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Abstract. For a dynamics on the whole line, both for discrete and
continuous time, we extend a result of Pliss that gives a characterization
of the notion of a trichotomy in various directions. More precisely, the
result gives a characterization in terms of an admissibility property in
the whole line (namely, the existence of bounded solutions of a linear
dynamics under any nonlinear bounded perturbation) of the existence
of a trichotomy, that is, of exponential dichotomies in the future and in
the past, together with a certain transversality condition at time zero.
In particular, we consider arbitrary linear operators acting on a Banach
space as well as sequences of norms instead of a single norm, which allows
considering the general case of a nonuniform exponential behavior.

1. Introduction

Our work is a contribution to what is usually called the admissibility the-
ory of differential equations and dynamical systems. The theory essentially
started with seminal work of Perron in [17] where he shows that the stability
or the conditional stability of a linear differential equation can be deduced
from the study of some nonlinear perturbations. More precisely, the con-
ditional stability along what is then the stable space of a linear differential
equation x′ = A(t)x on a finite-dimensional space can be deduced from
what is usually called an admissibility property of the equation: originally
this meant the existence of bounded solutions of the perturbed equation

x′ = A(t)x+ f(t)

on R+
0 for any bounded continuous perturbation f . A corresponding study

for discrete time was initiated by Li in [13]. In particular, it was proved by
Maizel’ in [14] (for an integrally bounded coefficient matrix) and by Coppel
in [7] (in the general case) that the admissibility property on R+

0 implies that
the linear equation admits an exponential dichotomy. For the description
of some early contributions we refer the reader to the books [15, 9, 8] (for
equations on finite-dimensional spaces) and [12] (for equations on infinite-
dimensional spaces). Related results for discrete time were obtained by
Coffman and Schäffer in [6]. For more recent references, we refer the reader
to [5, 11, 21].
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Our main interest in the paper is the class of dynamics on the whole
line, both for discrete and continuous time. For simplicity of the exposition,
here in the introduction we consider only the case of discrete time and of
(uniform) exponential dichotomies. More precisely, we consider the equation

xn+1 −Anxn = yn+1, n ∈ Z, (1)

where (An)n∈Z is a sequence of invertible bounded linear operators acting
on a Banach space X and (yn)n∈Z is a bounded sequence in this space. The
following result or, more precisely, an analogous version for continuous time,
was established by Pliss [20] in the finite-dimensional setting.

Theorem 1. For a finite-dimensional space X the following properties are
equivalent:

1. for each bounded sequence (yn)n∈Z, there exists a bounded solution
(xn)n∈Z of equation (1);

2. the sequences (Am)m≥0 and (Am)m≤0 admit exponential dichotomies,
and the stable space of the first is transverse to the unstable space of
the second.

See Section 2 for the notion of a (uniform) exponential dichotomy. Two
spaces are said to be transverse if their sum is the whole space. We refer
the reader to [18, 21] for details concerning Pliss’ result, which in particular
plays an important role in recent work connecting structural stability with
the shadowing property (see [19, 21]).

Our main objective is to obtain a generalization of Theorem 1 in various
directions:

1. we consider arbitrary Banach spaces instead of a finite-dimensional
space and linear operators An that are not necessarily invertible;

2. we consider sequences of norms instead of a single norm, which relates
naturally to the study of a nonuniform exponential behavior.

We emphasize that the class of nonuniform exponential dichotomies is much
larger than the class of uniform exponential dichotomies, particularly in the
context of ergodic theory (see [4] for details). For example, almost all tra-
jectories with nonzero Lyapunov exponents on any compact energy level of a
Hamiltonian system have a differential that admits a nonuniform exponen-
tial dichotomy, although in general not a uniform exponential dichotomy.

Theorem 1 should be compared with a related type of results in which to
the first property we add the requirement that the solution is unique. In
particular, we have the following result (see for example [10]).

Theorem 2. The following properties are equivalent:

1. for each bounded sequence (yn)n∈Z, there exists a unique bounded
solution (xn)n∈Z of equation (1);

2. the sequences (Am)m≥0 and (Am)m≤0 admit exponential dichotomies,
and the stable space of the first together with the unstable space of the
second form a direct sum;

3. the sequence (Am)m∈Z admits an exponential dichotomy.

We note that due to what is marked in bold, none of Theorems 1 and 2
is a consequence of the other.
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A priori it may seem that property 1 in Theorem 2 is somewhat more
natural due to the characterization given by property 3. However, it ex-
ists already in the literature a corresponding notion that is equivalent to
properties 1 and 2 in Theorem 1, namely that of a trichotomy (the name
is somewhat inconvenient since in the context of the hyperbolicity theory it
would be appropriate to use it in connection to the existence of a partially
hyperbolic behavior). The notion of a trichotomy is a generalization of the
notion of an exponential dichotomy in which the exponential behaviors into
the future and into the past need not agree at the origin, although they still
satisfy a certain compatibility condition. Namely, we say that a sequence
(Am)m∈Z admits a trichotomy if the sequences (Am)m≥0 and (Am)m≤0 admit
exponential dichotomies, say with projections P+

m and P−m , and

P+
0 P

−
0 = P−0 P

+
0 = P+

0 .

This type of behavior appeared for the first time in Coppel’s book [8]. In the
case of discrete time the notion was considered by Papaschinopoulos in [16].

Using the notion of a trichotomy one can rephrase Theorem 1 as follows
(see Section 3 for details).

Theorem 3. For a finite-dimensional space X the following properties are
equivalent:

1. for each bounded sequence (yn)n∈Z, there exists a bounded solution
(xn)n∈Z of equation (1);

2. the sequences (Am)m≥0 and (Am)m≤0 admit exponential dichotomies,
and the stable space of the first is transverse to the unstable space of
the second;

3. the sequence (Am)m∈Z admits a trichotomy.

Theorem 3 is a simple consequence of Theorem 6 that considers the more
general case of a nonuniform exponential behavior.

2. Nonuniform exponential dichotomies

LetX = (X, ‖·‖) be a Banach space and letB(X) be the set of all bounded
linear operators acting on X. Moreover, let I ∈ {Z+

0 ,Z
−
0 ,Z}, where

Z+
0 = {n ∈ Z : n ≥ 0} and Z−0 = {n ∈ Z : n ≤ 0}.

Given a sequence (Am)m∈I in B(X), we define

A(n,m) =

{
An−1 · · ·Am if n > m,

Id if n = m

for n,m ∈ I with n ≥ m. We say that (Am)m∈I admits a nonuniform
exponential dichotomy on I if:

1. there exist projections Pm ∈ B(X) for m ∈ I satisfying

A(n,m)Pm = PnA(n,m) for n ≥ m (2)

such that each map

A(n,m)|KerPm : KerPm → KerPn (3)

is one-to-one and onto;
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2. there exist constants λ,D > 0 and ε ≥ 0 such that for n,m ∈ I we
have

‖A(n,m)Pm‖ ≤ De−λ(n−m)+ε|m| (4)

for n ≥ m and

‖A(n,m)Qm‖ ≤ De−λ(m−n)+ε|m| (5)

for n ≤ m, where Qm = Id− Pm and

A(n,m) = (A(m,n)|KerPn)−1 : KerPm → KerPn

for n < m.

Moreover, we say that (Am)m∈I admits a (uniform) exponential dichotomy
on I if it admits a nonuniform exponential dichotomy on I with ε = 0. To
our best knowledge, the latter notion was first considered by Henry in [10]
(in the general noninvertible case and both for discrete and continuous time).

Incidentally, one could also consider the more general situation when the
map A(n,m)|KerPm in (3) is one-to-one, but not necessarily onto. A cor-
responding notion was first considered by Aulbach and Kalkbrenner in [1]
(when ε = 0). We note that they give an example showing that it is in
general impossible to give a characterization of that notion in terms of an
admissibility property, that is, in terms of the perturbations and solutions
of equation (1).

Now we consider a family of norms ‖·‖m on X for m ∈ I. We say that
(Am)m∈I admits a (uniform) exponential dichotomy on I with respect to
the norms ‖·‖m if there exist projections Pm ∈ B(X) for m ∈ I satisfying
property 1 and there exist constants λ,D > 0 such that

‖A(n,m)Pmx‖n ≤ De−λ(n−m)‖x‖m
for n ≥ m and x ∈ X, and

‖A(n,m)Qmx‖n ≤ De−λ(m−n)‖x‖m
for n ≤ m and x ∈ X.

Given a family of norms ‖·‖m on X for m ∈ Z, we denote by Y∞ the set
of all sequences x = (xn)n∈Z ⊂ X such that

‖x‖∞ = sup
n∈Z
‖xn‖n < +∞.

It is easy to verify that (Y∞, ‖·‖∞) is a Banach space. Moreover, let

S =

{
x ∈ X : sup

n≥0
‖A(n, 0)x‖n < +∞

}
and let U be the set of all x ∈ X for which there exists a sequence (zn)n≤0

such that
z0 = x, zn = An−1zn−1 for n ≤ 0 (6)

and supn≤0‖zn‖n < +∞. Clearly, S and U are (linear) subspaces of X.
Now we present the main result of this section. We recall that a subspace

Y ⊂ X is said to be complemented if there exists a closed subspace Z ⊂ X
such that X = Y ⊕ Z.

Theorem 4. For a sequence (Am)m∈Z in B(X), the following statements
are equivalent:
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1. (a) (Am)m≥0 admits a nonuniform exponential dichotomy on Z+
0

with projections P+
m ;

(b) (Am)m≤0 admits a nonuniform exponential dichotomy on Z−0
with projections P−m ;

(c)

X = ImP+
0 + KerP−0 . (7)

2. there exists a sequence of norms ‖·‖m on X for m ∈ Z such that:
(a) for each y = (yn)n∈Z ∈ Y∞, there exists x = (xn)n∈Z ∈ Y∞ such

that

xn+1 −Anxn = yn+1 for n ∈ Z; (8)

(b) the subspaces S and U are complemented;
(c) there exist C > 0 and ε ≥ 0 such that

‖x‖ ≤ ‖x‖n ≤ Ceε|n|‖x‖ for x ∈ X and n ∈ Z. (9)

Proof. Assume that property 1 holds. Without loss of generality, one can
assume that the constants in the notion of a nonuniform exponential di-
chotomy are the same for both dichotomies (on Z+

0 and on Z−0 ). Hence,
there exist constants D,λ > 0 and ε ≥ 0 such that

‖A(n,m)P+
m‖ ≤ De−λ(n−m)+εm for n ≥ m ≥ 0,

‖A(n,m)Q+
m‖ ≤ De−λ(m−n)+εm for 0 ≤ n ≤ m,

‖A(n,m)P−m‖ ≤ De−λ(n−m)+ε|m| for 0 ≥ n ≥ m,

‖A(n,m)Q−m‖ ≤ De−λ(m−n)+ε|m| for n ≤ m ≤ 0,

(10)

where Q+
m = Id− P+

m and Q−m = Id− P−m . For each n ∈ Z and x ∈ X, let

‖x‖n =

{
‖x‖+n if n ≥ 0,

‖x‖−n if n < 0,

where

‖x‖+m = sup
n≥m

(
‖A(n,m)P+

mx‖eλ(n−m)
)

+ sup
0≤n≤m

(
‖A(n,m)Q+

mx‖eλ(m−n)
)

and

‖x‖−m = sup
0≥n≥m

(
‖A(n,m)P−mx‖eλ(n−m)

)
+ sup
n≤m

(
‖A(n,m)Q−mx‖eλ(m−n)

)
.

We have

‖x‖+m ≥ ‖P+
mx‖+ ‖Q+

mx‖ ≥ ‖P+
mx+Q+

mx‖ = ‖x‖
and

‖x‖−m ≥ ‖P−mx‖+ ‖Q−mx‖ ≥ ‖P−mx+Q−mx‖ = ‖x‖.
On the other hand, using (10) we obtain

‖x‖+m ≤ Deεm‖x‖+Deεm‖x‖ = 2Deεm‖x‖
and

‖x‖−m ≤ Deε|m|‖x‖+Deε|m|‖x‖ = 2Deε|m|‖x‖.
Therefore,

‖x‖ ≤ ‖x‖n ≤ 2Deε|n|‖x‖ for n ∈ Z and x ∈ X.
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This shows that (9) holds with C = 2D. Moreover,

‖A(n,m)P+
mx‖+n ≤ e−λ(n−m)‖x‖+m for n ≥ m ≥ 0,

‖A(n,m)Q+
mx‖+n ≤ e−λ(m−n)‖x‖+m for 0 ≤ n ≤ m,

‖A(n,m)P−mx‖−n ≤ e−λ(n−m)‖x‖−m for 0 ≥ n ≥ m,

‖A(n,m)Q−mx‖−n ≤ e−λ(m−n)‖x‖−m for n ≤ m ≤ 0.

(11)

Lemma 1. We have ImP+
0 = S.

Proof of the lemma. It follows from (11) that

sup
m≥0
‖A(m, 0)x‖+m < +∞ (12)

for x ∈ ImP+
0 . Now take x ∈ X satisfying (12). Since x = P+

0 x + Q+
0 x, it

follows from (11) that

sup
m≥0
‖A(m, 0)Q+

0 x‖
+
m = sup

m≥0
‖A(m, 0)(x− P+

0 x)‖+m

≤ sup
m≥0
‖A(m, 0)x‖+m + sup

m≥0
‖A(m, 0)P+

0 x‖
+
m < +∞.

On the other hand, again by (11), for m ≥ 0 we have

‖Q+
0 x‖

+
0 = ‖A(0,m)A(m, 0)Q+

0 x‖
+
0 ≤ e

−λm‖A(m, 0)Q+
0 x‖

+
m.

Letting m→∞ we obtain Q+
0 x = 0 and so x = P+

0 x ∈ ImP+
0 . �

Lemma 2. We have ImQ−0 = U .

Proof of the lemma. Clearly, x ∈ U for each x ∈ ImQ−0 . Now take x ∈ U
and write zn = P−n zn +Q−n zn for n ≤ 0 (with zn as in (6)). By (2) we have

A(0, n)P−n zn = P−0 x and A(0, n)Q−n zn = Q−0 x

for n ≤ 0. Hence, it follows from (11) that supn≤0‖P−n zn‖−n < +∞. On the
other hand, again by (11), for n ≤ 0 we have

‖P−0 x‖
−
0 = ‖A(0, n)P−n zn‖−n ≤ eλn‖P−n zn‖−n .

Letting n→ −∞ we obtain P−0 x = 0 and so x = Q−0 x ∈ ImQ−0 . �

It follows from Lemmas 1 and 2 that the spaces S and U are comple-
mented. Now we consider the space

Y + =

{
x = (xn)n≥0 ⊂ X : sup

n≥0
‖xn‖n < +∞

}
.

Lemma 3. For each y = (yn)n≥0 ∈ Y + with y0 = 0, there exists x =
(xn)n≥0 ∈ Y + with x0 ∈ ImQ−0 such that

xn+1 −Anxn = yn+1 for n ≥ 0. (13)

Proof of the lemma. For each n ≥ 0, let

x∗n =

n∑
k=0

A(n, k)P+
k yk −

∞∑
k=n+1

A(n, k)Q+
k yk.
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It follows from (11) that
n∑
k=0

e−λ(n−k)‖yk‖+k +

∞∑
k=n+1

e−λ(k−n)‖yk‖+k ≤
1 + e−λ

1− e−λ
sup
k≥0
‖yk‖+k

for n ≥ 0 and so x∗ = (x∗n)n≥0 ∈ Y +. By (7), one can write x∗0 = x′0 + x′′0,
with x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . Now let

xn = x∗n −A(n, 0)x′0 for n ≥ 0.

Then x = (xn)n≥0 ∈ Y + and x0 ∈ ImQ−0 . Moreover, one can easily verify
that (13) holds. �

Take y = (yn)n∈Z ∈ Y∞ with yn = 0 for n ≤ 0. By Lemma 3, there exists
x∗ = (x∗n)n≥0 ∈ Y + such that x∗0 ∈ ImQ−0 and

x∗n+1 −Anx∗n = yn+1 for n ≥ 0.

Let

xn =

{
x∗n if n ≥ 0,

A(n, 0)x∗0 if n < 0.
(14)

Clearly, x = (xn)n∈Z ∈ Y∞ and (8) holds.
We also consider the space

Y − =

{
x = (xn)n≤0 ⊂ X : sup

n≤0
‖xn‖n < +∞

}
.

Lemma 4. For each y = (yn)n≤0 ∈ Y −, there exists x = (xn)n≤0 ∈ Y −

with x0 ∈ ImP+
0 such that

xn+1 −Anxn = yn+1 for n ≤ −1. (15)

Proof of the lemma. For each n ≤ 0, let

x∗n = −
0∑

k=n+1

A(n, k)Q−k yk +
n∑

k=−∞
A(n, k)P−k yk.

It follows from (11) that x∗ = (x∗n)n≤0 ∈ Y −. By (7), one can write x∗0 =
x′0 + x′′0, with x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . Let

xn = x∗n −A(n, 0)x′′0 for n ≤ 0.

Then x = (xn)n≤0 ∈ Y − and x0 ∈ ImP+
0 . Moreover, one can easily verify

that (15) holds. �

Take y = (yn)n∈Z ∈ Y∞ with yn = 0 for n > 0. By Lemma 4, there exists
x∗ = (x∗n)n≤0 ∈ Y − such that x∗0 ∈ ImP+

0 and

x∗n+1 −Anx∗n = yn+1 for n ≤ −1.

Let

xn =

{
x∗n if n ≤ 0,

A(n, 0)x∗0 if n > 0.
(16)

Clearly, x = (xn)n∈Z ∈ Y∞ and (8) holds.
Now we observe that each sequence y ∈ Y∞ can be written in the form

y = y1 + y2, with y1,y2 ∈ Y∞ such that y1
n = 0 for n ≤ 0 and y2

n = 0 for
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n > 0. We obtain a solution of (8) by adding the sequences in (14) and (16).
This establishes property 2 in the theorem.

Now we assume that property 2 holds. Since S and U are complemented,
there exist closed subspaces Z1 and Z2 of X such that

X = S ⊕ Z1 = U ⊕ Z2.

Lemma 5. For each (yn)n≥0 ∈ Y + with y0 = 0, there exists a unique
(xn)n≥0 ∈ Y + such that x0 ∈ Z1 and (13) holds.

Proof of the lemma. Since property 2 holds, there exists (x∗n)n≥0 ∈ Y + such
that

x∗n+1 −Anx∗n = yn+1 for n ≥ 0.

Write x∗0 = y + z, with y ∈ S and z ∈ Z1. Let

xn = x∗n −A(n, 0)y, n ≥ 0.

It follows from the definition of S that (xn)n≥0 ∈ Y + and x0 = z ∈ Z1.
In order to establish the uniqueness of the solution, take (x′n)n≥0 ∈ Y +

such that x′0 ∈ Z1 and (13) holds. Then

xn − x′n = A(n, 0)(x0 − x′0) for n ≥ 0

and so x0 − x′0 ∈ S. On the other hand, we also have x0 − x′0 ∈ Z1, which
shows that x0 = x′0 (since X = S ⊕ Z1). Therefore, xn = x′n for n ≥ 0. �

The proof of the following lemma is completely analogous.

Lemma 6. For each (yn)n≤0 ∈ Y −, there exists a unique (xn)n≤0 ∈ Y −

such that x0 ∈ Z2 and (15) holds.

By Lemmas 5 and 6 together with Theorem 2 in [3], the sequence (Am)m∈Z
admits nonuniform exponential dichotomies with respect to sequence of
norms ‖·‖n both on Z+

0 and Z−0 . Denoting the corresponding projections
respectively by P+

m for m ≥ 0 and P−m for m ≤ 0, we have ImP+
0 = S and

KerP−0 = U . Hence, there exist constants λ,D > 0 such that

‖A(n,m)P+
mx‖n ≤ De−λ(n−m)‖x‖m for n ≥ m ≥ 0,

‖A(n,m)Q+
m‖n ≤ De−λ(m−n)‖x‖m for 0 ≤ n ≤ m,

‖A(n,m)P−mx‖n ≤ De−λ(n−m)‖x‖m for 0 ≥ n ≥ m,

‖A(n,m)Q−mx‖n ≤ De−λ(m−n)‖x‖m for n ≤ m ≤ 0,

where Q+
m = Id− P+

m and Q−m = Id− P−m . By (9), we conclude that

‖A(n,m)P+
m‖ ≤ CDe−λ(n−m)+εm for n ≥ m ≥ 0,

‖A(n,m)Q+
m‖ ≤ CDe−λ(m−n)+εm for 0 ≤ n ≤ m,

‖A(n,m)P−m‖ ≤ CDe−λ(n−m)+ε|m| for 0 ≥ n ≥ m,

‖A(n,m)Q−m‖ ≤ CDe−λ(m−n)+ε|m| for n ≤ m ≤ 0,

and so the sequence (Am)m∈Z admits nonuniform exponential dichotomies
both on Z+

0 and Z−0 . It remains to show that (7) holds. Take v ∈ X and
consider the sequence y = (yn)n∈Z with y0 = v and yn = 0 for n 6= 0. Clearly,
y ∈ Y∞. Hence, there exists x = (xn)n∈Z such that (8) holds. In particular,
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xn = A(n, 0)x0 for n ≥ 0 and A−1x−1 = A(0, n)xn for n ≤ −1. Therefore,
x0 ∈ S = ImP+

0 , A−1x−1 ∈ U = KerP−0 and so v ∈ ImP+
0 + KerP−0 . This

completes the proof of the theorem. �

3. Nonuniform exponential trichotomies

It turns out that for linear operators acting on a finite-dimensional space,
property 1 in Theorem 4 is equivalent to the notion of a nonuniform expo-
nential trichotomy. In this section we always assume that the space X is
finite-dimensional and that the operators An are invertible.

We say that a sequence (An)n∈Z admits a nonuniform exponential tri-
chotomy if:

1. (Am)m≥0 admits a nonuniform exponential dichotomy on Z+
0 with

projections P+
m ;

2. (Am)m≤0 admits a nonuniform exponential dichotomy on Z−0 with
projections P−m ;

3.

P−0 = P−0 P
+
0 = P+

0 P
−
0 . (17)

Theorem 5. Conditions (7) and (17) can be interchanged in the notion of
a nonuniform exponential trichotomy, up to the eventual need of considering
different projections.

Proof. Assume that (17) holds. Then ImP−0 ⊂ ImP+
0 . Hence,

dim ImP+
0 + dim KerP−0 = n+ dim ImP+

0 − dim ImP−0 ≥ n,

and so (7) holds. Now assume that (7) holds. Since X is finite-dimensional,
one can choose subspaces Z1 ⊂ KerP−0 and Z2 ⊂ ImP+

0 such that

X = ImP+
0 ⊕ Z1 and X = Z2 ⊕KerP−0 .

Let P̃+
0 : X → ImP+

0 and P̃−0 : X → Z2 be the projections associated, re-
spectively, to each decomposition.

Lemma 7. Assume that the sequence (Am)m≥0 admits a nonuniform ex-
ponential dichotomy on Z+

0 with projections Pm. If P ′m, for m ∈ Z+
0 , are

projections such that

P ′mA(m,n) = A(m,n)P ′n for m,n ∈ Z+
0 and ImP0 = ImP ′0, (18)

then (Am)m≥0 admits a nonuniform exponential dichotomy on Z+
0 with re-

spect to the projections P ′m.

Proof of the lemma. By the second equality in (18), we have P0P
′
0 = P ′0 and

P ′0P0 = P0. Hence,

P0 − P ′0 = P0(P0 − P ′0) = (P0 − P ′0)Q0.
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It follows from (4) and (5) that

‖A(n, 0)(P0 − P ′0)v‖ = ‖A(n, 0)P0(P0 − P ′0)v‖

≤ De−λn‖(P0 − P ′0)v‖

= De−λn‖(P0 − P ′0)Q0v‖

≤ De−λn‖P0 − P ′0‖ · ‖Q0v‖

= De−λn‖P0 − P ′0‖ · ‖A(0,m)A(m, 0)Q0v‖

= De−λn‖P0 − P ′0‖ · ‖A(0,m)QmA(m, 0)v‖

≤ D2e−λn−λm+εm‖P0 − P ′0‖ · ‖A(m, 0)v‖

for each m,n ∈ Z+
0 and v ∈ X. Therefore,

‖A(n,m)P ′mv‖ ≤ ‖A(n,m)Pmv‖+ ‖A(n,m)(Pm − P ′m)v‖
= ‖A(n,m)Pmv‖+ ‖A(n, 0)(P0 − P ′0)A(0,m)v‖

≤ De−λ(n−m)+εm‖v‖+D2e−λ(n−m)+εm‖P0 − P ′0‖ · ‖v‖

= D′e−λ(n−m)+εm‖v‖
for n ≥ m, where

D′ = D +D2‖P0 − P ′0‖.
Similarly,

‖A(n,m)Q′mv‖ ≤ ‖A(n,m)Qmv‖+ ‖A(n,m)(Pm − P ′m)v‖
= ‖A(n,m)Qmv‖+ ‖A(n, 0)(P0 − P ′0)A(0,m)v‖

≤ De−λ(m−n)+εm‖v‖+D2e−λ(m−n)+εm‖P0 − P ′0‖ · ‖v‖

= D′e−λ(m−n)+εm‖v‖

for n ≤ m, where Q′m = Id− P ′m. We conclude that the sequence (Am)m≥0

admits a nonuniform exponential dichotomy on Z+
0 with respect to the pro-

jections P ′m. �

The following result can be obtained in an analogous manner to that in
the proof of Lemma 7.

Lemma 8. Assume that the sequence (Am)m≤0 admits a nonuniform ex-
ponential dichotomy on Z−0 with projections Pm. If P ′m, for m ∈ Z−0 , are
projections such that

P ′mA(m,n) = A(m,n)P ′n for m,n ∈ Z−0 and KerP0 = KerP ′0,

then (Am)m≤0 admits a nonuniform exponential dichotomy on Z−0 with re-
spect to the projections P ′m.

It follows from Lemmas 7 and 8 that the sequence (Am)m≥0 admits a

nonuniform exponential dichotomy on Z+
0 with projections P̃+

m and that the
sequence (Am)m≤0 admits a nonuniform exponential dichotomy on Z−0 with

projections P̃−m , where

P̃+
m = A(m, 0)P̃+

0 A(0,m) and P̃−m = A(m, 0)P̃−0 A(0,m).

Finally, it is easy to verify that P̃+
0 and P̃−0 satisfy (17). �
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The following result is now a direct consequence of Theorems 4 and 5.

Theorem 6. For a sequence (Am)m∈Z of invertible d × d matrices, the
following statements are equivalent:

1. (Am)m∈Z admits a nonuniform exponential trichotomy;
2. there exists a sequence of norms ‖·‖m on Rd for m ∈ Z such that:

(a) for each y = (yn)n∈Z ∈ Y∞, there exists x = (xn)n∈Z ∈ Y∞ such
that

xn+1 −Anxn = yn+1 for n ∈ Z;

(b) there exist C > 0 and ε ≥ 0 such that

‖x‖ ≤ ‖x‖n ≤ Ceε|n|‖x‖ for x ∈ Rd and n ∈ Z. (19)

Now we use Theorem 6 to establish the robustness of the notion of a
nonuniform exponential trichotomy.

Theorem 7. Let (Am)m∈Z and (Bm)m∈Z be two sequences of invertible d×d
matrices such that:

1. (Am)m∈Z admits a nonuniform exponential trichotomy;
2. there exists c > 0 such that

‖Am −Bm‖ ≤ ce−ε|m| for m ∈ Z. (20)

If c is sufficiently small, then the sequence (Bm)m∈Z also admits a nonuni-
form exponential trichotomy.

Proof. Let ‖·‖n, for n ∈ Z, be a sequence of norms as in Theorem 6. We
claim that for each y = (yn)n∈Z ∈ Y∞, there exists x = (xn)n∈Z ∈ Y∞ such
that

xn+1 −Bnxn = yn+1 for n ∈ Z. (21)

It follows from (19) and (20) that

‖(An−1 −Bn−1)x‖n ≤ cD‖x‖n for n ∈ Z and x ∈ Rd,
where D = Ceε. Take y = (yn)n∈Z ∈ Y∞. By Theorem 6, there exists
x0 = (x0

n)n∈Z ∈ Y∞ such that

x0
n+1 −Anx0

n = yn+1 for n ∈ Z.

Moreover, it follows from the proofs of Lemmas 3 and 4 that x0 can be
chosen so that

‖x0‖∞ ≤
1 + e−λ

1− e−λ
‖y‖∞.

Now we proceed by induction. Assume that we have constructed a sequence
xi−1 = (xi−1

n )n∈Z ∈ Y∞ satisfying

‖xi−1‖∞ ≤ (cD)i−1

(
1 + e−λ

1− e−λ

)i
‖y‖∞.

Let
yin = (Bn−1 −An−1)xi−1

n−1, n ∈ Z.
Then yi = (yin)n∈Z ∈ Y∞ and

‖yi‖ ≤
(
cD

1 + e−λ

1− e−λ

)i
‖y‖∞.
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By Theorem 6, there exists xi = (xin)n∈Z ∈ Y∞ such that

xin+1 −Anxin = yin+1 for n ∈ Z,

satisfying

‖xi‖∞ ≤
1 + e−λ

1− e−λ
‖yi‖∞ ≤ (cD)i

(
1 + e−λ

1− e−λ

)i+1

‖y‖∞.

Finally, let x =
∑∞

i=0 x
i. It follows from the above estimates that for c so

small such that

cD
1 + e−λ

1− e−λ
< 1,

the sequence x is well-defined. Moreover, we have

xn+1 −Anxn =

∞∑
i=0

(xin+1 −Anxin)

= yn+1 +

∞∑
i=1

yin+1

= yn+1 +

∞∑
i=1

(Bn −An)xi−1
n

= yn+1 + (Bn −An)xn,

which shows that (21) holds. The conclusion of the theorem follows now
directly from Theorem 6. �

4. The case of continuous time

We continue to denote by B(X) the set of all bounded linear operators
acting on a Banach space X. Let I ∈ {R,R+

0 ,R
−
0 }. A family T (t, τ), for

t, τ ∈ I with t ≥ τ , of linear operators in B(X) is called an evolution family
on I if:

1. T (t, t) = Id for t ∈ I;
2. T (t, s)T (s, τ) = T (t, τ) for t, s, τ ∈ I with t ≥ s ≥ τ ;
3. for each t, τ ∈ I and x ∈ X, the maps

(−∞, t] ∩ I 3 s 7→ T (t, s)x and [τ,∞) ∩ I 3 s 7→ T (s, τ)x

are continuous.

We say that an evolution family T (t, τ) on I admits an nonuniform expo-
nential dichotomy on I if:

1. there exist projections Pt ∈ B(X) for t ∈ I satisfying

PtT (t, τ) = T (t, τ)Pτ for t ≥ τ

such that each map

T (t, τ)|KerPτ : KerPτ → KerPt

is invertible;
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2. there exist constants λ,D > 0 and ε ≥ 0 such that for t, τ ∈ I we
have

‖T (t, τ)Pτ‖ ≤ De−λ(t−τ)+ε|τ | (22)

for t ≥ τ and

‖T (t, τ)Qτ‖ ≤ De−λ(τ−t)+ε|τ | (23)

for t ≤ τ , where Qτ = Id− Pτ and

T (t, τ) = (T (τ, t)|KerPt)
−1 : KerPτ → KerPt

for t < τ .

Given a family of norms ‖·‖t on X for t ∈ R, we consider the spaces

Y∞ =

{
x : R→ X continuous : ‖x‖∞ := sup

t∈R
‖x(t)‖t < +∞

}
and

Y1 =

{
x : R→ X measurable : ‖x‖1 := sup

t∈R

∫ t+1

t
‖x(τ)‖τ dτ < +∞

}
.

Then (Y∞, ‖·‖∞) and (Y1, ‖·‖1) are Banach spaces (in the case of Y1 iden-
tifying functions that are equal Lebesgue-almost everywhere). Moreover,
let

S =

{
x ∈ X : sup

t≥0
‖T (t, 0)x‖t < +∞

}
and let U be the set of all v ∈ X for which there exists a continuous function
x : (−∞, 0] → X such that x(0) = v, x(t) = T (t, τ)x(τ) for t ∈ [τ, 0] and
supt≤0‖x(t)‖t < +∞. Clearly, S and U are subspaces of X.

The following result is a version of Theorem 1 for evolution families.

Theorem 8. For an evolution family T (t, τ) in B(X), the following state-
ments are equivalent:

1. (a) T (t, τ) admits a nonuniform exponential dichotomy on R+
0 with

projections P+
t ;

(b) T (t, τ) admits a nonuniform exponential dichotomy on R−0 with
projections P−t ;

(c)

X = ImP+
0 + KerP−0 . (24)

2. there exists a family of norms ‖·‖t on X for t ∈ R such that:
(a) for each y ∈ Y1, there exists x ∈ Y∞ such that

x(t) = T (t, τ)x(τ) +

∫ t

τ
T (t, s)y(s) ds for t ≥ τ ; (25)

(b) the subspaces S and U are complemented;
(c) there exist C > 0 and ε ≥ 0 such that

‖x‖ ≤ ‖x‖t ≤ Ceε|t|‖x‖ for x ∈ X and t ∈ R. (26)

Proof. We first assume that property 1 holds. For each t ≥ 0 and x ∈ X,
let

‖x‖+t = sup
τ≥t

(
‖T (τ, t)P+

t x‖eλ(τ−t))+ sup
0≤τ≤t

(
‖T (τ, t)Q+

t x‖eλ(t−τ)
)
.
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It follows from (22) and (23) that

‖x‖ ≤ ‖x‖+t ≤ Deεt‖x‖ for t ≥ 0 and x ∈ X. (27)

Moreover,

‖T (t, τ)P+
τ x‖+t ≤ e−λ(t−τ)‖x‖+τ (28)

for t ≥ τ ≥ 0 and x ∈ X, and

‖T (t, τ)P+
τ x‖+t ≤ e−λ(τ−t)‖x‖+τ (29)

for 0 ≤ t ≤ τ and x ∈ X.
Analogously, for each t ≤ 0 and x ∈ X, let

‖x‖−t = sup
0≥τ≥t

(
‖T (τ, t)P−t x‖eλ(τ−t))+ sup

τ≤t

(
‖T (τ, t)Q−t x‖eλ(t−τ)

)
.

It follows from (22) and (23) that

‖x‖ ≤ ‖x‖−t ≤ Deε|t|‖x‖ for t ≤ 0 and x ∈ X. (30)

Moreover,

‖T (t, τ)P−τ x‖−t ≤ e−λ(t−τ)‖x‖−t (31)

for 0 ≥ t ≥ τ and x ∈ X, and

‖T (t, τ)Q−τ x‖−t ≤ e−λ(τ−t)‖x‖−τ (32)

for t ≤ τ ≤ 0 and x ∈ X.
In addition, one can show that

s 7→ ‖T (s, t)x‖+s is continuous on [t,+∞)

for t ≥ 0 and x ∈ X, and that

s 7→ ‖T (s, t)x‖−s is continuous on [t, 0]

for t ≤ 0 and x ∈ X. Finally, for each t ∈ R and x ∈ X, let

‖x‖t =

{
‖x‖+t if t ≥ 0,

‖x‖−t if t < 0.

It follows from (27) and (30) that

‖x‖ ≤ ‖x‖t ≤ 2Deε|t|‖x‖ for x ∈ X and t ∈ R.

This shows that (26) holds with C = 2D. The following lemma can be
obtained in an analogous manner to that in the proofs of Lemmas 1 and 2.

Lemma 9. We have

ImP+
0 = S and ImQ−0 = U .

It particular, it follows from Lemma 9 that S and U are complemented.
Now we introduce auxiliary spaces. Let

Y +
∞ =

{
x : R+

0 → X continuous : sup
t≥0
‖x(t)‖t < +∞

}
and

Y +
1 =

{
x : R+

0 → X measurable : sup
t≥0

∫ t+1

t
‖x(τ)‖τ dτ < +∞

}
.
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Lemma 10. For each y ∈ Y +
1 , there exists x ∈ Y +

∞ with x(0) ∈ ImQ−0 such
that

x(t) = T (t, τ)x(τ) +

∫ t

τ
T (t, s)y(s) ds for t ≥ τ ≥ 0. (33)

Proof of the lemma. Take y ∈ Y +
1 and extend it to a function y : R→ X by

letting y(t) = 0 for t < 0. Moreover, for t ≥ 0, let

x∗1(t) =

∫ t

0
T (t, τ)Pτy(τ) dτ and x∗2(t) =

∫ ∞
t

T (t, τ)Qτy(τ) dτ.

It follows from (28) that

‖x∗1(t)‖t ≤
∫ t

−∞
‖T (t, τ)P+

τ y(τ)‖t dτ

≤
∫ t

−∞
e−λ(t−τ)‖y(τ)‖τ dτ

=
∞∑
m=0

∫ t−m

t−m−1
e−λ(t−τ)‖y(τ)‖τ dτ

≤
∞∑
m=0

e−λm
∫ t−m

t−m−1
‖y(τ)‖τ dτ

≤ 1

1− e−λ
sup
t≥0

∫ t+1

t
‖y(τ)‖τ dτ

for t ≥ 0. Similarly, by (29),

‖x∗2(t)‖t ≤
1

1− e−λ
sup
t≥0

∫ t+1

t
‖y(τ)‖τ dτ

for t ≥ 0. The estimates also show that x∗1(t) and x∗2(t) are well-defined.
Now let x∗(t) = x∗1(t)−x∗2(t). Clearly, supt≥0‖x∗(t)‖t < +∞. For t ≥ τ ≥ 0,
we have

x∗(t) =

∫ t

τ
T (t, s)y(s) ds−

∫ t

τ
T (t, s)P+

s y(s) ds−
∫ t

τ
T (t, s)Q+

s y(s) ds

+

∫ t

0
T (t, s)P+

s y(s) ds−
∫ ∞
t

T (t, s)Q+
s y(s) ds

=

∫ t

τ
T (t, s)y(s) ds+

∫ τ

0
T (t, s)P+

s y(s) ds−
∫ ∞
τ

T (t, s)Q+
s y(s) ds

=

∫ t

τ
T (t, s)y(s) ds+ T (t, τ)x∗(τ)

and so identity (33) holds with x replaced by x∗. In particular, this implies
that x∗ is continuous and so x∗ ∈ Y +

∞ . By (24), one can write x∗(0) = x′0+x′′0,
with x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . We define a function x : R+
0 → X by

x(t) = x∗(t)− T (t, 0)x′0

for t ≥ 0. Then x ∈ Y +
∞ , x(0) ∈ ImQ−0 and (33) holds. �
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Take y ∈ Y1 with y(t) = 0 for t < 0. By Lemma 10, there exists x∗ ∈ Y +
∞

such that (33) holds and x∗(0) ∈ ImQ−0 . Let

x(t) =

{
x∗(t) if t ≥ 0,

T (t, 0)x∗(0) if t < 0.
(34)

Clearly, x ∈ Y∞ and (25) holds.
Similarly, let

Y −∞ =

{
x : R−0 → X continuous : sup

t≤0
‖x(t)‖−t < +∞

}
and

Y −1 =

{
x : R−0 → X measurable : sup

t≤0

∫ t

t−1
‖x(τ)‖−τ dτ < +∞

}
.

Lemma 11. For each y ∈ Y −1 , there exists x ∈ Y −∞ with x(0) ∈ ImP+
0 such

that

x(t) = T (t, τ)x(τ) +

∫ t

τ
T (t, s)y(s) ds for 0 ≥ t ≥ τ. (35)

Proof of the lemma. Take y ∈ Y −1 . For t ≤ 0, let

x∗(t) = −
∫ 0

t
T (t, τ)Q−τ y(τ) dτ +

∫ t

−∞
T (t, τ)P−τ y(τ) dτ.

It follows from inequalities (31) and (32) that x∗(t) is well-defined and that
supt≤0‖x∗(t)‖−t < +∞. Moreover, one can easily verify that identity (35)
holds with x replaced by x∗. By (24), one can write x∗(0) = x′0 + x′′0, with
x′0 ∈ ImP+

0 and x′′0 ∈ ImQ−0 . We define a function x : R−0 → X by

x(t) = x∗(t)− T (t, 0)x′′0

for t ≤ 0. Then x ∈ Y −, x(0) ∈ ImP+
0 and (35) holds. �

Take y ∈ Y1 with y(t) = 0 for t ≥ 0. By Lemma 11, there exists x∗ ∈ Y −∞
such that (35) holds and x∗(0) ∈ ImP+

0 . Let

x(t) =

{
x∗(t) if t ≤ 0,

T (t, 0)x∗(0) if t > 0.
(36)

Clearly, x ∈ Y and (25) holds.
Finally, we observe that each function y ∈ Y1 can be written in the form

y = y1 + y2, with y1, y2 ∈ Y1 such that y1(t) = 0 for t ≤ 0 and y2(t) = 0 for
t > 0. We obtain a solution of (25) by adding the solutions in (34) and (36).
This establishes property 2 in the theorem.

Now we establish the converse. Assume that property 2 holds. Since S
and U are complemented, there exists closed subspaces Z1 and Z2 of X such
that

X = S ⊕ Z1 = U ⊕ Z2.

The following lemma can be obtained in an analogous manner to that in the
proofs of Lemmas 5 and 6.
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Lemma 12. For each y ∈ Y +
1 , there exists a unique x ∈ Y +

∞ such that
x(0) ∈ Z1 and (33) holds. Moreover, for each y ∈ Y −1 , there exists a unique
x ∈ Y −∞ such that x(0) ∈ Z2 and (35) holds.

By Lemma 12 together with Theorem 2 in [2], the evolution family T (t, τ)
admits exponential dichotomies with respect to a family of norms ‖·‖t both
on R+

0 and R−0 .
Proceeding as in the proof of Theorem 4, we find that the evolution family

T (t, τ) admits nonuniform exponential dichotomies both on R+
0 and R−0 , say

with projections, respectively, P+
t for t ≥ 0 and P−t for t ≤ 0. Moreover,

ImP+
0 = S and KerP−0 = U .

It remains to establish (24). Take v ∈ X and define y : R → X by y(t) =
T (t, 0)vχ[0,1](t) for t ∈ R. Clearly, y ∈ Y1 and so there exists x ∈ Y∞ such
that (25) holds. In particular, we have x(t) = T (t, τ)x(τ) for 0 ≥ t ≥ τ and

x(t) = T (t, 0)(x(0) + v)

for t ≥ 1. Hence, x(0) ∈ KerP−0 and x(0) + v ∈ ImP+
0 , which shows that

v ∈ ImP+
0 + KerP−0 . �

In a similar manner to that in Section 3, for linear operators acting on
a finite-dimensional space, property 1 in Theorem 8 is equivalent to the
notion of a nonuniform exponential trichotomy (for continuous time). The
arguments are analogous to those in Section 3 and so we omit them.
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