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a b s t r a c t 

We show that the existence of a nonuniform exponential dichotomy for a one-sided se- 

quence ( A m ) m ≥ 0 of invertible d × d matrices is equivalent to the Fredholm property of a 

certain linear operator between spaces of bounded sequences. Moreover, for a two-sided 

sequence (A m ) m ∈ Z we show that the existence of a nonuniform exponential dichotomy im- 

plies that a related operator S is Fredholm and that if it is Fredholm, then the sequence 

admits nonuniform exponential dichotomies on Z + 
0 

and Z −
0 

. We also give conditions on S 

so that the sequence admits a nonuniform exponential dichotomy on Z . Finally, we use the 

former characterizations to establish the robustness of the notion of a nonuniform expo- 

nential dichotomy. 

© 2016 Elsevier Ltd. All rights reserved. 
1. Introduction 

1.1. From uniform to nonuniform exponential behavior 

Our main aim is to discuss the relation between the 

existence of a nonuniform exponential dichotomy for a 

sequence of invertible d × d matrices (see Section 2 for 

the definition) and the Fredholm property of a certain 

linear operator. Related results were first obtained by 

Palmer [14,15] for ordinary differential equations and 

uniform exponential dichotomies. Further results were 

obtained by Lin [11] for functional differential equations, 

by Blázquez [6] , Rodrigues and Silveira [20] , Zeng [23] 
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and Zhang [24] for parabolic evolution equations, and by 

Chow and Leiva [7] , Sacker and Sell [21] and Rodrigues 

and Ruas-Filho [19] for abstract evolution equations. We 

emphasize that all these works consider only uniform 

exponential dichotomies. 

In comparison to the classical notion of a uniform expo- 

nential dichotomy, the notion of a nonuniform exponential 

dichotomy corresponds to a much weaker requirement. For 

example, in the context of ergodic theory almost all linear 

variational equations with nonzero Lyapunov exponents of 

a measure-preserving flow (such as any Hamiltonian flow 

restricted to a compact hypersurface) admit a nonuniform 

exponential dichotomy (see for example [4] ). On the other 

hand, the extra exponentials in the notion of a nonuniform 

exponential dichotomy (see (5) and (6) ) complicate a cor- 

responding study. 

In order to circumvent this difficulty we shall use Lya- 

punov norms (see Proposition 4 ). These are norms adapted 

to each particular dynamics with respect to which a 

nonuniform exponential dichotomy becomes uniform (the 

crucial properties of the Lyapunov norms are those in (3), 

(4) and (7) ). The use of Lyapunov norms in the study of 
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nonuniform hyperbolicity goes back to seminal work of

Pesin [16] (see also [4,5] ). 

Incidentally, an alternative characterization of a nonuni-

form exponential behavior that does not involve construct-

ing Lyapunov norms a priori was developed in [10] in the

context of ergodic theory (when the nonuniform part of

the exponential dichotomy can be made arbitrarily small).

The characterization is expressed in terms of the invertibil-

ity of certain linear operators on Fréchet spaces. 

1.2. Brief formulation of our results 

As noted above, our main aim is to discuss the rela-

tion between the existence of a nonuniform exponential

dichotomy for a sequence of matrices and the Fredholm

property of a certain linear operator. 

More precisely, we consider separately the cases of one-

sided and two-sided sequences. Let 

l ∞ = 

{
x = (x m 

) m ≥0 ⊂ R 

d : sup 

m ≥0 

‖ x m 

‖ m 

< + ∞ 

}

for some norms ‖ · ‖ m 

on R 

d , for m ≥ 0, and denote by

l ∞ 

0 
the set of all x ∈ l ∞ with x 0 = 0 . Given a sequence

( A m 

) m ≥ 0 of invertible d × d matrices, we define a linear

operator T : D(T ) → l ∞ 

0 
by 

(T x ) 0 = 0 and (T x ) m +1 = x m +1 − A m 

x m 

, m ≥ 0 , 

in the set D(T ) of all x ∈ l ∞ such that T x ∈ l ∞ 

0 . 

In particular, we establish the following result (see

Theorems 6 and 7 ). 

Theorem 1. The sequence ( A m 

) m ≥ 0 admits a nonuniform

exponential dichotomy on Z 

+ 
0 

if and only if T is a Fredholm

operator for some norms ‖ · ‖ m 

satisfying 

‖ x ‖ ≤ ‖ x ‖ m 

≤ Ce εm ‖ x ‖ , m ≥ 0 , x ∈ R 

d , 

for some constants C > 0 and ε ≥ 0 . 

In order the formulate a corresponding result for two-

sided sequences, let 

l ∞ 

Z 
= 

{ 

x = (x m 

) m ∈ Z ⊂ R 

d : sup 

m ∈ Z 
‖ x m 

‖ m 

< + ∞ 

} 

, 

for some norms ‖ · ‖ m 

on R 

d , for m ∈ Z . Given a sequence

(A m 

) m ∈ Z of invertible d × d matrices, we define a linear

operator S : D(S) → l ∞ by 

(Sx ) m 

= x m 

− A m −1 x m −1 , m ∈ Z , 

in the set D(S) of all x ∈ l ∞ such that S x ∈ l ∞ . 

We also establish the following version of Theorem 1

for two-sided sequences of matrices (see Theorems 10

and 11 ). 

Theorem 2. The sequence (A m 

) m ∈ Z admits nonuniform expo-

nential dichotomies on Z 

+ 
0 

and Z 

−
0 

if and only if S is a Fred-

holm operator for some norms ‖ · ‖ m 

satisfying 

‖ x ‖ ≤ ‖ x ‖ m 

≤ Ce ε| m | ‖ x ‖ , m ∈ Z , x ∈ R 

d , 

for some constants C > 0 and ε ≥ 0 . 

For two-sided sequences of matrices, we also show that

if S is a Fredholm operator and 

R = S| E : E → c 0 
is injective, where E = S −1 c 0 and 

c 0 = 

{
x = (x n ) n ∈ Z ∈ l ∞ : lim 

| n |→ + ∞ 

‖ x n ‖ n = 0 

}
, (1)

then the sequence of matrices admits a nonuniform expo-

nential dichotomy on the whole Z (see Theorem 11 ). 

As an immediate consequence of Theorems 1 and 2 , by

considering a constant sequence of norms ‖ · ‖ m 

= ‖ · ‖ on

R 

d we obtain the following discrete-time version of results

of Palmer [14,15] . However, in contrast to what happens

in his work (for continuous time), we do not require any

bounded growth condition for the matrices A m 

. 

Theorem 3. The following properties hold: 

1. ( A m 

) m ≥ 0 admits a uniform exponential dichotomy on Z 

+
0 

if and only if T is a Fredholm operator taking ‖ · ‖ m 

= ‖ ·
‖ for m ≥ 0 ; 

2. (A m 

) m ∈ Z admits uniform exponential dichotomies on Z 

+
0 

and Z 

−
0 

if and only if S is a Fredholm operator taking ‖ ·
‖ m 

= ‖ · ‖ for m ∈ Z . 

We are not able to provide a reference for Theorem 3 ,

but it certainly should be considered a folklore result

in the area (although perhaps adding a bounded growth

condition). 

1.3. Application to robustness 

In addition, we use the characterization of the existence

of a nonuniform exponential dichotomy, both for one-sided

and two-sided sequences of matrices, to establish the ro-

bustness of the notion (see Theorems 8 and 12 ). We note

that the study of robustness has a long history. In partic-

ular, it was discussed by Massera and Schäffer [12] , Cop-

pel [8] , and in the case of Banach spaces by Dalec ′ ki ̆ı and

Kre ̆ın [9] . For more recent works we refer to [13,17,18] and

the references therein. We refer the reader to [5] and the

references therein for the study of robustness of a nonuni-

form exponential behavior. 

As noted above, in order to circumvent the difficulty

caused by the extra exponentials in the notion of a nonuni-

form exponential dichotomy we use Lyapunov norms.

Thus, one might think that we would always need to know

the Lyapunov norms a priori in order to be able to use

our results. Of course this depends on the particular con-

text, although our proof of the robustness of a nonuniform

exponential dichotomy (both for one-sided and two-sided

sequences of matrices) shows that sometimes there is no

need whatsoever to know explicitly the Lyapunov norms

in order to apply our results. 

2. Preliminaries 

Given I ∈ { Z 

+ 
0 
, Z 

−
0 
, Z } , where 

Z 

+ 
0 = { m ∈ Z : m ≥ 0 } and Z 

−
0 = { m ∈ Z : m ≤ 0 } , 

we consider a sequence ( A m 

) m ∈ I of invertible d × d ma-

trices and norms ‖ · ‖ m 

on R 

d for m ∈ I . For each m, n ∈ I
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we define 

A (m, n ) = 

⎧ ⎨ 

⎩ 

A m −1 · · · A n if m > n, 

Id if m = n, 

A 

−1 
m 

· · · A 

−1 
n −1 

if m < n. 

We say that the sequence ( A m 

) m ∈ I admits an exponential 

dichotomy on I with respect to the norms ‖ · ‖ m 

if: 

1. There exist projections P m 

: R 

d → R 

d for m ∈ I satisfy- 

ing 

A (n, m ) P m 

= P n A (n, m ) for n, m ∈ I; (2) 

2. There exist λ, D > 0 such that for m, n ∈ I and x ∈ R 

d 

we have 

‖A (m, n ) P n x ‖ m 

≤ De −λ(m −n ) ‖ x ‖ n for m ≥ n (3) 

and 

‖A (m, n ) Q n x ‖ m 

≤ De −λ(n −m ) ‖ x ‖ n for m ≤ n, (4) 

where Q n = Id − P n . 

Moreover, we say that the sequence ( A m 

) m ∈ I admits a 

nonuniform exponential dichotomy on I if: 

1. There exist projections P m 

: R 

d → R 

d for m ∈ I satisfy- 

ing (2) ; 

2. There exist λ, D > 0 and ε ≥ 0 such that for m, n ∈ I 

we have 

‖A (m, n ) P n ‖ ≤ De −λ(m −n )+ ε| n | for m ≥ n (5) 

and 

‖A (m, n ) Q n ‖ ≤ De −λ(n −m )+ ε| n | for m ≤ n, (6) 

where Q n = Id − P n . 

The relation between the two notions is given by the 

following result. 

Proposition 4. The following properties are equivalent: 

1. ( A m 

) m ∈ I admits a nonuniform exponential dichotomy 

on I; 

2. ( A m 

) m ∈ I admits an exponential dichotomy on I with re- 

spect to norms ‖ · ‖ m 

, for m ∈ I, satisfying 

‖ x ‖ ≤ ‖ x ‖ m 

≤ Ce ε| m | ‖ x ‖ , m ∈ I, x ∈ R 

d (7) 

for some constants C > 0 and ε ≥ 0 . 

3. One-sided exponential dichotomies 

In this section we consider exponential dichotomies 

on Z 

+ 
0 

. Let 

l ∞ = 

{
x = (x m 

) m ≥0 ⊂ R 

d : ‖ x ‖ ∞ 

< + ∞ 

}
, (8) 

where 

‖ x ‖ ∞ 

= sup 

m ≥0 

‖ x m 

‖ m 

. 

Then ( l ∞ , ‖ · ‖ ∞ 

) is a Banach space. Moreover, let l ∞ 

0 
be 

the set of all x = (x m 

) m ≥0 ∈ l ∞ with x 0 = 0 . Clearly, l ∞ 

0 
is a

closed subspace of l ∞ . 

Given a sequence ( A m 

) m ≥ 0 of invertible d × d matrices, 

we consider the linear operator T : D(T ) → l ∞ 

0 
defined by 

(T x ) 0 = 0 and (T x ) m +1 = x m +1 − A m 

x m 

, m ≥ 0 , 
in the domain D(T ) composed of the sequences x ∈ l ∞ 

such that T x ∈ l ∞ 

0 . 

Proposition 5. The operator T : D(T ) → l ∞ 

0 
is closed. 

Proof. Let (x k ) k ∈ N be a sequence in D(T ) converging to x 

∈ l ∞ such that T x k converges to y ∈ l ∞ 

0 
. Then 

x m 

= lim 

k →∞ 

x k m 

and y m 

= lim 

k →∞ 

(T x 

k ) m 

for m ≥ 0, and so 

x m +1 − A m 

x m 

= lim 

k → + ∞ 

(x k m +1 − A m 

x k m 

) 

= lim 

k → + ∞ 

(T x 

k ) m +1 = y m +1 

for m ≥ 0. This shows that T x = y and x ∈ D(T ) . �

For x ∈ D(T ) we consider the graph norm 

‖ x ‖ T = ‖ x ‖ ∞ 

+ ‖ T x ‖ ∞ 

. (9) 

Since T is closed, (D(T ) , ‖ · ‖ T ) is a Banach space. More-

over, the operator 

T : (D(T ) , ‖ · ‖ T ) → l ∞ 

0 

is bounded and from now on we denote it simply by T . 

Theorem 6. If the sequence ( A m 

) m ≥ 0 admits an exponential 

dichotomy on Z 

+ 
0 

with respect to norms ‖ · ‖ m 

, then T is a

Fredholm operator. 

Proof. We first show that T is onto, which implies that the 

codimension of T is finite. Given y = (y m 

) m ≥0 ∈ l ∞ 

0 
, let 

x n = 

n ∑ 

k =0 

A (n, k ) P k y k −
∞ ∑ 

k = n +1 

A (n, k ) Q k y k , n ≥ 0 . 

It follows from (3) and (4) that x n is well defined. More- 

over, 

‖ x n ‖ n ≤ D 

n ∑ 

k =0 

e −λ(n −k ) ‖ y k ‖ k + D 

∞ ∑ 

k = n +1 

e −λ(k −n ) ‖ y k ‖ k 

≤ D 

1 + e −λ

1 − e −λ
sup 

k ≥0 

‖ y k ‖ k 

for n ≥ 0 and x = (x n ) n ≥0 ∈ l ∞ . Furthermore, we have 

(T x ) n +1 = x n +1 − A n x n 

= 

n +1 ∑ 

k =0 

A (n + 1 , k ) P k y k −
n ∑ 

k =0 

A (n + 1 , k ) P k y k 

−
∞ ∑ 

k = n +2 

A (n + 1 , k ) Q k y k + 

∞ ∑ 

k = n +1 

A (n + 1 , k ) Q k y k 

= P n +1 x n +1 + Q n +1 y n +1 = y n +1 

for n ≥ 0. Hence, x ∈ D(T ) and T x = y . 

In order to prove that T is a Fredholm operator, it re- 

mains to show that the dimension of Ker T is finite. The 

sequence x = (x m 

) m ≥0 belongs to Ker T if and only if x m 

=
A (m, 0) x 0 for m ≥ 0. Hence, the map R : Ker T → R 

d de-

fined by R x = x 0 is injective. Moreover, it follows from (3) 

and (4) that Im R = Im P 0 . Indeed, 

Ker T ⊂ D(T ) ⊂ l ∞ 
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and one can easily verify that the initial conditions x 0 ∈
R 

d for which the sequence x m 

= A (m, 0) x is bounded

are precisely those in Im P 0 . Thus, dim Ker T = dim Im P 0 <

+ ∞ . �

Now we establish the converse of Theorem 6 . We say

that x = (x n ) n ≥0 has bounded support if there exists n ∈ N

such that x m 

= 0 for m > n . 

Theorem 7. If T is a Fredholm operator, then the sequence

( A m 

) m ≥ 0 admits an exponential dichotomy on Z 

+ 
0 

with re-

spect to some norms ‖ · ‖ m 

. 

Proof. We first prove some auxiliary results. �

Lemma 1. For each y = (y m 

) m ≥0 with bounded support and

y 0 = 0 , there exists a sequence x = (x m 

) m ≥0 with bounded

support such that 

x m +1 − A m 

x m 

= y m +1 for m ≥ 0 . (10)

Proof of the lemma. Take n ∈ N such that y m 

= 0 for m >

n and define x 0 = −∑ n 
k =0 A (0 , k ) y k . Moreover, let 

x m 

= 

⎧ ⎨ 

⎩ 

A (m, 0) x 0 + 

m ∑ 

k =0 

A (m, k ) y k if 0 ≤ m ≤ n, 

0 if m > n. 

Then the sequence x = (x m 

) m ≥0 satisfies (10) . �

Given a Banach space X , we denote by X 

∗ the set

of all bounded linear maps φ : X → R . We recall that a

bounded linear operator A : X → Y between Banach spaces

induces the adjoint linear operator A 

∗: Y ∗ → X 

∗ defined by

(A 

∗φ)(x ) = φ(Ax ) for φ ∈ Y ∗ and x ∈ X . 

Now we consider the space 

c 0 = 

{ 

x = (x n ) n ≥0 ∈ l ∞ 

0 : lim 

n → + ∞ 

‖ x n ‖ n = 0 

} 

. 

Let E = T −1 c 0 and consider the map S = T | E : E → c 0 .

Moreover, let S ∗ : c ∗0 → E ∗ be the adjoint operator. 

Lemma 2. We have Ker S ∗ = { 0 } . 
Proof of the lemma. Take φ ∈ Ker S ∗ and a sequence y ∈
c 0 with bounded support. By Lemma 1 , there exists x ∈
D(T ) such that Sx = T x = y . Therefore, 

φ(y ) = φ(Sx ) = (S ∗φ) x = 0 

for each y ∈ c 0 with bounded support. Since the sequences

with bounded support are dense in c 0 , we conclude that

φ = 0 . �

Lemma 3. For each y ∈ c 0 , there exists x ∈ l ∞ satisfying (10) .

Proof of the lemma. Since T is a Fredholm operator, Im T 

is closed and so the same happens to Im S. For example by

Theorem 4.6 in [22] we have 

{ Im S} 0 := 

{
φ ∈ c ∗0 : φ(x ) = 0 for x ∈ c 0 

}
= Ker S ∗. 

It follows from Lemma 2 that { Im S} 0 = { 0 } and thus, by

the Hahn–Banach theorem we have Im S = c 0 , which yields

the statement in the lemma. �

Lemma 4. There exists a subspace Z of R 

d such that for each

y ∈ c 0 , there exists a unique x ∈ l ∞ with x 0 ∈ Z satisfying

(10) . 
Proof of the lemma. Let Z be the subspace of R 

d con-

sisting of all vectors x ∈ R 

d such that sup n ≥0 ‖A (n, 0) x ‖ n <
+ ∞ . Moreover, let Z ′ be any subspace of R 

d such that

R 

d = Z ⊕ Z ′ . By Lemma 3 , given y = (y m 

) m ≥0 ∈ c 0 , there

exists x = (x m 

) m ≥0 ∈ l ∞ satisfying (10) . Write x 0 = y 0 + z 0 ,

where y 0 ∈ Z and z 0 ∈ Z ′ . Now we consider the sequence

x ∗ = (x ∗m 

) m ≥0 defined by 

x ∗m 

= x m 

− A (m, 0) y 0 , m ≥ 0 . 

Then x ∗ ∈ l ∞ , x ∗
0 

∈ Z ′ and (10) holds with each x m 

replaced

by x ∗m 

. 

It remains to show that x ∗ is unique. Assume that for

some sequence y = (y m 

) m ≥0 ∈ c 0 there exist x i = (x i m 

) m ≥0 ∈
l ∞ with x i 

0 
∈ Z ′ satisfying (10) for i = 1 , 2 . Then 

x 1 m 

− x 2 m 

= A (m, 0)(x 1 0 − x 2 0 ) for m ≥ 0 

and thus x 1 
0 

− x 2 
0 

∈ Z. Hence, x 1 
0 

− x 2 
0 

∈ Z ∩ Z ′ and so x 1 
0 

= x 2 
0 
.

This implies that x 1 m 

= x 2 m 

for m ≥ 0 and so x 1 = x 2 . �

It follows now readily from results in [3] that the se-

quence ( A m 

) m ≥ 0 admits an exponential dichotomy on Z 

+
0 

with respect to some norms ‖ · ‖ m 

. 

The following result is an application of Theorems 6

and 7 . 

Theorem 8. Let ( A m 

) m ≥ 0 and ( B m 

) m ≥ 0 be sequences of in-

vertible d × d matrices such that ( A m 

) m ≥ 0 admits a nonuni-

form exponential dichotomy on Z 

+ 
0 

and 

lim 

n →∞ 

(‖ A n − B n ‖ e εn 
)

= 0 . (11)

Then the sequence ( B m 

) m ≥ 0 admits a nonuniform expo-

nential dichotomy on Z 

+ 
0 

with projections P ′ m 

satisfying

dim Im P m 

= dim Im P ′ m 

for m ≥ 0 . 

Proof. Since the sequence ( A m 

) m ≥ 0 admits a nonuniform

exponential dichotomy, it follows from Proposition 4 that

it also admits an exponential dichotomy with respect to

some norms ‖ · ‖ m 

satisfying (7) . 

On the other hand, by (11) there exists K > 0 such

that 

‖ A n − B n ‖ ≤ Ke −εn for n ≥ 0 . (12)

By (7) and (12) , there exists c > 0 such that 

‖ (A n − B n ) x ‖ n +1 ≤ c‖ x ‖ n for x ∈ R 

d and n ≥ 0 . (13)

It follows from (13) that the linear operator ˜ T : D(T ) → l ∞0 
given by 

( ̃  T x ) 0 = 0 and ( ̃  T x ) m +1 = x m +1 − B m 

x m 

, m ≥ 0 , 

is well defined and bounded. �

Lemma 5. ˜ T is a Fredholm operator and ind T = ind ̃

 T . 

Proof of the lemma. We define an operator C : D(T ) → l ∞
0 

by 

(Cx ) 0 = 0 and (Cx ) m +1 = (B m 

− A m 

) x m 

, m ≥ 0 . 

In order to show that C is compact, for each n ∈ N we de-

fine an operator C n : D(T ) → l ∞ 

0 
by 

(C n x ) m 

= (B m −1 − A m −1 ) x m −1 for m = 1 , . . . , n 
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and (C n x ) m 

= 0 otherwise. Clearly, C n is compact for each 

n . Moreover, it follows from (7) that there exists K > 0 

such that 

‖ (C − C n ) x ‖ ∞ 

= sup 

m>n 
‖ (B m −1 − A m −1 ) x m −1 ‖ m 

≤ K sup 

m>n 

(
e εm ‖ (B m −1 − A m −1 ) x m −1 ‖ 

)
≤ γn ‖ x ‖ T , 

where 

γn = K sup 

m>n 

(
e εm ‖ B m −1 − A m −1 ‖ 

)
. 

By (11) we have lim n → + ∞ 

γn = 0 and so the operator C is 

compact. On the other hand, by Theorem 6 , T is a Fredholm 

operator and since ˜ T = T + C with C compact, we conclude 

that ˜ T is also a Fredholm operator, and that ind T = ind ̃

 T . 

By Theorem 7 together with Lemma 5 , the sequence 

( B m 

) m ≥ 0 admits an exponential dichotomy with respect 

to the norms ‖ · ‖ m 

. Hence, by Proposition 4 , it also ad- 

mits a nonuniform exponential dichotomy. Moreover, since 

ind T = ind ̃

 T , the projections associated to the two se- 

quences of matrices have the same ranks. �

Finally, we briefly discuss the particular case of expo- 

nential stability. We say that the sequence ( A m 

) m ≥ 0 is 

exponentially stable with respect to the norms ‖ · ‖ m 

if 

it admits an exponential dichotomy with respect to the 

norms ‖ · ‖ m 

with projections P m 

= Id for all n . The fol- 

lowing result is a direct consequence of Theorems 6 and 7 

and their proofs. 

Theorem 9. The sequence ( A m 

) m ≥ 0 is exponentially stable 

with respect to the norms ‖ · ‖ m 

if and only if the operator T 

is Fredholm and ind T = d. 

One can now proceed in a similar manner to that in 

the proof of Theorem 8 to obtain the robustness property 

of the notion of nonuniform exponential stability (which is 

a particular case of the notion of nonuniform exponential 

dichotomy). 

4. Two-sided exponential dichotomies 

Now we consider exponential dichotomies on Z . We al- 

ways assume in this section that each norm ‖ · ‖ n is in- 

duced by a scalar product 〈 ·, ·〉 n . We note that for the 

purposes of our work there is no loss of generality in this 

hypothesis. Indeed, it is easy to show that one can always 

consider norms ‖ · ‖ n in Proposition 4 that are induced by 

scalar products. Then there exist invertible d × d matrices 

D n , for n ∈ Z , such that 

〈 x, y 〉 n = 〈 D n x, y 〉 for n ∈ Z and x, y ∈ R 

d . 

In this section we replace the space l ∞ in (8) by 

l ∞ 

Z 
= 

{ 

x = (x m 

) m ∈ Z ⊂ R 

d : ‖ x ‖ ∞ 

:= sup 

m ∈ Z 
‖ x m 

‖ m 

< + ∞ 

} 

. 

Again (l ∞ 

Z 
, ‖ · ‖ ∞ 

) is a Banach space. Given a sequence 

(A m 

) m ∈ Z of invertible d × d matrices, we consider the lin- 

ear operator S : D(S) → l ∞ 

Z 
defined by 

(Sx ) m 

= x m 

− A m −1 x m −1 , m ∈ Z , (14) 
in the domain D(S) composed of the sequence x ∈ l ∞ 

Z 
such 

that Sx ∈ l ∞ 

Z 
. Proceeding as in the proof of Proposition 5 ,

one can show that S is closed. Then we can introduce a 

graph norm as in (9) so that S : (D(S) , ‖ · ‖ S ) → l ∞ 

Z 
be-

comes a bounded operator. 

Theorem 10. If the sequence (A m 

) m ∈ Z admits exponential di- 

chotomies on Z 

+ 
0 

and Z 

−
0 

with respect to some norms ‖ · ‖ m 

, 

then S is a Fredholm operator. 

Proof. Under the assumptions of the theorem, it is shown 

in [2] that the operator S is onto. On the other hand, Ker S

consists of all sequences x = (x n ) n ∈ Z ∈ l ∞ 

Z 
such that x n =

A (n, 0) x 0 for n ∈ Z . This implies that x 0 ∈ Im P + 
0 

∩ Ker P −
0 

,

where P + m 

are the projections associated to the exponen- 

tial dichotomy on Z 

+ 
0 

and P −m 

are the projections associated 

to the exponential dichotomy on Z 

−
0 

. Therefore, dim Ker S < 

+ ∞ . �

Now let c 0 be as in (1) and define 

R = S| E : E → c 0 , where E = S −1 c 0 . 

We say that x = (x n ) n ∈ Z has bounded support if there exists 

n ∈ N such that x m 

= 0 for | m | > n . 

Theorem 11. If S is a Fredholm operator, then the sequence 

(A m 

) m ∈ Z admits exponential dichotomies on Z 

+ 
0 

and Z 

−
0 

with 

respect to some norms ‖ · ‖ m 

. Moreover, if R is injective, then 

the sequence admits an exponential dichotomy on Z with re- 

spect to some norms ‖ · ‖ m 

. 

Proof. We begin with an auxiliary result. �

Lemma 6. Let y = (y n ) n ∈ Z be a sequence with bounded sup- 

port. Then there exists a sequence x = (x n ) n ∈ Z with bounded 

support such that Sx = y if and only if ∑ 

k ∈ Z 
A (0 , k ) y k = 0 . (15) 

Proof of the lemma. Assume that x = (x n ) n ∈ Z satisfies 

Sx = y . Since y has bounded support, for all sufficiently 

large n > 0 we have 

x n = A (n, 0) 

(
x 0 + 

∞ ∑ 

k =1 

A (0 , k ) y k 

)
. (16) 

Similarly, for all sufficiently small n < 0 we have 

x n = A (n, 0) 

(
x 0 −

0 ∑ 

k = −∞ 

A (0 , k ) y k 

)
. (17) 

It follows from (16) and (17) that x = (x n ) n ∈ Z has bounded 

support if and only if 

x 0 + 

∞ ∑ 

k =1 

A (0 , k ) y k = x 0 −
0 ∑ 

k = −∞ 

A (0 , k ) y k = 0 , 

that is, if and only if (15) holds. Now assume that (15) 

holds and define 

x m 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

A (m, 0) x 0 + 

m ∑ 

k =1 

A (m, k ) y k if m ≥ 0 , 

A (m, 0) x 0 −
0 ∑ 

k = m +1 

A (m, k ) y k if m < 0 , 
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where x 0 = − ∑ ∞ 

k =1 A (0 , k ) y k . Then x = (x n ) n ∈ Z has

bounded support and Sx = y . �

Lemma 7. Ker R consists of all α ∈ c ∗
0 

for which there exists

a sequence (y n ) n ∈ Z ⊂ R 

d such that: 

1. y n +1 = (A 

∗
n ) 

−1 y n for n ∈ Z and 

∑ 

n ∈ Z 
‖ D 

−1 
n y n ‖ n < + ∞; (18)

2. 

α(x ) = 

∑ 

n ∈ Z 
〈 D 

−1 
n y n , x n 〉 n for x = (x n ) n ∈ Z ∈ c 0 . (19)

Proof of the lemma. Take α ∈ Ker R . Let x = (x n ) n ∈ Z ⊂ R 

d

be a sequence with bounded support and let (φn ) n ∈ Z be a

sequence of positive real numbers such that 
∑ 

n ∈ Z φn = 1

and φn = 0 for | n | sufficiently large. We define 

˜ x n = x n − φn 

∑ 

k ∈ Z 
A (n, k ) x k (20)

for n ∈ Z . Then 

˜ x = ( ̃  x n ) n ∈ Z is a sequence with bounded

support and 

∑ 

n ∈ Z 
A (0 , n ) ̃  x n = 

∑ 

n ∈ Z 
A (0 , n ) x n −

∑ 

n ∈ Z 
φn 

∑ 

k ∈ Z 
A (0 , k ) x k = 0 . 

It follows from Lemma 6 that ˜ x ∈ Im S and thus ˜ x ∈ Im R .

Therefore, ˜ x = R z for some z ∈ E and 

α( ̃ x ) = α(R z ) = (R 

∗α) z = 0 . 

Hence, it follows from (20) that 

α(x ) = α

((
φn 

∑ 

k ∈ Z 
A (n, k ) x k 

)
n ∈ Z 

)
. 

Let 

y n = 

d ∑ 

i =1 

α
((

φ j A ( j, 0) e i 
)

j∈ Z 

)
A (0 , n ) ∗e i , 

where { e 1 , . . . , e d } is the canonical basis of R 

d . We note

that the sequence ( y n ) n satisfies y n +1 = (A 

∗
n ) 

−1 y n for n ∈ Z .

Then ∑ 

n ∈ Z 
〈 D 

−1 
n y n , x n 〉 n = 

∑ 

n ∈ Z 
〈 y n , x n 〉 

= 

∑ 

n ∈ Z 

〈
d ∑ 

i =1 

α
((

φ j A ( j, 0) e i 
)

j∈ Z 

)
A (0 , n ) ∗e i , x n 

〉

= 

∑ 

n ∈ Z 

〈
d ∑ 

i =1 

α
((

φ j A ( j, 0) e i 
)

j∈ Z 

)
e i , A (0 , n ) x n 

〉

= 

〈
d ∑ 

i =1 

α
((

φ j A ( j, 0) e i 
)

j∈ Z 

)
e i , 

∑ 

n ∈ Z 
A (0 , n ) x n 

〉

= 

d ∑ 

i =1 

α
((

φ j A ( j, 0) e i 
)

j∈ Z 

)
e ∗i 

∑ 

n ∈ Z 
A (0 , n ) x n 

= α

((
φ j 

∑ 

n ∈ Z 
A ( j, n ) x n 

)
j∈ Z 

)
= α(x ) (21)
for all sequences x with bounded support. In particular, ∣∣∣∣∑ 

n ∈ Z 
〈 D 

−1 
n y n , x n 〉 n 

∣∣∣∣ = | α(x ) | ≤ ‖ α‖ · ‖ x ‖ (22)

for all x with bounded support. Take K ∈ N and define x =
(x n ) n ∈ Z by 

x n = 

⎧ ⎨ 

⎩ 

D 

−1 
n y n 

‖ D 

−1 
n y n ‖ n 

if n ∈ [ −K, K] , 

0 if n / ∈ [ −K, K] . 

By (22) , we obtain 

K ∑ 

n = −K 

‖ D 

−1 
n y n ‖ n ≤ ‖ α‖ 

and since K is arbitrary, we conclude that (18) holds. 

Now we define β : c 0 → R by 

β(x ) = 

∑ 

n ∈ Z 
〈 D 

−1 
n y n , x n 〉 n for x = (x n ) n ∈ Z ∈ c 0 . 

It follows from (18) that β is a bounded linear functional

on c 0 and by (21) , β and α coincide on the dense set of the

sequences with bounded support. Hence, α = β and (19)

holds. 

Now assume that α is given by (19) with (y n ) n ∈ Z as in

Lemma 7 . For each x = (x n ) n ∈ Z ∈ c 0 we have 

(R 

∗α)(x ) = α(R x ) 

= 

∑ 

n ∈ Z 
〈 D 

−1 
n y n , x n − A n −1 x n −1 〉 n 

= 

∑ 

n ∈ Z 

(〈 D 

−1 
n y n , x n 〉 n − 〈 D 

−1 
n y n , A n −1 x n −1 〉 n 

)

= 

∑ 

n ∈ Z 

(〈 D 

−1 
n y n , x n 〉 n − 〈 D 

−1 
n −1 y n −1 , x n −1 〉 n −1 

)

+ 

∑ 

n ∈ Z 

(〈 D 

−1 
n −1 y n −1 , x n −1 〉 n −1 − 〈 D 

−1 
n y n , A n −1 x n −1 〉 n 

)

= lim 

n → + ∞ 

〈 D 

−1 
n y n , x n 〉 n − lim 

n →−∞ 

〈 D 

−1 
n y n , x n 〉 n 

+ 

∑ 

n ∈ Z 

(〈 y n −1 , x n −1 〉 − 〈 y n , A n −1 x n −1 〉 
)

= 

∑ 

n ∈ Z 
〈 y n −1 − A 

∗
n −1 y n , x n −1 〉 = 0 . 

Therefore α ∈ Ker R ∗ and the proof of the lemma is

complete. �

We continue with the proof of the theorem. We first

observe that 

Im R = 

{
x ∈ c 0 : α(x ) = 0 for α ∈ Ker R 

∗}. (23)

Let y i = (y i n ) n ∈ Z , for i = 1 , . . . , m, be a basis of the space of

solutions y = (y n ) n ∈ Z of the equation 

y n +1 = (A 

∗
n ) 

−1 y n , n ∈ Z , 

such that 
∑ 

n ∈ Z ‖ D 

−1 
n y n ‖ n < + ∞ . For each i = 1 , . . . , m, de-

fine αi ∈ c ∗
0 

by 

αi (x ) = 

−1 ∑ 

n = −∞ 

〈 D 

−1 
n y i n , x n 〉 n for x = (x n ) n ∈ Z ∈ c 0 . 
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Moreover, for each j = 1 , . . . , d, we define β j ∈ c ∗0 by 

β j (x ) = x j 
0 

for x = (x n ) n ∈ Z ∈ c 0 . 

Lemma 8. The set { α1 , . . . , αm 

, β1 , . . . , βd } is linearly inde- 

pendent. 

Proof of the lemma. Assume that 
∑ m 

i =1 λi αi = 

∑ d 
j=1 μ j β j 

for some constants λi , μ j ∈ R . This implies that 

−1 ∑ 

n = −∞ 

〈 D 

−1 
n y n , x n 〉 n = 

d ∑ 

j=1 

μ j x 
j 
0 

(24) 

for x = (x n ) n ∈ Z ∈ c 0 , where 

y = (y n ) n ∈ Z = 

m ∑ 

i =1 

λi y 
i . 

Assume that y n 0 � = 0 for some n 0 < 0. Applying (24) to the 

sequence x = (x n ) n ∈ Z given by 

x n = 

{
D 

−1 
n 0 

y n 0 / ‖ D 

−1 
n 0 

y n 0 ‖ if n = n 0 , 

0 if � = n 0 

we reach a contradiction. Hence, y = 0 , which implies 

that λ1 = · · · = λm 

= 0 . On the other hand, the functionals 

β1 , . . . , βd are clearly independent and so μ1 = · · · = μd = 

0 . 

Now take z = (z n ) n ∈ Z ∈ c 0 with z 0 = 0 . By Lemma 8 , we

can choose x = (x n ) n ∈ Z ∈ c 0 such that 

αi (x ) = −
∞ ∑ 

n =0 

〈 D 

−1 
n y i n , z n 〉 n for i = 1 , . . . , m , (25) 

and 

β j (x ) = x i 0 = 0 for j = 1 , . . . , d, 

that is x 0 = 0 . We define ˜ x = ( ̃  x n ) n ∈ Z by ˜ x n = x n for n ≤ 0

and ˜ x n = z n for n ≥ 0. Clearly, ˜ x ∈ c 0 . It follows from (25) 

that ∑ 

n ∈ Z 
〈 D 

−1 
n y i n , ̃  x n 〉 n = 0 for i = 1 , . . . , m 

and thus, it follows from Lemma 7 that α( ̃ x ) = 0 for α ∈ 

Ker R ∗. It follows from (23) that ˜ x ∈ Im R . Therefore, there 

exists a sequence w = (w n ) n ∈ Z ∈ l ∞ 

Z 
such that R w = 

˜ x and 

hence 

w n +1 − A n w n = 

˜ x n +1 for n ≥ 0 . 

It follows now from results in [3] that the sequence ( A n ) n 
admits an exponential dichotomy on Z 

+ 
0 

with respect to 

some norms ‖ · ‖ m 

. One establishes similarly the existence 

of an exponential dichotomy on Z 

−
0 

. 

Assume now that R is injective. Then R is bijective and 

it follows from the results in [1] that the sequence (A n ) n ∈ Z 
admits an exponential dichotomy on Z with respect to 

some norms ‖ · ‖ m 

. �

We also establish a version of Theorem 8 for exponen- 

tial dichotomies on Z . 

Theorem 12. Let (A m 

) m ∈ Z and (B m 

) m ∈ Z be sequences of in- 

vertible d × d matrices such that (A m 

) m ∈ Z admits a nonuni- 

form exponential dichotomy on Z and 

lim 

n →±∞ 

(‖ A n − B n ‖ e ε| n | 
)

= 0 . (26) 
Then the sequence (B m 

) m ∈ Z admits nonuniform exponen- 

tial dichotomies on Z 

+ 
0 

and Z 

−
0 

. Moreover, if there exists no 

nonzero sequence x = (x n ) n ∈ Z such that x n +1 = B n x n for n ∈
Z and sup n ∈ Z ‖ x n ‖ n < + ∞ , where 

‖ x ‖ m 

= sup 

n ≥m 

(‖A (n, m ) P m 

x ‖ e λ(n −m ) 
)

+ sup 

n ≤m 

(‖A (n, m ) Q m 

x ‖ e λ(m −n ) 
)
, (27) 

then (B m 

) m ∈ Z admits a nonuniform exponential dichotomy on 

Z . 

Proof. It follows from (3) and (4) that 

‖ x ‖ ≤ ‖ x ‖ m 

≤ 2 De ε| m | ‖ x ‖ for x ∈ R 

d and m ∈ Z , (28) 

for the norms ‖ · ‖ m 

in (27) . Let l ∞ 

Z 
be defined with re-

spect to those norms. By Theorem 10 , the operator S de- 

fined by (14) is Fredholm. Now we consider the operator 

C : l ∞ 

Z 
→ l ∞ 

Z 
defined by 

(Cx ) m +1 = (A m 

− B m 

) x m 

, m ∈ Z . 

Using (26) and (28) , it is easy to verify that C is a well-

defined compact operator. We also define an operator U : 

D(S) → l ∞ 

Z 
by 

(Ux ) m +1 = x m +1 − B m 

x m 

, m ∈ Z . 

Then U = S + C is a Fredholm operator. It follows from 

Theorem 11 and Proposition 4 that the sequence (B m 

) m ∈ Z 
admits nonuniform exponential dichotomies on Z 

+ 
0 

and Z 

−
0 

. 

In view of Theorem 10 this also implies that U is onto. 

Finally, under the assumption that there exists no 

nonzero sequence x = (x n ) n ∈ Z � = 0 as in the statement of

the theorem, the operator U is injective and hence U it is 

also bijective. �
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