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We show that the existence of a nonuniform exponential dichotomy for a one-sided se-
quence (Am)m = o of invertible d x d matrices is equivalent to the Fredholm property of a
certain linear operator between spaces of bounded sequences. Moreover, for a two-sided
sequence (Am)mez We show that the existence of a nonuniform exponential dichotomy im-
plies that a related operator S is Fredholm and that if it is Fredholm, then the sequence
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1. Introduction
1.1. From uniform to nonuniform exponential behavior

Our main aim is to discuss the relation between the
existence of a nonuniform exponential dichotomy for a
sequence of invertible d x d matrices (see Section 2 for
the definition) and the Fredholm property of a certain
linear operator. Related results were first obtained by
Palmer [14,15] for ordinary differential equations and
uniform exponential dichotomies. Further results were
obtained by Lin [11] for functional differential equations,
by Blazquez [6], Rodrigues and Silveira [20], Zeng [23]
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and Zhang [24] for parabolic evolution equations, and by
Chow and Leiva [7], Sacker and Sell [21] and Rodrigues
and Ruas-Filho [19] for abstract evolution equations. We
emphasize that all these works consider only uniform
exponential dichotomies.

In comparison to the classical notion of a uniform expo-
nential dichotomy, the notion of a nonuniform exponential
dichotomy corresponds to a much weaker requirement. For
example, in the context of ergodic theory almost all linear
variational equations with nonzero Lyapunov exponents of
a measure-preserving flow (such as any Hamiltonian flow
restricted to a compact hypersurface) admit a nonuniform
exponential dichotomy (see for example [4]). On the other
hand, the extra exponentials in the notion of a nonuniform
exponential dichotomy (see (5) and (6)) complicate a cor-
responding study.

In order to circumvent this difficulty we shall use Lya-
punov norms (see Proposition 4). These are norms adapted
to each particular dynamics with respect to which a
nonuniform exponential dichotomy becomes uniform (the
crucial properties of the Lyapunov norms are those in (3),
(4) and (7)). The use of Lyapunov norms in the study of
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nonuniform hyperbolicity goes back to seminal work of
Pesin [16] (see also [4,5]).

Incidentally, an alternative characterization of a nonuni-
form exponential behavior that does not involve construct-
ing Lyapunov norms a priori was developed in [10] in the
context of ergodic theory (when the nonuniform part of
the exponential dichotomy can be made arbitrarily small).
The characterization is expressed in terms of the invertibil-
ity of certain linear operators on Fréchet spaces.

1.2. Brief formulation of our results

As noted above, our main aim is to discuss the rela-
tion between the existence of a nonuniform exponential
dichotomy for a sequence of matrices and the Fredholm
property of a certain linear operator.

More precisely, we consider separately the cases of one-
sided and two-sided sequences. Let

m=>0

> = {x = (Xm)m=0 C RY : sup [|Xm|lm < +oo}

for some norms || - || on R%, for m > 0, and denote by
[° the set of all x e I* with xg =0. Given a sequence
(Am)m = o of invertible d x d matrices, we define a linear
operator T : D(T) — I3° by

(Tx)o=0 and (TX)mi1 = Xmy1 — AmXm, M =0,
in the set D(T) of all x e I** such that Tx e [§°.

In particular, we establish the following result (see
Theorems 6 and 7).

Theorem 1. The sequence (Am)m > o admits a nonuniform
exponential dichotomy on Z} if and only if T is a Fredholm
operator for some norms || - ||m satisfying

Xl < Ixllm < Ce*™Ix]l, m=0, xR,

for some constants C > 0 and € > 0.

In order the formulate a corresponding result for two-
sided sequences, let

o = {x: Xm)mez C RY 2 sup || X ||m < +oo},
meZz

for some norms || - || on RY, for m € Z. Given a sequence
(Am)mez of invertible d x d matrices, we define a linear
operator S : D(S) — [*® by
(SX)m = Xm —Am_1Xn—1, M€ Z,
in the set D(S) of all x € [* such that Sx e [*.

We also establish the following version of Theorem 1

for two-sided sequences of matrices (see Theorems 10
and 11).

Theorem 2. The sequence (Am)mez admits nonuniform expo-
nential dichotomies on Z$ and Z if and only if S is a Fred-
holm operator for some norms || - ||m satisfying

%] < [IX]lm < CefI™||x||, m ez, xeR?,
for some constants C > 0 and € > 0.

For two-sided sequences of matrices, we also show that
if S is a Fredholm operator and

R:S|E:E—>Co

is injective, where E = S~1c, and
Co= {x = Xnez € 1®: lim ||xq]|n = 0}, (1)
[n|—+oc0

then the sequence of matrices admits a nonuniform expo-
nential dichotomy on the whole Z (see Theorem 11).

As an immediate consequence of Theorems 1 and 2, by
considering a constant sequence of norms || - || = | - || on
RY we obtain the following discrete-time version of results
of Palmer [14,15]. However, in contrast to what happens
in his work (for continuous time), we do not require any
bounded growth condition for the matrices Ap,.

Theorem 3. The following properties hold:

1. (Am)m = o admits a uniform exponential dichotomy on Zg
if and only if T is a Fredholm operator taking || - ||m = || -
|| for m > 0;

2. (Am)mez admits uniform exponential dichotomies on Zg

and Zg if and only if S is a Fredholm operator taking || -

lm=1-1l formeZ.

We are not able to provide a reference for Theorem 3,
but it certainly should be considered a folklore result
in the area (although perhaps adding a bounded growth
condition).

1.3. Application to robustness

In addition, we use the characterization of the existence
of a nonuniform exponential dichotomy, both for one-sided
and two-sided sequences of matrices, to establish the ro-
bustness of the notion (see Theorems 8 and 12). We note
that the study of robustness has a long history. In partic-
ular, it was discussed by Massera and Schdffer [12], Cop-
pel [8], and in the case of Banach spaces by Dalec’kil and
Krein [9]. For more recent works we refer to [13,17,18] and
the references therein. We refer the reader to [5] and the
references therein for the study of robustness of a nonuni-
form exponential behavior.

As noted above, in order to circumvent the difficulty
caused by the extra exponentials in the notion of a nonuni-
form exponential dichotomy we use Lyapunov norms.
Thus, one might think that we would always need to know
the Lyapunov norms a priori in order to be able to use
our results. Of course this depends on the particular con-
text, although our proof of the robustness of a nonuniform
exponential dichotomy (both for one-sided and two-sided
sequences of matrices) shows that sometimes there is no
need whatsoever to know explicitly the Lyapunov norms
in order to apply our results.

2. Preliminaries
Given I € {z}, Zy, Z}, where

Zf={meZ:m=0} and Z;={meZ:m<0}

we consider a sequence (Am)m < of invertible d x d ma-
trices and norms || - ||m on RY for m € I. For each m, n € |
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we define

Am—] o 'An
A(m,n) ={1d

ARl A ifm <.

if m>n,
if m=n,

We say that the sequence (Am);, < ; admits an exponential
dichotomy on I with respect to the norms || - || if:

1. There exist projections P : RY — RY for m e I satisfy-
ing

A, m)Py, =P A(n,m) forn,mel; (2)

2. There exist A, D > 0 such that for m, n € I and x € RY
we have

| A(m, n)PuX||m < De ™M |x||, for m>n (3)
and
lA(m, n)Qux||m < De*™™ x|, for m <n, (4)

where Q, =1d — P,.

Moreover, we say that the sequence (Am)n < ; admits a
nonuniform exponential dichotomy on [ if:

1. There exist projections Py : R — RY for m e I satisfy-
ing (2);

2. There exist A, D > 0 and ¢ > 0 such that for m, n € I
we have

| A(m, n)P,|| < De~*m-m+elnl for m > n (5)
and
[l A(m, n)Qy || < De~*=m+elnl for m < n, (6)

where Q, =1d — P,.

The relation between the two notions is given by the
following result.

Proposition 4. The following properties are equivalent:

1. (Am)m <1 admits a nonuniform exponential dichotomy
on I;

2. (Am)m <1 admits an exponential dichotomy on I with re-
spect to norms || - ||m, for m € I, satisfying
IXIF < lIXllm < CeI™[Ix]l, mel, xeR? (7)

for some constants C > 0 and & > 0.
3. One-sided exponential dichotomies

In this section we consider exponential dichotomies
on Z}. Let

1% = {x= m)m=0 C R?: X[l < +o00}, 8)
where

[Xlloc = sup [|Xm | m-
m=0
Then (I, || - |l«) is a Banach space. Moreover, let I§° be
the set of all X = (Xm)=0 € [*° with xg = 0. Clearly, [§° is a
closed subspace of [*.
Given a sequence (Am)ny » o of invertible d x d matrices,
we consider the linear operator T : D(T) — I§° defined by

(Tx)o=0 and (TX);m41 = Xme1 — AmXm, M =0,

in the domain D(T) composed of the sequences x € [
such that Tx € I§°.

Proposition 5. The operator T : D(T) — I§° is closed.

Proof. Let (x¥),.y be a sequence in D(T) converging to x
€ I such that Tx* converges to y € Is°. Then

Xm = limxk, and y, = klim (TX*)

k— o0

for m > 0, and so

. I k
Xmi1 — AmXm = I<1~1>T30(X1;1+1 — AmXp)

= lim (Txk)m+1 =Ym+1

k——+o00

for m > 0. This shows that Tx =y and x € D(T). O

For x € D(T) we consider the graph norm
[IXll7 = [1X[lsc + [ITX]|oc. 9)
Since T is closed, (D(T), || - ||r) is a Banach space. More-
over, the operator
T: @@, lIr)—1§g
is bounded and from now on we denote it simply by T.

Theorem 6. If the sequence (Am)ny = o admits an exponential
dichotomy on Z§ with respect to norms || - |Im, then T is a
Fredholm operator.

Proof. We first show that T is onto, which implies that the
codimension of T is finite. Given y = (ym)m=o € I§°, let

n 00
Xn= Y AMIOPy.— Y A k)Qyr. n=>0.

k=0 k=n+1

It follows from (3) and (4) that x, is well defined. More-
over,

n [e’e}
Ixalln < DY~ e ™ Oyl +D Y e E [yl
k=0 k=n+1

14+e*

<D——su
= DI 1kl

for n > 0 and X = (xn)p=0 € [*°. Furthermore, we have

(TX)ns1 = Xn1 — AnXn
n+1 n

=Y AMm+1,0Py— Y A+ 1,k)Py;
k=0 k=0
= Y A+ 1. R0)Qk+ Y AM+1, k) Qi
k=n+2 k=n+1

= Bii1Xns1 + QuatYnet =Y

for n > 0. Hence, x e D(T) and Tx =y.

In order to prove that T is a Fredholm operator, it re-
mains to show that the dimension of KerT is finite. The
sequence X = (Xm)m=o belongs to KerT if and only if x, =
A(m,0)xy for m > 0. Hence, the map R : KerT — R? de-
fined by Rx = xq is injective. Moreover, it follows from (3)
and (4) that ImR = Im Py. Indeed,

KerT c D(T) cI*®
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and one can easily verify that the initial conditions x, €
RY for which the sequence x, =.A(m,0)x is bounded
are precisely those in ImP,. Thus, dimKerT = dimImP, <
+oo. O

Now we establish the converse of Theorem 6. We say
that X = (xn)n=0 has bounded support if there exists n e N
such that x, =0 for m > n.

Theorem 7. If T is a Fredholm operator, then the sequence
(Am)m = o admits an exponential dichotomy on Z$ with re-
spect to some norms || - ||m.

Proof. We first prove some auxiliary results. O

Lemma 1. For each y = (ym)m=0 with bounded support and
Yo =0, there exists a sequence X = (Xm)m=0 with bounded
support such that

Xmi1 —AmXm = Ymy1 for m>0. (10)

Proof of the lemma. Take n € N such that y,;, =0 for m >
n and define xo = — Y i_, A(0, k)y}. Moreover, let

m

A(m, 0)xg + ZA(m, k)y, ifo<m=<n,
k=0

0 if m>n.

Xm =

Then the sequence X = (Xm)m=o satisfies (10). O

Given a Banach space X, we denote by X* the set
of all bounded linear maps ¢ : X — R. We recall that a
bounded linear operator A: X — Y between Banach spaces
induces the adjoint linear operator A*: Y* — X* defined by
(A*@p)(x) = Pp(Ax) for ¢ € Y* and x € X.

Now we consider the space

o= {x = Gadnzo € 572 lim a1y = o}.

Let E=T !¢y, and consider the map S=T|;:E — c.
Moreover, let $* : ¢ — E* be the adjoint operator.

Lemma 2. We have Ker S* = {0}.

Proof of the lemma. Take ¢ € KerS* and a sequence y €
co with bounded support. By Lemma 1, there exists X €
D(T) such that Sx = Tx =y. Therefore,

¢(Y) =¢(Sx) = (S'P)x=0

for each y € ¢y with bounded support. Since the sequences
with bounded support are dense in ¢y, we conclude that
¢=0. O

Lemma 3. For each y € cg, there exists X € I satisfying (10).

Proof of the lemma. Since T is a Fredholm operator, ImT
is closed and so the same happens to ImS. For example by
Theorem 4.6 in [22] we have

{ImS}° := {¢ e cj: p(x) =0 for x € co}= KerS".

It follows from Lemma 2 that {ImS}° = {0} and thus, by
the Hahn-Banach theorem we have Im S = ¢y, which yields
the statement in the lemma. O

Lemma 4. There exists a subspace Z of RY such that for each
y € cg, there exists a unique X € I with xy € Z satisfying

(10).

Proof of the lemma. Let Z be the subspace of R? con-
sisting of all vectors x € R? such that sup,_q [ A1, 0)x||n <
+oc. Moreover, let Z be any subspace of RY such that
RI=Z@Z. By Lemma 3, given y= (Ym)m=0 € o, there
exists X = (Xm)m=o € [°° satisfying (10). Write xy = yo + 2o,
where yo € Z and zy € Z'. Now we consider the sequence
X* = (X, )m=0 defined by

X5 =Xm —A(m,0)yg, m=>0.

Then x* € [, X} € Z’ and (10) holds with each x;; replaced
by x},.

It remains to show that x* is unique. Assume that for
some sequence Yy = (¥m)m=0 € Co there exist x = (X)) m=0 €
1°° with xi e Z’ satisfying (10) for i = 1, 2. Then

xh —x2, = A(m,0)(x}) —x3) form >0

and thus x} —x2 € Z. Hence, x} —x2 € ZnZ' and so x} = x2.
This implies that x}, =2, for m > 0 and so x' =x%. O

It follows now readily from results in [3] that the se-
quence (Am)n > o admits an exponential dichotomy on Zg
with respect to some norms || - ||;.

The following result is an application of Theorems 6
and 7.

Theorem 8. Let (Am)m = 0 and (Bm)m = o be sequences of in-
vertible d x d matrices such that (Am)p > o admits a nonuni-
form exponential dichotomy on Z{ and

’}Lngo(||An — Byle*") = 0. (11)

Then the sequence (Bm)m = o admits a nonuniform expo-
nential dichotomy on Z} with projections Py, satisfying
dimIm Py = dimIm P, for m > 0.

Proof. Since the sequence (Ap)n = o admits a nonuniform
exponential dichotomy, it follows from Proposition 4 that
it also admits an exponential dichotomy with respect to
some norms || - || satisfying (7).

On the other hand, by (11) there exists K > 0 such
that

|An — By|| < Ke=®" for n > 0. (12)
By (7) and (12), there exists ¢ > 0 such that
| (An = B)X|[ns1 < cllx|ln for x e RY and n > 0. (13)

It follows from (13) that the linear operator T : D(T) — I
given by

(TX)O =0 and (Tx)mﬂ = Xm41 — BmXm, m >0,
is well defined and bounded. O
Lemma 5. T is a Fredholm operator and ind T = ind T.

Proof of the lemma. We define an operator C : D(T) — I§°
by

(x)o=0 and (CX)my1 = (Bm —Am)Xm, m=>0.

In order to show that C is compact, for each n ¢ N we de-
fine an operator C" : D(T) — I§° by

CX)m = Bp_1 —Am_1)Xxm—1 form=1,....n
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and (C"X), = 0 otherwise. Clearly, C" is compact for each
n. Moreover, it follows from (7) that there exists K > 0
such that

[1(C = C")Xloo = sup [|(Bm—1 = Am—1)Xm-1llm
m=>n
< Ksup(e”™ || (Bm-1 — An-1)Xm_11])
m=>=n
=< yn”x”T,
where

Yo = Ksup(egmHBm_] —Am1 ||)-
m=n

By (11) we have limp_, 1~ ¥n = 0 and so the operator C is
compact. On the other hand, by Theorem 6, T is a Fredholm
operator and since T = T + C with C compact, we conclude
that T is also a Fredholm operator, and that ind T = ind T.

By Theorem 7 together with Lemma 5, the sequence
(Bm)m = 0 admits an exponential dichotomy with respect
to the norms || - ||». Hence, by Proposition 4, it also ad-
mits a nonuniform exponential dichotomy. Moreover, since
indT =indT, the projections associated to the two se-
quences of matrices have the same ranks. O

Finally, we briefly discuss the particular case of expo-
nential stability. We say that the sequence (Am)m = o is
exponentially stable with respect to the norms | - ||, if
it admits an exponential dichotomy with respect to the
norms || - ||, with projections Py, =1d for all n. The fol-
lowing result is a direct consequence of Theorems 6 and 7
and their proofs.

Theorem 9. The sequence (Am)n = o is exponentially stable
with respect to the norms || - || if and only if the operator T
is Fredholm and indT = d.

One can now proceed in a similar manner to that in
the proof of Theorem 8 to obtain the robustness property
of the notion of nonuniform exponential stability (which is
a particular case of the notion of nonuniform exponential
dichotomy).

4. Two-sided exponential dichotomies

Now we consider exponential dichotomies on Z. We al-
ways assume in this section that each norm | - ||, is in-
duced by a scalar product ( -, -),. We note that for the
purposes of our work there is no loss of generality in this
hypothesis. Indeed, it is easy to show that one can always
consider norms || - ||, in Proposition 4 that are induced by
scalar products. Then there exist invertible d x d matrices
Dy, for n € Z, such that

(X, ¥)n = (Dpx,y) forneZ and x,y e R%

In this section we replace the space [* in (8) by
I = {% = Gudmez © B ¢ X = SUP X < +00.
meZ

Again (I, || - ll) is a Banach space. Given a sequence
(Am)mez of invertible d x d matrices, we consider the lin-
ear operator S : D(S) — I3° defined by

(SX)m = Xm — Ap_1Xm-1, MEeZ, (14)

in the domain D(S) composed of the sequence x € [° such
that Sx e I°. Proceeding as in the proof of Proposition 5,
one can show that S is closed. Then we can introduce a
graph norm as in (9) so that S: (D(S), |- |ls) — I3° be-
comes a bounded operator.

Theorem 10. If the sequence (Am)mez admits exponential di-
chotomies on Z{ and Z, with respect to some norms || - ||m,
then S is a Fredholm operator.

Proof. Under the assumptions of the theorem, it is shown
in [2] that the operator S is onto. On the other hand, KerS
consists of all sequences X = (Xp)nez € 13° such that x; =
A(n,0)xo for n ez This implies that xo € ImP nKer Py,
where B} are the projections associated to the exponen-
tial dichotomy on Zar and P, are the projections associated
to the exponential dichotomy on Z; . Therefore, dimKerS <
+oo. O

Now let ¢y be as in (1) and define
R=S|g:E—cy, where E=S"c,.

We say that X = (xp)nez has bounded support if there exists
n € N such that x, = 0 for [m| > n.

Theorem 11. If S is a Fredholm operator, then the sequence
(Am)mez admits exponential dichotomies on ZO+ and Zy with
respect to some norms || - ||m. Moreover, if R is injective, then
the sequence admits an exponential dichotomy on 7 with re-
spect to some norms || - ||m.

Proof. We begin with an auxiliary result. O

Lemma 6. Let y = (yn)nez be a sequence with bounded sup-
port. Then there exists a sequence X = (Xp)nez With bounded
support such that Sx =y if and only if

> A0, k)yy =0. (15)
keZ

Proof of the lemma. Assume that X = (X;)ncz Ssatisfies
Sx =y. Since y has bounded support, for all sufficiently
large n > 0 we have

Xn = A(n, 0) (xo + iA(O, k)yk). (16)

k=1
Similarly, for all sufficiently small n < 0 we have

0

Xn = A1, 0) (Xo -3 4, k)yk). (17)
k=—o00

It follows from (16) and (17) that X = (X;)nez has bounded

support if and only if

00 0
Xo+ Y AWKy =% — Y A0 k)y, =0,
k=1 k=—o00
that is, if and only if (15) holds. Now assume that (15)
holds and define
m
A(m,0)xo+ > A(m.kyy,  ifm=>0,
k=1
0
A(m,0)xg— Y A(m,k)y, ifm<0,

k=m+1

Xm =
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where xg=->32; A(0,k)y,. Then X= (Xp)nez has
bounded support and Sx =y. O

Lemma 7. KerR consists of all o e ¢ for which there exists
a sequence (Yn)nez C RY such that:

1. Yup1 = (A) "1y, for n € Z and

> Dy Yalln < +oo; (18)

nez

for X = (Xp)nez € Co. (19)

a(x) = Z(Dgl)’ny Xn)n

nez

Proof of the lemma. Take « € KerR. Let X = (X;)nez, C RY
be a sequence with bounded support and let (¢,)ncz be a
sequence of positive real numbers such that Y., ¢n =1
and ¢, = 0 for |n| sufficiently large. We define

Xn = Xn — ¢n ZA(n, l)x (20)
keZ

for n € Z. Then X = (Xy)nez is a sequence with bounded
support and

ZA(O, n)&, = ZA(O, n)xn — Z¢” ZA(O, k)x, = 0.

nez nez nez keZ

It follows from Lemma 6 that X e ImS and thus X € ImR.
Therefore, X = Rz for some z € E and

a(X) =a(Rz) = (R*"a)z = 0.

Hence, it follows from (20) that

aX) =o <(¢n ZA(n, k)xk> )
kezZ nez

Let
d

v =Yoo ((#40.00) ) A©.n)e:
i=1

where {e;....,eq} is the canonical basis of RY. We note
that the sequence (yn)n satisfies y,,1 = (A%) "1y, for n e Z.
Then

Z(D;1Ystn>n = Z()’nyxn>

nez nez

d
= Z<ZO‘ ((¢jA(j, O)Ei)j€Z>A(0, n)*e;, Xn>

nezZ \i=1

d
_ Z<Za((¢j«4<j, o>ef)jez)e.-,A<o,n>xn>

€ i=1

d
< ;a <(¢ju4(j, O)Ei)jEZ)eiv Z A(0, n)xn>

1 nez

d

Z o ((¢j¢4(j, O)Ei)jez> er > A0, n)xy

=1 nez

a((dyZA(j, n)xn) ) = a(x) (1)
jeZ

nez j

for all sequences x with bounded support. In particular,

Z(DrﬂYm Xn)n

nez

= la)| < lloll - 1]l (22)

for all x with bounded support. Take K € N and define x =
(Xn)nez by
Di'yn
Xn =1 1Dz yalln
0 if n¢[-K, K].
By (22), we obtain

if n e [-K. K],

K
Y D5 alln < lle

n=—K
and since K is arbitrary, we conclude that (18) holds.
Now we define § : ¢ — R by

Bx) = Z(D;1Yn, Xn)n

nez

forx = (Xp)nez € Co.

It follows from (18) that B is a bounded linear functional
on ¢ and by (21), 8 and « coincide on the dense set of the
sequences with bounded support. Hence, @ = 8 and (19)
holds.

Now assume that « is given by (19) with (yn)nez as in
Lemma 7. For each X = (Xp)nez € ¢g We have

(R*a) (X) = a(Rx)
=Y (Dp"Yn. Xn — An1Xn1)n

nez
= Z((D;]anxn>n - (Dgl}’nvAn—lxn—l)n)
nez
= Z((DEIJ’n,Xﬂn - (Dglpyn—lvxn—l)n—l)
nez
+ Z((Dgll)’n—],xn—l)nA - (Drlen’An—lan)n)
nez
= Jlim Dy "y ) Jim (D 30
+ Z((.yn—lwxn—l> - <Yn»An—1xn—1>)
nez
= Z<Yn—1 — A} _1Yn. Xn_1) = 0.
nez

Therefore o« € KerR* and the proof of the lemma is
complete. O

We continue with the proof of the theorem. We first
observe that

ImR = {x e co:a(x) =0 for @ € KerR*}. (23)

Let y' = (¥i)nez. fori=1,...,m, be a basis of the space of
solutions y = (yn)nez of the equation
yn+1 = (A:)_]yn, ne Zv
such that ¥, [ID;'ynlln < 4+00. For each i=1,...,m, de-
fine ; € ¢ by

-1 )
ai(X) = Y (Dy'yh. Xn)n  for X = (Xn)nez € Co.

n=-o00
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Moreover, for each j=1,...,d, we define B; € ¢} by

Bi(x) =x} for X = (Xn)nez € Co.
Lemma 8. The set {o1,...,am, B1...., By} is linearly inde-
pendent.

Proof of the lemma. Assume that )" Aot = Z?ﬂ niBj
for some constants A;, i4; € R. This implies that

-1

d
Y (Dyyn Xadn = Y i) (24)

n=-—o0 j=1

for X = (Xn)nez € Co, Where

m
Y= nnez = »_ Ay

i=1
Assume that y,, # 0 for some ny < 0. Applying (24) to the
sequence X = (Xn)nez given by

o [Dalyn /Dyl if = o,
"o if #ng
we reach a contradiction. Hence, y =0, which implies

that A; =--- = Ay = 0. On the other hand, the functionals
B1. ..., Bq are clearly independent and so (1 == g =
0.

Now take z = (zp)nez € g With zg = 0. By Lemma 8, we
can choose X = (Xp)nez € Co such that
> .
(Xj(X) = - Z(D;]}’L, Zn)n

n=0

fori=1,...,m, (25)

and
Bi(x)=x,=0 for j=1,....d,

that is xqg = 0. We define X = (8;)nez by 8 =x, forn < 0
and X, =z, for n > 0. Clearly, X € ¢y. It follows from (25)
that

Z(D;lyz,in)n =0 fori=1,...,m

nez

and thus, it follows from Lemma 7 that «(X) =0 for o e
Ker R*. It follows from (23) that X € ImR. Therefore, there
exists a sequence W = (Wp)pez € I3° such that Rw =X and
hence

Wy —Apwp =X,,; forn>0.

It follows now from results in [3] that the sequence (An)n
admits an exponential dichotomy on Z] with respect to
some norms || - ||;. One establishes similarly the existence
of an exponential dichotomy on Z.

Assume now that R is injective. Then R is bijective and
it follows from the results in [1] that the sequence (Ap)nez
admits an exponential dichotomy on Z with respect to
some norms || - [|m. O

We also establish a version of Theorem 8 for exponen-
tial dichotomies on Z.

Theorem 12. Let (Am)mez and (Bm)mez be sequences of in-
vertible d x d matrices such that (Am)mez admits a nonuni-
form exponential dichotomy on Z and

i _ elnl)
lim ([|An = Balle) = 0. (26)

Then the sequence (Bm)mez admits nonuniform exponen-

tial dichotomies on Z§ and Zg. Moreover, if there exists no
nonzero sequence X = (Xp)nez Such that x,,1 = Bnxy for ne
Z and supygyz ||xnlln < 400, where

X[l = sup(||. A, m)Pax|[e*=™)
n=m
+ sup (||l A(n, m)Qux||e*™-"), (27)
n=m

then (Bm)mez admits a nonuniform exponential dichotomy on
Z.

Proof. It follows from (3) and (4) that
Xl < IXllm < 2Def!™|x|| for xe RYand me Z, (28)

for the norms || - |l in (27). Let I be defined with re-
spect to those norms. By Theorem 10, the operator S de-
fined by (14) is Fredholm. Now we consider the operator
C: I — I? defined by

CX)me1 = (Am — Bm)xm, meZ.

Using (26) and (28), it is easy to verify that C is a well-
defined compact operator. We also define an operator U :
D(S) — I by

(UX)me1 = Xme1 — Bmxm, meZ.

Then U=S+C is a Fredholm operator. It follows from
Theorem 11 and Proposition 4 that the sequence (Bm)mez
admits nonuniform exponential dichotomies on Z} and Zj.
In view of Theorem 10 this also implies that U is onto.

Finally, under the assumption that there exists no
nonzero sequence X = (Xp)nez # 0 as in the statement of
the theorem, the operator U is injective and hence U it is
also bijective. O
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