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Abstract. We describe two approaches to study the robustness of the
exponential stability of an arbitrary difference equation with finite delay
on a Banach space. The first approach is based on a characterization of
Perron-type of the exponential stability in terms of the invertibility of a
certain linear operator between spaces of bounded sequences. The second
approach is based on looking at the dynamics on a higher-dimensional
space without delay and so for which one has the cocycle property. We
emphasize that none of the results obtained with the two approaches
implies the other. More precisely, the second approach allows to obtain the
robustness of a weaker notion although also with a stronger hypothesis.
We consider the general case of nonuniform exponential stability.
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1. Introduction

Our main aim is to describe two approaches to study the robustness of the
exponential stability of an arbitrary difference equation with finite delay on
a Banach space. We say that a given type of stability is robust when it per-
sists under sufficiently small perturbations in some appropriate class. We shall
consider the class of the linear difference equations with finite delay.

L.B. and C.V. were supported by FCT/Portugal through UID/MAT/04459/2013. D.D. was
supported in part by an Australian Research Council Discovery Project DP150100017, Croa-
tian Science Foundation under the Project IP-2014-09-2285 and by the University of Rijeka
research Grant 13.14.1.2.02.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-015-0499-2&domain=pdf


334 L. Barreira et al. Results Math

1.1. Preliminaries

Consider a linear difference equation

x(n + 1) =
n∑

k=0

A(n, k)x(k), n ≥ 0, (1)

where each A(n, k) is a bounded linear operator acting on a Banach space. We
say that Eq. (1) has a finite delay if there exists r ∈ Z

−
0 such that A(n, k) = 0

for n > k − r, that is, if the equation can be written in the form

x(n + 1) =
n∑

k=max{0,n+r}
A(n, k)x(k), n ≥ 0.

Since Eq. (1) is linear, the type of stability of its solutions depends only
on the stability of the zero solution. However, there is an important difference
between the cases r = 0 and r < 0. In the first case, writing An = A(n, n), the
equation becomes

x(n + 1) = Anx(n), n ≥ 0.

Hence,

x(n) = S(n, k)x(k), n ≥ k, (2)

where

S(n, k) = An−1An−2 . . . Ak,

and so any type of stability of Eq. (1) can be described in terms of these
operators. For example, when r = 0 we say that Eq. (1) is nonuniformly
exponentially stable if there exist constants D,λ, ε > 0 such that

‖S(n, k)‖ ≤ De−λ(n−k)+εk, n ≥ k ≥ 0. (3)

Moreover, we say that Eq. (1) is uniformly exponentially stable if (3) holds
with ε = 0. The notion of nonuniform exponential stability goes back to sem-
inal work of Pesin in [5,6] (see [1,3] for detailed descriptions of the theory
and for many examples). It turns out that the classical uniform exponential
stability is a considerable restriction for the dynamics. On the other hand,
essentially guided by ergodic theory, one can introduce the much weaker no-
tion of nonuniform exponential stability. For example, any nonautonomous
linear differential equation with negative Lyapunov exponents is nonuniformly
exponentially stable (see for example [3]).

On the other hand, when r < 0 there exist no linear operators S(n, k)
satisfying (2). This leads naturally to two types of approaches.
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1.2. First Approach

We first consider a notion of exponential stability that tries to imitate as
much as possible the one in (3), based on the observation that given an initial
condition x(k) at time k there exists a unique solution x(n), for n ≥ k, of
Eq. (1) such that x(l) = 0 for l < k. Hence, for these initial conditions one can
define corresponding operators S(n, k) and introduce a notion of nonuniform
exponential stability that relates to (3) (and that is equivalent to (3) when
r = 0).

The study of the robustness of the notion is based on a characterization
of Perron-type of the nonuniform exponential stability in terms of the invert-
ibility of a certain linear operator between spaces of bounded sequences. More
precisely, writing x = (x(n))n≥0, we consider the operator

(Rx)(n) = x(n) −
n−1∑

k=0

A(n − 1, k)x(k), n ≥ 0,

between certain spaces of bounded sequences (see Sect. 2 for details). Up to
some technical aspects, we show in Theorems 3 and 4 that R is invertible if and
only if the dynamics defined by Eq. (1) is nonuniformly exponentially stable.

This characterization is then used in Theorem 5 to show that the notion
of nonuniform exponential stability is robust. See [4] for a related approach in
the simpler case of uniform exponential stability.

1.3. Second Approach

The other approach is based on looking at the dynamics in a higher-dimensional
space, with the advantage of having the cocycle property. More precisely, a
natural strategy (that is widely used for continuous time) corresponds to view
the problem in a higher-dimensional space in which the delay r becomes zero.
Namely, considering the (|r| + 1)-vectors

y(n) =
(
x(n), x(n − 1), . . . , x(n − r)

)
,

there exist linear operators T (n, k) such that y(n) = T (n, k)y(k) for n ≥ k.
This allows one to recover the cocycle property

T (n, l)T (l, k) = T (n, k)

and so it is natural to introduce a notion of nonuniform exponential stability
for Eq. (1) as in (3) with S(n, k) replaced by T (n, k). Using this notion we
obtain a second robustness result in Theorem 6.

We emphasize that none of the robustness results in Theorems 5 and 6
implies the other. More precisely, the second approach allows one to obtain
the robustness of a weaker notion although also with a stronger hypothesis.
The details are given at the end of Sect. 4.



336 L. Barreira et al. Results Math

2. Characterization of Stability

Consider the general linear difference Eq. (1), where each A(n, k), for n ≥ k ≥
0, is a bounded linear operator acting on a Banach space X = (X, ‖·‖). Given
n ≥ k ≥ 0, we denote by F (n, k) the linear operator such that

x(n) = F (n, k)x(k)

for all sequences (x(n))n≥0 with x(l) = 0 for l < k that satisfy (1). Let ‖·‖n,
for n ≥ 0, be a sequence of norms on X such that ‖·‖n is equivalent to ‖·‖ for
each n. We say that Eq. (1) is exponentially stable with respect to the norms
‖·‖n if there exist constants D,λ > 0 such that

‖F (n, k)x‖n ≤ De−λ(n−k)‖x‖k, x ∈ X, n ≥ k ≥ 0. (4)

The purpose of the norms ‖·‖n is illustrated with the following example.

Example 1. Take r = 0 and let

An = ea+ε(n+1) cos(n+1)−εn cosn.

Then

F (m,n) = ea(m−n)+εm cosm−εn cosn

≤ ea(m−n)+εm+εn

= e(a+ε)(m−n)+2εn (5)

for all m ≥ n. Now let

‖x‖m = sup
k≥m

(‖F (k,m)x‖e−(a+ε)(k−m)
)

= sup
k≥m

(
e−ε(k−m)+εk cos k−εm cosm‖x‖)

. (6)

Clearly,
‖x‖ ≤ ‖x‖m ≤ e2εm‖x‖. (7)

Taking xm = F (m,n)xn, we obtain

‖xm‖m = sup
m≥n

(‖F (k,m)F (m,n)xn‖e−(a+ε)(k−m)
)

= e(a+ε)(m−n) sup
k≥m

(‖F (k, n)xn‖e−(a+ε)(k−n)
)

≤ e(a+ε)(m−n) sup
k≥n

(‖F (k, n)xn‖e−(a+ε)(k−n)
)

= e(a+ε)(m−n)‖xn‖n,

thus allowing to erase the nonuniform term e2εn in the right-hand side of (5).
Hence, when a+ε < 0 Eq. (1) is exponentially stable with respect to the norms
‖·‖m introduced in (6).

Moreover, we say that Eq. (1) is nonuniformly exponentially stable if
there exist constants D,λ, ε > 0 such that

‖F (n, k)‖ ≤ De−λ(n−k)+εk, n ≥ k ≥ 0.
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Example 1 shows that some nonuniformly exponentially stable equations are
exponentially stable with respect to certain norms ‖·‖n satisfying (7). It turns
out that the converse always holds.

Proposition 1. Let ‖·‖n, for n ≥ 0, be a sequence of norms on X such that

‖x‖ ≤ ‖x‖n ≤ Ceεn‖x‖, x ∈ X, n ≥ 0 (8)

for some constants C, ε > 0. If Eq. (1) is exponentially stable with respect to
the norms ‖·‖n, then Eq. (1) is nonuniformly exponentially stable.

Proof. We have

‖F (n, k)x‖ ≤ ‖F (n, k)x‖n ≤ e−λ(n−k)‖x‖k

≤ Ce−λ(n−k)+εk‖x‖
and so Eq. (1) is nonuniformly exponentially stable. �

Now we consider the vector space

l∞ =
{
x = (x(n))n≥0 ⊂ X : sup

n≥0
‖x(n)‖n < +∞

}
,

which is a Banach space when equipped with the norm ‖x‖ = supn≥0 ‖x(n)‖n.
We define a linear operator R : D(R) → l∞ by

(Rx)(n) = x(n) −
n−1∑

k=0

A(n − 1, k)x(k), n ≥ 0, (9)

on the domain D(R) formed by all x = (x(n))n≥0 ∈ l∞ such that Rx ∈ l∞.

Proposition 2. The operator R : D(R) → l∞ is closed.

Proof. Let xk be a sequence in D(R) converging to x ∈ l∞ such that the
sequence Rxk converges to some y ∈ l∞. Since the norms ‖·‖n are equivalent
to the original norm ‖·‖, we conclude that

lim
k→∞

xk(n) = x(n) and lim
k→∞

(Rxk)(n) = y(n)

on X, for n ≥ 0. Moreover, since the linear operators A(n, k) are bounded, it
follows from (9) that

y(n) = lim
k→∞

(Rxk)(n) = x(n) −
n−1∑

k=0

A(n − 1, k)x(k),

for n ≥ 0. Hence, x ∈ D(R) and Rx = y. �
For each x ∈ D(R), let

‖x‖R = ‖x‖∞ + ‖Rx‖∞.

It follows from Proposition 2 that (D(R), ‖x‖R) is a Banach space. Moreover,
the linear operator

R : (D(R), ‖x‖R) → l∞
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is clearly bounded. From now on we denote it simply by R.

Theorem 3. Let A(n, k), for n ≥ k ≥ 0, be bounded linear operators on X.
If Eq. (1) is exponentially stable with respect to some norms ‖·‖n, then the
operator R is invertible.

Proof. Clearly, R is one-to-one (simply from solving Rx = 0, where 0 is the
zero sequence). For the surjectivity, take y = (y(n))n≥0 ∈ l∞ and let

x(n) =
n∑

k=0

F (n, k)y(k), n ≥ 0.

It follows from (4) that

‖x(n)‖n ≤
n∑

k=0

e−λ(n−k)‖y(k)‖k ≤ 1
1 − e−λ

‖y‖∞

for n ≥ 0. Hence, x ∈ l∞ and one can easily verify that Rx = y. Therefore, R
is onto and so it is invertible. �

The following result is a partial converse to the previous theorem, with
appropriate assumptions on the linear operators A(n, k).

Theorem 4. Let A(n, k), for n ≥ k ≥ 0, be bounded linear operators on X such
that

A(n, k) = 0, n > k − r (10)

and
‖A(n, k)x‖n ≤ D‖x‖k, x ∈ X, n ≥ k ≥ 0, (11)

for some numbers r ∈ Z
−
0 and D, ε > 0. If the operator R is invertible, then

Eq. (1) is exponentially stable with respect to the norms ‖·‖n.

Proof. Given λ > 0 and n ≥ 0, we define a linear operator by

(B(λ)x)(m) = x(m) −
m−1∑

k=0

eλ|n−m|−λ|n−k+1|A(m − 1, k)x(k)

for x = (x(n))n≥0 ∈ l∞. In order to estimate the norm of B(λ) − R we need
the following result.

Lemma 1. We have
∣∣1 − eλ|n−m|−λ|n−k+1|∣∣ ≤ e−λr − 1 (12)

whenever |k − m − 1| ≤ −r.

Proof of the lemma. We first note that

∣∣1 − eλ|n−m|−λ|n−k+1|∣∣ =
|eλ|n−m| − eλ|n−k+1||

eλ|n−k+1| . (13)



Vol. 71 (2017) Nonuniform Stability of Arbitrary Difference Equations 339

Now we consider two possibilities. Assume first that eλ|n−m| ≥ eλ|n−k+1|. It
follows from (13) and the triangle inequality that

∣∣1 − eλ|n−m|−λ|n−k+1|∣∣ =
eλ|n−m| − eλ|n−k+1|

eλ|n−k+1|

≤ eλ|n−k+1|+λ|k−1−m| − eλ|n−k+1|

eλ|n−k+1|

= eλ|k−1−m| − 1,

which shows that (12) holds whenever |k − m − 1| ≤ −r.
Now we assume that eλ|n−m| < eλ|n−k+1|. Using again (13) and the

triangle inequality, we obtain

∣∣1 − eλ|n−m|−λ|n−k+1|∣∣ =
eλ|n−k+1| − eλ|n−m|

eλ|n−k+1|

≤ eλ|n−k+1| − eλ|n−m|

eλ|n−m|

≤ eλ|n−m|+λ|m−k+1| − eλ|n−m|

eλ|n−m|

= eλ|k−1−m| − 1,

which again shows that (12) holds whenever |k − m − 1| ≤ −r. �

Now take x = (x(n))n≥0 ∈ D(R). We have

((B(λ) − R)x)(m) =
m−1∑

k=0

(
1 − eλ|n−m|−λ|n−k+1|)A(m − 1, k)x(k)

for m ≥ 0. By (10), (11) and (12), we have

∥∥((B(λ) − R)x)(m)
∥∥

m
≤

m−1∑

k=m+r−1

|1 − eλ|n−m|−λ|n−k+1||

· ‖A(m − 1, k)x(k)‖m−1

≤ D(e−λr − 1)(−r + 1)‖x‖∞

≤ D(e−λr − 1)(−r + 1)‖x‖R

for m ≥ 0. Consequently,

‖(B(λ) − R)x‖∞ ≤ D(e−λr − 1)(−r + 1)‖x‖R (14)

for each x ∈ D(R). Taking λ > 0 such that

D(e−λr − 1)(−r + 1) < ‖R−1‖−1,

it follows from (14) that B(λ) is invertible and that

‖B(λ)−1‖ ≤ K :=
1

‖R−1‖−1 − D(e−λr − 1)(−r + 1)
.
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We note that K does not depend on n. Now take v ∈ X and define y =
(y(m))m≥0 by y(n) = v and y(m) = 0 for m 	= n. Since B(λ) is invertible,
there exists z = (z(m))m≥0 ∈ l∞ such that B(λ)z = y. Let

x(m) = e−λ|n−m|z(m), m ≥ 0.

Clearly, x = (x(m))m≥0 ∈ l∞ and

x(m) −
m−1∑

k=0

A(m − 1, k)x(k)

= e−λ|n−m|z(m) −
m−1∑

k=0

e−λ|n−k+1|A(m − 1, k)z(k)

= e−λ|n−m|
(

z(m) −
m−1∑

k=0

eλ|n−m|−λ|n−k+1|A(m − 1, k)z(k)

)

= e−λ|n−m|(B(λ)z)(m)

= e−λ|n−m|y(m) = y(m)

for m ≥ 0 (since y(m) = 0 for m 	= n), that is, Rx = y. Moreover,

‖x(m)‖m = e−λ|n−m|‖z(m)‖m

≤ e−λ|n−m|‖z‖∞

= e−λ|n−m|‖B(λ)−1y‖∞

≤ Ke−λ|n−m|‖y‖∞

= Ke−λ|n−m|‖v‖n.

Again since y(m) = 0 for m 	= n, we have x(m) = F (m,n)v for m ≥ n and so

‖F (m,n)v‖m ≤ Ke−λ(m−n)‖v‖n, m ≥ n,

which shows that Eq. (1) is nonuniformly exponentially stable. �

Note that if (8) holds and there exist constants D, ε > 0 satisfying

‖A(n, k)‖ ≤ De−εn, n ≥ k ≥ 0,

then condition (11) holds (with D replaced by CD).

3. Robustness: Method I

In this section we use Theorems 3 and 4 to establish the robustness of the
notion of nonuniform exponential stability.
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Theorem 5. Assume that Eq. (1) is exponentially stable with respect to some
norms ‖·‖n for some bounded linear operators A(n, k), for n ≥ k ≥ 0, satisfy-
ing (10) and (11) for some numbers r ∈ Z

−
0 and D > 0. Moreover, let B(n, k),

for n ≥ k ≥ 0, be bounded linear operators on X such that

B(n, k) = 0, n > k − r (15)

and

‖(B(n, k) − A(n, k))x‖n ≤ c‖x‖k, x ∈ X, n ≥ k ≥ 0, (16)

for some constant c > 0. If c is sufficiently small, then the equation

x(n + 1) =
n∑

k=0

B(n, k)x(k) (17)

is exponentially stable with respect to the norms ‖·‖n.

Proof. By Theorem 3, the operator R defined by (9) is invertible. Now we
define a linear operator S : D(R) → l∞ by

(Sx)(n) = x(n) −
n−1∑

k=0

B(n − 1, k)x(k), n ≥ 0.

It follows from (10), (15) and (16) that

‖((R − S)x)(n)‖n ≤
n−1∑

k=0

‖(B(n − 1, k) − A(n − 1, k))x(k)‖n

≤ c(−r + 1)‖x‖∞
≤ c(−r + 1)‖x‖R

for n ≥ 0 and x = (x(n))n≥0 ∈ D(R). Hence,

‖R − S‖ ≤ c(−r + 1)

and so, for any sufficiently small c the operator S is invertible (since R is
invertible). On the other hand, by (11) and (16), we have

‖B(n, k)x‖n ≤ (c + D)‖x‖k, x ∈ X, n ≥ k ≥ 0.

Hence, it follows from Theorem 4 that Eq. (17) is exponentially stable with
respect to the norms ‖·‖n. �

Note that if (8) holds and there exist constants D, ε > 0 satisfying

‖(B(n, k) − A(n, k))‖ ≤ ce−εn n ≥ k ≥ 0,

then condition (16) holds (with c replaced by cC).
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4. Robustness: Method II

In this section we give a different perspective of the robustness problem as well
as an alternative robustness result.

Given r ∈ Z
−
0 , let Y be the Banach space of all functions ϕ : [r, 0]∩Z → X

equipped with the norm

‖ϕ‖Y = max
{‖ϕ(k)‖ : r ≤ k ≤ 0

}
.

Moreover, given a function x : C → X on a set C ⊂ Z with n + r, . . . , n ∈ C,
we define xn ∈ Y by xn(k) = x(n + k) for k = r, . . . , 0.

We consider linear maps Lm : Y → X, for m ≥ 0, defined by

Lmϕ =
m∑

k=m+r

A(m, k)ϕ(k − m)

for some linear operators A(m, k) and the dynamics

x(m + 1) = Lmxm, m ≥ 0. (18)

Note that Eq. (18) can be written in the form

x(m + 1) =
m∑

k=m+r

A(m, k)x(k), m ≥ 0.

Moreover, when (10) holds, the equation becomes Eq. (1) for m ≥ −r.
Given n ≥ 0 and ϕ ∈ Y , there is a unique function x : [n+r,+∞)∩Z → X

with xn = ϕ satisfying (18) for m ≥ n. We define linear evolution operators
T (m,n) on Y by

T (m,n)xn = xm, m ≥ n.

Clearly, T (m,m) = Id and

T (l,m)T (m,n) = T (l, n), l ≥ m ≥ n.

We say that Eq. (18) admits a nonuniform exponentially contraction if there
exist D,λ, ε > 0 such that

‖T (m,n)‖ ≤ De−λ(m−n)+εn, m ≥ n. (19)

Now we consider the dynamics

x(m + 1) = Mmxm (20)

for some linear operators Mm : Y → X, for m ≥ 0, defined by

Mmϕ =
m∑

k=m+r

B(m, k)ϕ(k − m)

for some linear operators B(m, k).
The following is our alternative robustness result.
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Theorem 6. Assume that Eq. (18) admits a nonuniform exponential contrac-
tion. If

‖Mm − Lm‖ ≤ ce−δεm, m ≥ 0, (21)
for some constant δ > 1, then for any sufficiently small c > 0, Eq. (20) admits
a nonuniform exponential contraction. Moreover, the solution of Eq. (20) with
initial condition xn = ϕ satisfies

‖xm‖Y ≤ 2De−λre−λ(m−n)+εn‖ϕ‖Y , m ≥ n. (22)

Proof. Let Gm = Mm − Lm. We need the following result (see [2, Lemma 1]).

Lemma 2. The solution of Eq. (20) with xn = ϕ satisfies

xm = T (m,n)ϕ +
m−1∑

j=n

T (m, j + 1)(ΓGjxj), m ≥ n, (23)

where

(ΓGjxj)(l) =

{
Gjxj , l = 0,

0, l 	= 0.

In view of (23), we consider the operator U defined by

(Ux)m = T (m,n)ϕ +
m−1∑

k=n

T (m, k + 1)(ΓGkxk), m ≥ n, (24)

in the space

F =
{
x : [n + r,+∞) ∩ Z → X : ‖x‖ ≤ 2De−λr‖ϕ‖Y

}
,

equipped with the norm

‖x‖ = sup
{‖xm‖Y e−γ(m,n) : m ≥ n

}
, γ(m,n) = −λ(m − n) + εn. (25)

One can easily verify that F is a complete metric space.
Note that

T (m,n)ϕ(j) = T (m + j, n)ϕ(0)

for j = r, . . . , 0. Therefore, for j = r, . . . , 0 it follows from (24) that

(Ux)(m + j) = [T (m + j, n)ϕ](0) +
m−1∑

k=n

T (m + j, k + 1)(ΓGkxk)(0) (26)

and thus,

‖(Ux)(m + j)‖ ≤ ‖T (m + j, n)ϕ‖Y +
m+j−1∑

k=n

‖T (m + j, k + 1)‖ · ‖Gkxk‖.

On the other hand,

‖Gmxm‖ ≤ ‖Gm‖ · ‖xm‖Y ≤ ce−δεm‖xm‖Y . (27)
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By (19) and (27), we have

‖(Ux)(m + j)‖ ≤ De−λ(m+j−n)+εn‖ϕ‖Y

+
m−1∑

k=n

Dce−λ(m+j−k−1)+ε(k+1)e−δεk‖xk‖Y .

Moreover, since

‖xk‖Y ≤ 2De−λreγ(k,n)‖ϕ‖Y

we obtain

‖(Ux)(m + j)‖ ≤ De−λ(m+j−n)+εn‖ϕ‖Y

+ 2D2e−λrc‖ϕ‖Y

m−1∑

k=n

e−λ(m+j−k−1)+ε(k+1)−λ(k−n)+εn−δεk

≤ Deγ(m,n)e−λj‖ϕ‖Y

+ 2D2e−λrc‖ϕ‖Y e−λ(m+j−n−1)+εneε
m−1∑

k=n

eε(1−δ)k

≤ Deγ(m,n)e−λj‖ϕ‖Y +
2D2e−λr+εc

1 − eε(1−δ)
‖ϕ‖Y eγ(m,n)

≤ De−λreγ(m,n)‖ϕ‖Y (1 + cμ) ,

where

μ =
2Deε

1 − eε(1−δ)
.

Hence, in view of (25) we have

‖Ux‖ ≤ De−λr‖ϕ‖Y (1 + cμ) ≤ 2De−λr‖ϕ‖Y ,

taking c sufficiently small so that cμ < 1. Therefore, U(F ) ⊂ F . Now we show
that U is a contraction. By (26) we have

‖(Ux)(m + j) − (Uy)(m + j)‖ ≤
m−1∑

k=n

‖T (m + j, k + 1)‖ · ‖Gkxk − Gkyk‖

≤ D

m−1∑

k=n

e−λ(m+j−k−1)+ε(k+1)‖Gk‖ · ‖xk − yk‖Y

≤ Dc‖x − y‖
m−1∑

k=n

eγ(k,n)e−λ(m+j−k−1)+ε(k+1)e−δεk

≤ Dceε‖x − y‖eγ(m,n)
m−1∑

k=n

e(1−δ)εk

≤ Dceε

1 − e(1−δ)ε
eγ(m,n)‖x − y‖,
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which shows that

‖Ux − Uy‖ ≤ Dceε

1 − e(1−δ)ε
‖x − y‖.

Therefore, U is a contraction in the complete metric space F . Hence, U has a
unique fixed point in F , which thus satisfying (22). This completes the proof
of the theorem. �

Now we compare Theorems 5 and 6. As we already observed, when (10)
holds, Eqs. (1) and (18) coincide for m ≥ −r. In fact, under that assump-
tion, for any initial condition ϕ ∈ Y with ϕ(k) for k 	= 0, the two equations
coincide for m ≥ 0. On the other hand, one can easily verify that if Eq. (1)
is nonuniformly exponentially stable, then Eq. (18) admits a nonuniform ex-
ponential contraction. When r = 0 the converse also holds. However, when
r > 0, the converse may not hold (see Example 2 below), but still Theorem 6
shows that for the weaker notion of a nonuniform exponential contraction, if
condition (21) holds, then one can still obtain a robustness result. We note
that condition (21) is stronger than condition (16). Indeed, if the latter holds,
then

‖(Mm − Lm)ϕ‖ ≤
m∑

k=m+r

‖A(m, k)‖ · ‖ϕ(k − m)‖

≤ (−r + 1)De−εm‖ϕ‖Y ,

while condition (21) requires an exponential decay e−δεm for some δ > 1. In
other words, we require more in Theorem 6 although for a weaker notion. This
causes that none of the Theorems 5 and 6 implies the other one.

Example 2. An example of a nonuniform exponential contraction whose dy-
namics is not nonuniformly exponentially stable is the following. Take r = 1,

A(k, k) =

{
em(m−1), k = 2m,

e−m(m−1)−1, k = 2m − 1

and A(k, l) = 0 for l < k. Then x(k + 1) = ckx(0), where

ck =

{
e−m, k = 2m,

e−m2
, k = 2m − 1.

One can easily verify that

e−k/2 ≤ max{ck, ck−1} ≤ e(1−k)/2

and so the dynamics admits a nonuniform exponential contraction. On the
other hand, c2m/c2m−1 = em(m−1) which shows that the dynamics is not
nonuniformly exponentially stable.
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