
(30)

for k ∈ N.

Lemma 5. Either

‖xQ(k)‖k ≤ ‖xP (k)‖k for any sufficiently large k (31)

or
‖xP (k)‖k < ‖xQ(k)‖k for any sufficiently large k. (32)
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Proof of the lemma. It follows from (29) and (30) that

‖xP (k + 1)‖k+1 ≤ (ec−λ + D′ηk)‖xP (k)‖k + D′ηk‖xQ(k)‖k (33)

and
‖xQ(k + 1)‖k+1 ≥ (ec+λ − D′ηk)‖xQ(k)‖k − D′ηk‖xP (k)‖k. (34)

Now we assume that (31) does not hold. Then there exists an arbitrarily large
k0 such that

‖xP (k0)‖k0 < ‖xQ(k0)‖k0 .

We shall prove by induction that if k0 is sufficiently large, then ‖xP (k)‖k <
‖xQ(k)‖k for k ≥ k0. So, let us assume that ‖xP (k)‖k < ‖xQ(k)‖k for some
k ≥ k0. By (33) and (34), we obtain

‖xP (k + 1)‖k+1 ≤ (ec−λ + 2D′ηk)‖xQ(k)‖k

and

‖xQ(k + 1)‖k+1 ≥ (ec+λ − 2D′ηk)‖xQ(k)‖k.

Therefore,

‖xP (k + 1)‖k+1 ≤ ec−λ + 2D′ηk

ec+λ − 2D′ηk
‖xQ(k + 1)‖k+1.

Taking ε sufficiently small, it follows from (21) that ηk = e2εkγk → 0 and
thus,

ec−λ + 2D′ηk

ec+λ − 2D′ηk
→ ec−λ

ec+λ
< 1.

Hence, if k0 is sufficiently large, then

‖xP (k + 1)‖k+1 < ‖xQ(k + 1)‖k+1.

This completes the proof of the lemma. �
The final ingredient is the following result.

Lemma 6. Assume that the first alternative in the theorem does not hold. Then
one of the following alternatives holds:

1.
lim sup
k→+∞

1
k

log‖x(k)‖ < c (35)

and

lim
k→+∞

‖xQ(k)‖k

‖xP (k)‖k
= 0; (36)

2.
lim inf
k→+∞

1
k

log‖x(k)‖ > c (37)

and

lim
k→+∞

‖xP (k)‖k

‖xQ(k)‖k
= 0. (38)
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Proof of the lemma. Assume first that (31) holds and let

S = lim sup
k→+∞

‖xQ(k)‖k

‖xP (k)‖k
.

It follows from (31) that 0 ≤ S ≤ 1. By (29) and (31), we have

‖xP (k + 1)‖k+1 ≤ (ec−λ + 2D′ηk)‖xP (k)‖k (39)

for all large k. Hence, it follows from (30) and (39) that

‖xQ(k + 1)‖k+1

‖xP (k + 1)‖k+1
≥ ec+λ − D′ηk

ec−λ + 2D′ηk
· ‖xQ(k)‖k

‖xP (k)‖k
− D′ηk

ec−λ + 2D′ηk

for all large k. Taking ε sufficiently small and using (21), we obtain

ec+λ − D′ηk

ec−λ + 2D′ηk
→ ec+λ

ec−λ
> 1 and

D′ηk

ec−λ + 2D′ηk
→ 0,

which implies that S = 0. This establishes (36). In order to prove (35), take
k0 so large such that (39) holds for k ≥ k0. Then

‖xP (k)‖k ≤ ‖xP (k0)‖k0e
(c−λ)(k−k0)

k∏

j=k0

(1 + 2D′ηkeλ−c)

for k ≥ k0. On the other hand, if follows from (21) that

1
k

k∑

j=k0

log(1 + 2D′ηkeλ−c) ≤ 1
k

k∑

j=k0

2D′ηkeλ−c → 0

and so,

lim sup
k→+∞

1
k

log‖xP (k)‖k ≤ c − λ < c.

Finally, by (26) and (31), we have

lim sup
k→+∞

1
k

log‖x(k)‖ ≤ lim sup
k→+∞

1
k

log(2‖xP (k)‖k) = lim sup
k→+∞

1
k

log‖xP (k)‖k,

which establishes inequality (35).
Now assume that (32) holds and let

S = lim sup
k→+∞

‖xP (k)‖k

‖xQ(k)‖k
.

It follows from (32) that 0 ≤ S ≤ 1. By (30) and (32), we have

‖xQ(k + 1)‖k+1 ≥ (ec+λ − 2D′ηk)‖xQ(k)‖k, (40)

for all large k. Hence, it follows from (29) and (40) that

‖xP (k + 1)‖k+1

‖xQ(k + 1)‖k+1
≤ ec−λ + D′ηk

ec+λ − 2D′ηk
· ‖xP (k)‖k

‖xQ(k)‖k
+

D′ηk

ec+λ − 2D′ηk
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for all large k. Taking ε sufficiently small and using (21), we obtain

ec−λ + D′ηk

ec+λ − 2D′ηk
→ ec−λ

ec+λ
< 1 and

D′ηk

ec+λ − 2D′ηk
→ 0,

which implies that S = 0. This establishes (38). Now take k0 so large such
that (40) holds for k ≥ k0. Then

‖xQ(k)‖k ≥ ‖xQ(k0)‖k0e
(c+λ)(k−k0)

k∏

j=k0

(1 − 2D′ηke−λ−c)

for k ≥ k0. On the other hand, it follows from (21) that

1
k

k∑

j=k0

log
1

1 − 2D′ηke−λ−c
≤ 1

k

k∑

j=k0

2D′ηke−λ−c

1 − 2D′ηke−λ−c
→ 0

and so,

lim inf
k→+∞

1
k

log‖xQ(k)‖k ≥ c + λ > c.

Finally, by (26),

lim inf
k→+∞

1
k

log‖x(k)‖ ≥ lim inf
k→+∞

1
k

log
(

1
2D

e−εk‖xQ(k)‖k

)

> c − ε.

Since ε can be taken arbitrarily small, we conclude that (37) holds. �

We proceed with the proof of the theorem. Let (x(k))k∈N be a solution
of (19) and assume that the first alternative in the theorem does not hold.
Take c0 < a1, cp > bp and ci ∈ (bi, ai+1) for i ∈ {1, . . . , p − 1}. It follows from
Lemma 6 that for each i ∈ {0, . . . , p} either

lim sup
k→+∞

1
k

log‖x(k)‖ < ci

or

lim inf
k→+∞

1
k

log‖x(k)‖ > ci.

Together with Lemmas 2 and 3, this implies that there exists i ∈ {1, . . . , p}
such that

lim sup
k→+∞

1
k

log‖x(k)‖ < ci

and

lim inf
k→+∞

1
k

log‖x(k)‖ > ci−1.
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Finally, letting ci−1 ↗ ai and ci ↘ bi, we obtain

ai ≤ lim inf
k→+∞

1
k

log‖x(k)‖ ≤ lim sup
k→+∞

1
k

log‖x(k)‖ ≤ bi.

This completes the proof of the theorem. �

5. Lyapunov Regularity

In this section we consider the nonuniform spectrum of a Lyapunov regular
trajectory. We say that a sequence (An)n∈N of invertible d × d matrices is
Lyapunov regular if there exist a decomposition

R
d =

s⊕

i=1

Ei

and real numbers λ1 < · · · < λs such that:
1. for i = 1, . . . , s and v ∈ Ei\{0}, we have

lim
n→+∞

1
n

log‖A(n, 1)v‖ = λi; (41)

2.

lim
n→+∞

1
n

log|detA(n, 1)| =
s∑

i=1

λi dim Ei.

Theorem 7. If the sequence (An)n∈N is Lyapunov regular, then

Σ = {λ1, . . . , λs}.

Proof. Take a ∈ R such that a �= λi for i ∈ {1, . . . , s}. The Lyapunov expo-
nents associated to the sequence (e−aAn)n∈N are the nonzero numbers −a+λi,
for i = 1, . . . , s. Now let P1 and Q1 be the projections associated to the de-
composition

R
d =

(
⊕

i:λi<a

Ei

)

⊕
(

⊕

i:λi>a

Ei

)

.

It follows from Theorem 4 in [4] that the sequence (e−aAn)n∈N admits a
nonuniform exponential dichotomy with an arbitrarily small nonuniform part,
with projections

Pn = A(n, 1)P1A(1, n), n ∈ N.

Hence, a /∈ Σ and Σ ⊂ {λ1, . . . , λs}.
For the reverse inclusion, take i ∈ {1, . . . , s} and assume that the sequence

(e−λiAn)n∈N admits a nonuniform exponential dichotomy with an arbitrarily
small nonuniform part. Then there exist projections Pm for m ∈ N, a constant
λ > 0 and for each ε > 0 a constant D = D(ε) > 0 satisfying (2) such that

e−λi(m−n)‖A(m,n)Pn‖ ≤ De−λ(m−n)+ε|n| for m ≥ n (42)
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and

e−λi(m−n)‖A(m,n)(Id − Pn)‖ ≤ De−λ(n−m)+ε|n| for m ≤ n. (43)

For v ∈ Ei\{0}, it follows from (42) that

lim sup
m→+∞

1
m

log‖A(m, 1)P1v‖ ≤ −λ + λi < λi. (44)

Hence, by (41), we have P1v �= v. On the other hand, by (43),
1
D

e(λ+λi−ε)m‖(Id − P1)v‖ ≤ ‖A(m, 1)(Id − P1)v‖
for m ≥ 0. Since P1v �= v, we obtain

lim sup
m→+∞

1
m

log‖A(m, 1)(Id − P1)v‖ ≥ λ + λi − ε > λi

for any sufficiently small ε > 0, which together with (44) show that

lim sup
m→+∞

1
m

log‖A(m, 1)v‖ > λi.

But this contradicts to (41). Therefore, λi ∈ Σ and since i is arbitrary, we
conclude that {λ1, . . . , λs} ⊂ Σ. �

The following result established in [5] can now be obtained as a direct
consequence of Theorems 6 and 7.

Theorem 8. Assume that (Am)m∈N is a Lyapunov regular sequence and let
(x(k))k∈N be a solution of (19), for some sequence (fk)k∈N satisfying proper-
ties (20) and (21). Then one of the following alternatives holds:

1. x(k) = 0 for any sufficiently large k;
2. there exists i ∈ {1, . . . , s} such that

lim
k→+∞

1
k

log‖x(k)‖ = λi.
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