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We consider the notion of strong nonuniform spectrum for a nonautonomous dynamics
with discrete time obtained from a sequence of matrices, which is defined in terms of
the existence of strong nonuniform exponential dichotomies with an arbitrarily small
nonuniform part. The latter exponential dichotomies are ubiquitous in the context of
ergodic theory and correspond to have both lower and upper bounds along the stable and
unstable directions, besides possibly a nonuniform conditional stability although with
an arbitrarily small exponential dependence on the initial time. Moreover, we consider
arbitrary growth rates instead of only the usual exponential rates. We give a complete
characterization of the possible strong nonuniform spectra and for a Lyapunov regular
trajectory, we show that the spectrum is the set of Lyapunov exponents. In addition, we
provide explicit examples of nonautonomous dynamics for all possible strong nonuniform
spectra. A remarkable consequence of our results is that for a sequence of matrices Am,
either e−aAm does not admit a strong exponential dichotomy for any a ∈ R, or if
e−aAm admits an exponential dichotomy for some a ∈ R, then it also admits a strong
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exponential dichotomy for that a. We emphasize that this result is not in the literature
even in the special case of uniform exponential dichotomies.

Keywords: Exponential dichotomies; robustness; spectrum.

Mathematics Subject Classification 2010: 37D99

1. Introduction

1.1. Uniform exponential behavior

The spectrum introduced by Sacker and Sell in [11] can be seen as a generalization
of the spectrum of a matrix (the set of its eigenvalues). In order to explain why this
is so, let (Am)m∈Z be a two-sided sequence of invertible d×d matrices and consider
the dynamics

xm+1 = Amxm, m ∈ Z

on R
d. When Am = A for m ∈ Z and some invertible matrix A, for each given

a ∈ R the following properties are equivalent:

(1) a = −log |µ| for some eigenvalue µ of A;
(2) the sequence (e−aA)m∈Z admits a uniform exponential dichotomy.

We recall briefly the notion of a uniform exponential dichotomy, which corresponds
to have exponential bounds along certain (stable and unstable) subspaces. For each
m, n ∈ Z, let

A(m, n) =




Am−1 · · ·An, m > n,

Id, m = n,

A−1
m · · ·A−1

n−1, m < n.

(1)

We say that sequence (Am)m∈Z admits a uniform exponential dichotomy if there
exist projections Pm for m ∈ Z (that is, matrices with P 2

m = Pm) satisfying

PmA(m, n) = A(m, n)Pn for m, n ∈ Z (2)

and constants D, λ > 0 such that

‖A(m, n)Pn‖ ≤ De−λ(m−n) for m ≥ n (3)

and

‖A(m, n)Qn‖ ≤ De−λ(n−m) for m ≤ n, (4)

where Qm = Id−Pm for each m ∈ Z. The families of stable and unstable subspaces
are respectively Pm(Rd) and Qm(Rd). In the particular case of a constant sequence
Am = A this is equivalent to require that there exist a projection P satisfying
PA = AP and constants D, λ > 0 such that

‖(e−aA)mP‖ ≤ De−λm and ‖(e−aA)−mQ‖ ≤ De−λm

for m ≥ 0, where Q = Id−P is also a projection. The equivalence of properties (1)
and (2) motivates defining a spectrum associated to an arbitrary sequence (Am)m∈Z
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as the set of all numbers a ∈ R such that (e−aAm)m∈Z admits a uniform exponen-
tial dichotomy. This is precisely the notion introduced in [11], in fact in the more
general case of linear cocycles or, equivalently, linear skew product flows (which
essentially corresponds to consider families of sequences of matrices instead of a
single sequence Am), although with restrictive assumptions on the base.

1.2. Nonuniform exponential behavior

In this paper we consider a nonuniform version of the spectrum introduced by
Sacker and Sell, in the sense that the estimates in (3) and (4) can be spoiled
with arbitrarily small exponentials, thus leading to a nonuniform stability along
the stable and unstable subspaces. Before proceeding, we recall that a sequence
(Am)m∈Z is said to admit a nonuniform exponential dichotomy with an arbitrarily
small nonuniform part if there exist projections Pm for m ∈ Z satisfying (2), a
constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖A(m, n)Pn‖ ≤ De−λ(m−n)+ε|n| for m ≥ n (5)

and

‖A(m, n)Qn‖ ≤ De−λ(n−m)+ε|n| for m ≤ n, (6)

where Qm = Id−Pm for each m ∈ Z. The extra terms eε|n| in (5) and (6) correspond
to the “nonuniform part” of the exponential dichotomy. We emphasize that all the
requirements in the notion of a nonuniform exponential dichotomy with an arbi-
trarily small nonuniform part are ubiquitous in the context of ergodic theory. More
precisely, let f : R

d → R
d be a diffeomorphism preserving a probability measure µ

on R
d. This means that

µ(f−1A) = µ(A)

for every measurable set A ⊂ R
d. For example, any time-1 map of a Hamiltonian

flow preserves the Liouville measure on each energy level, and so there are plenty
examples already in the somewhat classical context of mechanical systems. We also
consider the Lyapunov exponents

λ(x, v) = lim sup
m→∞

1
m

log‖dxfmv‖

for x, v ∈ R
d with v �= 0. If log+‖df‖ = max{0, log‖df‖} is µ-integrable (for exam-

ple, if the measure µ has compact support, such as the Liouville measure on any
compact energy level), then for µ-almost every x with λ(x, v) �= 0 for all v �= 0 the
sequence of matrices

Am = dfm(x)f, m ∈ Z (7)

admits a nonuniform exponential dichotomy with an arbitrarily small nonuniform
part (we refer the reader to [3, 6] for details and references).
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1.3. Strong nonuniform exponential behavior

In fact we consider an even stronger version of exponential dichotomy that is also
ubiquitous in the context of ergodic theory. Roughly speaking, besides requiring
contraction and expansion respectively along the stable and unstable subspaces, one
requires lower bounds in the stable direction for positive time and in the unstable
direction for negative time. Namely, we say that a sequence (Am)m∈Z admits a
strong nonuniform exponential dichotomy with an arbitrarily small nonuniform part
or simply a strong dichotomy if there exist projections Pm for m ∈ Z satisfying (2),
constants µ ≥ λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that in
addition to the inequalities in (5) and (6), we have

‖A(m, n)Qn‖ ≤ Deµ(m−n)+ε|n| for m ≥ n (8)

and

‖A(m, n)Pn‖ ≤ Deµ(n−m)+ε|n| for m ≤ n.

Example 1. The sequence of real numbers

Am = e(m+1)3−m3
, m ∈ Z

admits a nonuniform exponential dichotomy with an arbitrarily small nonuniform
part (with Pm = 0 for each m), but not a strong dichotomy (that is, a strong
nonuniform exponential dichotomy with an arbitrarily small nonuniform). Indeed,

A(m, n) = em3−n3
= e(m−n)(m2+mn+n2)

and since the quadratic form x2 + xy + y2 is positive definite, there exists λ > 0
such that A(m, n) ≥ eλ(m−n) for m ≥ n. This yields inequalities (5) and (6) taking
Pm = 0 for each m ∈ Z, D = 1 and ε arbitrary. On the other hand, inequality (8),
that is,

e(m−n)(m2+mn+n2) ≤ Deµ(m−n)+ε|n|

cannot hold for any µ: for a given n let m → +∞.

Again, let f : R
d → R

d be a diffeomorphism preserving a probability measure µ.
If log+‖df‖ is µ-integrable, then for µ-almost every point with nonzero Lyapunov
exponents the sequence of matrices in (7) admits a strong dichotomy (see [3, 6] for
details).

1.4. The strong nonuniform spectrum

Now we introduce the notion of strong nonuniform spectrum. While the original
notion introduced in [11] was defined in terms of uniform exponential dichotomies,
we define the spectrum in terms of strong dichotomies. Given a sequence (Am)m∈Z of
invertible d×d matrices, its strong nonuniform spectrum is the set Σ of all numbers
a ∈ R such that the sequence (e−aAm)m∈Z does not admit a strong dichotomy. In
particular, we describe the structure of the strong nonuniform spectrum and how
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it relates to certain subspaces Wi(n) (see Theorem 4). Namely, the spectrum can
be either the whole R or a finite union

⋃k
i=1[ai, bi], for some real numbers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk

and some integer k ≤ d. Moreover, we show that each nonzero vector in the subspace
Wi(n) has (lower and upper) Lyapunov exponents

lim inf
m→±∞

1
m

log‖A(m, n)v‖ and lim sup
m→±∞

1
m

log‖A(m, n)v‖

inside the same interval [ai, bi] of the spectrum. We emphasize that in strong con-
trast to what happens in work of Aulbach and Siegmund in [2] for the spectrum
defined in terms of uniform exponential dichotomies (following closely work of Sieg-
mund in [13] in the case of continuous time), the strong nonuniform spectrum
is never empty and it is either compact or the whole line. The construction of
the associated invariant subspaces follows a simple yet powerful idea apparently
used first by Oseledets in [10] in his proof of the multiplicative ergodic theorem
(see [4]).

Moreover, we obtain related results for continuous time (see Sec. 7). The proofs
are analogous to those for discrete time and so we omit them. For related work in
the case of uniform exponential dichotomies (that are not necessarily strong) we
refer the reader to [1, 7–9, 12] (in particular, [1] considers noninvertible systems of
difference equations, [9] describes the relation to ergodic theory and [8, 12] study
infinite-dimensional systems).

1.5. Application to strong dichotomies

This characterization of the strong nonuniform spectrum turns out to imply the
following remarkable property of exponential dichotomies that to the best of our
knowledge is not in the literature even in the special case of uniform exponential
behavior. In a certain sense this is the main contribution of our work (see Sec. 5).

Theorem 1. If Σ �= R and the sequence of matrices e−aAm admits a nonuniform
exponential dichotomy with an arbitrarily small nonuniform part, then it also admits
a strong nonuniform exponential dichotomy with an arbitrarily small nonuniform
part (that is, a strong dichotomy).

In other words, we have the following alternative:

(1) either no sequence of matrices e−aAm admits a strong dichotomy (for any a ∈
R), in which case Σ = R;

(2) or any sequence of matrices e−aAm that admits a nonuniform exponential
dichotomy with an arbitrarily small nonuniform part also admits a strong
dichotomy, in which case Σ �= R.

Further properties are described at the end of Sec. 5.
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1.6. Lyapunov regular sequences

In addition, in the particular case of a Lyapunov regular sequence of matrices, we
show that the strong nonuniform spectrum is the set of the Lyapunov exponents (see
Theorems 6 and 7). We recall that a sequence (Am)m∈Z of invertible d×d matrices
is said to be Lyapunov regular if there exist a decomposition R

d =
⊕s

i=1 Ei and
real numbers λ1 < · · · < λs for some integer s ≤ d such that

lim
m→±∞

1
m

log‖A(m, 0)v‖ = λi (9)

for i = 1, . . . , s and v ∈ Ei\{0}, and

lim
m→±∞

1
m

log|detA(m, 0)| =
s∑

i=1

λi dimEi. (10)

Essentially, this corresponds to control not only the asymptotic behavior into the
future and into the past, but also the angles between the various directions, which
cannot approach with exponential speed.

Example 2. The sequence of matrices

Am =

(
1 0

−2m+1 4

)
, m ∈ Z

satisfies property (9) but not property (10). Indeed, we have

A(m, 0) =

(
1 0

2m 4m

)
, m ∈ Z,

which shows that λ1 = log 2 with E1 generated by e1 = (1, 0), and λ2 = log 4 with
E2 generated by e2 = (0, 1). However, detA(m, 0) = 4m and so the left-hand and
right-hand sides of (10) are respectively log 4 and log 2+log 4. One can easily verify
that the angle between A(m, 0)e1 and A(m, 0)e2 goes to zero exponentially when
m → ∞.

On the other hand, any constant or periodic sequence of matrices is Lyapunov
regular. Further examples are given in Sec. 6. The discussion of the technical details
of the former interpretation of the notion of Lyapunov regularity is out of the scope
of our work (again we refer the reader to [3, 6] for full details). Nevertheless, we
remark that the notion of Lyapunov regularity is also ubiquitous in the context
of ergodic theory: if f : R

d → R
d is a diffeomorphism preserving a probability

measure µ such that log+‖df‖ is µ-integrable, then for µ-almost every x the sequence
of matrices in (7) is Lyapunov regular (see [3]).

1.7. Arbitrary growth rates

We note that in all the results of the paper we allow the usual exponential rate to
be replaced by an arbitrary growth rate, that is, an increasing function ρ : Z → R
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satisfying

lim
n→−∞ ρ(n) = −∞ and lim

n→+∞ ρ(n) = +∞. (11)

For example, for a sequence of matrices (Am)m∈Z the notion of a ρ-uniform expo-
nential dichotomy is obtained from that of a uniform exponential dichotomy by
replacing inequalities (3) and (4) respectively by

‖A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n)) for m ≥ n

and

‖A(m, n)Qn‖ ≤ De−λ(ρ(n)−ρ(m)) for m ≤ n.

When ρ(n) = n we recover the usual notion of a uniform exponential dichotomy.
This generalization to arbitrary growth rates corresponds to consider dynamics
that may have zero or infinite Lyapunov exponents with respect to the usual rate
ρ(n) = n but not with respect to other rates.

2. Preliminaries

Let (Am)m∈Z be a sequence of invertible d×d matrices. For each m, n ∈ Z we define
A(m, n) as in (1). Now let ρ : Z → R be an increasing function satisfying (11).
We say that the sequence (Am)m∈Z admits a ρ-strong nonuniform exponential
dichotomy with an arbitrarily small nonuniform part or simply a ρ-strong dichotomy
if there exist projections Pm for m ∈ Z satisfying (2), constants µ ≥ λ > 0 and for
each ε > 0 a constant D = D(ε) > 0 such that

‖A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)|,

‖A(m, n)Qn‖ ≤ Deµ(ρ(m)−ρ(n))+ε|ρ(n)|
(12)

for m ≥ n and

‖A(m, n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)|,

‖A(m, n)Pn‖ ≤ Deµ(ρ(n)−ρ(m))+ε|ρ(n)|
(13)

for m ≤ n, where Qm = Id−Pm for each m ∈ Z. The families of stable and unstable
subspaces are respectively Pm(Rd) and Qm(Rd).

We first show that the images of the projections Pm and Qm are uniquely
determined.

Proposition 2. For each n ∈ Z, we have

Pn(Rd) =
{

v ∈ R
d : lim sup

m→+∞
1

ρ(m)
log‖A(m, n)v‖ < 0

}
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and

Qn(Rd) =
{

v ∈ R
d : lim sup

m→−∞
1

|ρ(m)| log‖A(m, n)v‖ < 0
}

.

Proof. It follows from (12) that

lim sup
m→+∞

1
ρ(m)

log‖A(m, n)v‖ < 0 (14)

for v ∈ Pn(Rd). On the other hand, if v ∈ R
d satisfies (14), then it follows again

from (12) that

lim sup
m→+∞

1
ρ(m)

log‖A(m, n)Qnv‖ < 0. (15)

By (13), for m ≥ n we have

‖Qnv‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(m)|‖A(m, n)Qnv‖,
that is,

1
D

eλ(ρ(m)−ρ(n))−ε|ρ(m)|‖Qnv‖ ≤ ‖A(m, n)Qnv‖.
Whenever Qnv �= 0, this yields that

0 < λ − ε ≤ lim sup
m→+∞

1
ρ(m)

log‖A(m, n)Qnv‖

for any sufficiently small ε > 0, which contradicts to inequality (15). Therefore,
Qnv = 0 and v ∈ Pn(Rd). The proof of the second assertion of the lemma is
completely analogous.

For a sequence (Am)m∈Z of invertible d × d matrices, its strong nonuniform
spectrum is the set Σ of all a ∈ R such that the sequence (Bm)m∈Z, where

Bm = e−a(ρ(m+1)−ρ(m))Am for m ∈ Z, (16)

does not admit a ρ-strong dichotomy. For each a ∈ R and n ∈ Z, let

Sa(n) =
{

v ∈ R
d : lim sup

m→+∞
1

ρ(m)
log‖A(m, n)v‖ < a

}
and

Ua(n) =
{

v ∈ R
d : lim sup

m→−∞
1

|ρ(m)| log‖A(m, n)v‖ < −a

}
.

It follows from Proposition 2 that if a ∈ R\Σ, then

R
d = Sa(n) ⊕ Ua(n) for n ∈ Z, (17)

with the projections Pn and Qn associated to the sequence (Bm)m∈Z satisfying
Pn(Rd) = Sa(n) and Qn(Rd) = Ua(n) for n ∈ Z. For each a ∈ R and n ∈ Z, we
have

AnSa(n) = Sa(n + 1) and AnUa(n) = Ua(n + 1). (18)
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In particular, this implies that the dimensions dim Sa(n) and dimUa(n) are inde-
pendent of n. We shall denote the common values simply by dimSa and dimUa

respectively. Moreover, if a < a′, then

Sa(n) ⊂ Sa′(n) and Ua′(n) ⊂ Ua(n).

3. Structure of the Spectrum

In this section we describe completely the structure of the strong nonuniform spec-
trum as well as its associated invariant subspaces.

We start with a preliminary result. Let (Am)m∈Z be a sequence of invertible
d × d matrices and let ρ be an increasing function satisfying (11).

Proposition 3. The set Σ ⊂ R is closed. Moreover, for each a ∈ R\Σ we have
Sa(n) = Sb(n) and Ua(n) = Ub(n) for all n ∈ Z and all b in some open neighborhood
of a.

Proof. Given a ∈ R\Σ, there exist projections Pn for n ∈ Z satisfying (2), constants
λ, µ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ Deµ(ρ(m)−ρ(n))+ε|ρ(n)|

for m ≥ n and

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ Deµ(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. Therefore, for each b ∈ R we have

‖e−b(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ De−(λ−a+b)(ρ(m)−ρ(n))+ε|ρ(n)|,

‖e−b(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ De(µ+a−b)(ρ(m)−ρ(n))+ε|ρ(n)|

for m ≥ n and

‖e−b(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ De−(λ+a−b)(ρ(n)−ρ(m))+ε|ρ(n)|,

‖e−b(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ De(µ−a+b)(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. In particular, whenever

|a − b| < min{λ, µ},
we find that b ∈ R\Σ, Sb(n) = Sa(n) and Ub(n) = Ua(n) for n ∈ Z.

Our main result is the following. It describes the structure of the strong nonuni-
form spectrum and how it relates to certain invariant subspaces. We define the
angle between two subspaces E, F ⊂ R

d by

∠(E, F ) = inf{‖x − y‖ : x ∈ E, y ∈ F, ‖x‖ = ‖y‖ = 1}.
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Theorem 4. For a sequence (Am)m∈Z of invertible d × d matrices:

(1) either Σ = R or Σ = [a1, b1] ∪ · · · ∪ [ak, bk], for some finite numbers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk and k ≤ d; (19)

(2) in the second case, taking numbers c0 < a1, ck > bk and

ci ∈ (bi, ai+1) for i = 1, . . . , k − 1

for each n ∈ Z the subspaces Wi(n) = Uci−1(n) ∩ Sci(n) satisfy

AnWi(n) = Wi(n + 1) for i = 1, . . . , k (20)

and form the direct sum

R
d =

k⊕
i=1

Wi(n); (21)

(3) the subspaces Wi(n) are independent of the numbers c0, . . . , ck;
(4) for each i = 1, . . . , k and v ∈ Wi(n)\{0} we have

ai ≤ lim inf
m→±∞

1
ρ(m)

log‖vm‖ ≤ lim sup
m→±∞

1
ρ(m)

log‖vm‖ ≤ bi, (22)

where vm = A(m, n)v;
(5) for each i, j = 1, . . . , k with i �= j we have

lim
n→±∞

1
ρ(n)

log ∠(Wi(n), Wj(n)) = 0. (23)

Proof. Assume that Σ �= R and take a ∈ R\Σ. Then, there exist projections Pn for
n ∈ Z satisfying (2), constants λ, µ > 0 and for each ε > 0 a constant D = D(ε) > 0
such that

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ Deµ(ρ(m)−ρ(n))+ε|ρ(n)|
(24)

for m ≥ n and

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ Deµ(ρ(n)−ρ(m))+ε|ρ(n)|
(25)

for m ≤ n. It follows from (24) and (25) that

‖e−a(ρ(m)−ρ(n))A(m, n)‖ ≤ 2Deµ(ρ(m)−ρ(n))+ε|ρ(n)| (26)

for m ≥ n and

‖e−a(ρ(m)−ρ(n))A(m, n)‖ ≤ 2Deµ(ρ(n)−ρ(m))+ε|ρ(n)| (27)

for m ≤ n. Now take b > µ + a. Then

‖e−b(ρ(m)−ρ(n))A(m, n)‖ ≤ 2De(µ+a−b)(ρ(m)−ρ(n))+ε|ρ(n)|
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for m ≥ n and

‖e−b(ρ(m)−ρ(n))A(m, n)‖ ≤ 2De(µ−a+b)(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. Since µ−a+b > −µ−a+b > 0, this shows that (µ+a, +∞) ⊂ R\Σ and
Sb(n) = R

d for b ∈ (µ+a,∞). One can show in a similar manner that (−∞, µ−a) ⊂
R\Σ and Sb(n) = {0} for b ∈ (−∞, µ − a). In particular, Σ ⊂ [µ − a, µ + a] and so
Σ is compact.

In order to show that Σ is nonempty, let

c = inf{ρ ∈ R\Σ : Sρ(n) = R
d}.

Clearly, µ − a ≤ c ≤ µ + a. Now assume that c �∈ Σ. Then:

(1) If Sc(n) = R
d, then by Proposition 3 we have Sρ′(n) = R

d and ρ′ ∈ R\Σ for all
ρ′ ∈ (c − ε, c] and some ε > 0. But this contradicts to the definition of c.

(2) If Sc(n) �= R
d, then by Proposition 3 we have Sρ′(n) �= R

d and ρ′ ∈ R\Σ for all
ρ′ ∈ [c, c + ε) and some ε > 0, which again contradicts to the definition of c.

Therefore, c ∈ Σ and so Σ �= ∅.
We continue with an auxiliary result.

Lemma 1. Take a1, a2 ∈ R\Σ such that a1 < a2, Sa1(n) = Sa2(n) and Ua1(n) =
Ua2(n) for some n ∈ Z. Then [a1, a2] ⊂ R\Σ, and Sa(n) = Sa1(n) and Ua(n) =
Ua1(n) for every a ∈ [a1, a2] and n ∈ Z.

Proof of the Lemma. It follows from the hypothesis that there exist projections
Pn for n ∈ Z satisfying (2), constants λi, µi > 0 for i = 1, 2 and for each ε > 0
constants Di = Di(ε) > 0 for i = 1, 2 such that

‖e−ai(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ Die
−λi(ρ(m)−ρ(n))+ε|ρ(n)|,

‖e−ai(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ Die
µi(ρ(m)−ρ(n))+ε|ρ(n)|

for m ≥ n and

‖e−ai(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ Die
−λi(ρ(n)−ρ(m))+ε|ρ(n)|,

‖e−ai(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ Die
µi(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. For each a ∈ [a1, a2], we have

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ D1e
−λ1(ρ(m)−ρ(n))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ D1e
µ1(ρ(m)−ρ(n))+ε|ρ(n)|

for m ≥ n and

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ D2e
−λ2(ρ(n)−ρ(m))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ D2e
µ2(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. Taking the constants λ = min{λ1, λ2}, µ = max{µ1, µ2} and D =
max{D1, D2} yields that [a1, a2] ⊂ R\Σ. The last statement in the lemma follows
now readily from Proposition 2.
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Now assume that Σ is composed of d + 1 disjoint closed intervals and take
b1, . . . , bd ∈ R\Σ such that all intervals

(−∞, b1), (b1, b2), . . . , (bd−1, bd), (bd, +∞)

intersect Σ. By Lemma 1, we have

0 ≤ dimSb1 < dimSb2 < · · · < dimSbd
≤ d. (28)

Since Sc(n) = R
d for c > µ + a, it follows from Lemma 1 that dim Sbd

< d.
Moreover, since Sc(n) = {0} for c < µ − a, it follows again from Lemma 1 that
dimSb1 > 0. Hence, property (28) cannot hold and so Σ is composed of at most d

closed intervals.
Property (20) follows readily from (18). Moreover, for i < j we have

Wi(n) ⊂ Sci(n) ⊂ Scj−1(n)

and Wj(n) ⊂ Ucj−1(n), which implies that

Wi(n) ∩ Wj(n) = {0} for n ∈ Z.

Now observe that since

(A + B) ∩ C = A + (B ∩ C)

whenever A, B and C are subspaces with A ⊂ C, it follows from (17) that

R
d = Sck

(n)

= (Sck−1(n) ⊕ Uck−1(n)) ∩ Sck
(n)

= Sck−1(n) ⊕ (Sck
(n) ∩ Uck−1(n))

= Sck−1(n) ⊕ Wk(n)

for each n ∈ Z. Proceeding inductively, we obtain the direct sum in (21).
For the third property with need another auxiliary result.

Lemma 2. If a1, a2 ∈ R\Σ with a1 < a2 are such that dimSa1(n) < dimSa2(n)
for some n ∈ Z, then (a1, a2) ∩ Σ �= ∅.

Proof of the Lemma. Let

b = inf{a ∈ R\Σ : Sa(n) = Sa2(n) for some n ∈ Z}.
Since Sa1(n) �= Sa2(n), it follows from Proposition 3 that a1 < b < a2. Now assume
that b �∈ Σ. Then:

(1) If Sb(n) = Sa2(n), then by Proposition 3 we have Sb′(n) = Sa2(n) and b′ ∈ R\Σ
for all b′ ∈ (b− ε, b] and some ε > 0. But this contradicts to the definition of b.

(2) If Sb(n) �= Sa2(n), then by Proposition 3 we have Sb′(n) �= Sa2(n) and b′ ∈ R\Σ
for all b′ ∈ [b, b + ε) and some ε > 0, which again contradicts to the definition
of b.

Therefore (a1, a2) ∩ Σ �= ∅.
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The lemma implies that each Wi(n) is independent of the choice of numbers
c0, . . . , ck. Indeed, it follows from Lemma 2 that if di ∈ (bi, ai+1) for i = 1, . . . , k−1,
then Udi = Uci(n) and Sdi(n) = Sci(n) for i = 1, . . . , k − 1. Therefore, each Wi(n)
is independent of the choice of numbers c0, . . . , ck.

For the fourth property, take v ∈ Wi(n)\{0}. Since ci /∈ Σ, there exist projec-
tions Pm for m ∈ Z satisfying (2), a constant λ > 0 and for each ε > 0 a constant
D = D(ε) > 0 such that

‖e−ci(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n. (29)

Since v ∈ Sci(n), we have

‖A(m, n)v‖ ≤ De−(λ−ci)(ρ(m)−ρ(n))

for m ≥ n and so,

lim sup
m→+∞

1
ρ(m)

log‖A(m, n)v‖ ≤ ci − λ < ci.

Letting ci ↘ bi yields that

lim sup
m→+∞

1
ρ(m)

log‖A(m, n)v‖ ≤ bi.

Similarly, since ci−1 /∈ Σ, there exist projections Pm for m ∈ Z satisfying (2), a
constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖e−ci−1(ρ(m)−ρ(n))A(m, n)(Id − Pn)‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n.

Since v ∈ Uci−1(n), we have

1
D

e(λ+ci−1)(ρ(m)−ρ(n))−ε|ρ(m)|‖v‖ ≤ ‖A(m, n)v‖
for m ≥ n and so,

lim inf
m→+∞

1
ρ(m)

log‖A(m, n)v‖ > ci−1.

Letting ci−1 ↗ ai yields that

lim inf
m→+∞

1
ρ(m)

log‖A(m, n)v‖ ≥ ai.

Therefore,

ai ≤ lim inf
n→+∞

1
ρ(n)

log‖A(n, n)v‖ ≤ lim sup
n→+∞

1
ρ(n)

log‖A(n, n)v‖ ≤ bi

for v ∈ Wi(n)\{0}. One can show in a similar manner that

ai ≤ lim inf
n→−∞

1
ρ(n)

log‖A(n, n)v‖ ≤ lim sup
n→−∞

1
ρ(n)

log‖A(n, n)v‖ ≤ bi

for v ∈ Wi(n)\{0}.
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For the last property, without loss of generality take j > i and note that

∠
(

i⊕
l=1

Wl(n),
k⊕

l=i+1

Wl(n)

)
≤ ∠(Wi(n), Wj(n)) ≤ 2.

By construction we have

i⊕
l=1

Wl(n) = Sci(n) and
k⊕

l=i+1

Wl(n) = Uci(n).

Applying for example Proposition 2.4 in [6], for the projections Pn in (29), we
obtain

∠(Sci(n), Uci(n)) ≥ 1
‖Pn‖ ,

since

Sci(n) = Pn(Rd) and Uci(n) = Qn(Rd).

Hence,

1
‖Pn‖ ≤ ∠(Wi(n), Wj(n)) ≤ 2.

Taking m = n in (29) gives ‖Pn‖ ≤ Deε|ρ(n)| and the arbitrariness of ε yields
property (23). This completes the proof of the theorem.

4. Examples

In this section we provide explicit examples of all possible forms of the strong
nonuniform spectrum Σ given by Theorem 4. Let ρ be an arbitrary increasing func-
tion satisfying (11).

Example 3 (Case of Σ = R). This is an elaboration of Example 1. Consider the
sequence of matrices

Am = eρ(m+1)3−ρ(m)3Id, m ∈ Z.

Then

A(m, n) = eρ(m)3−ρ(n)3Id = e(ρ(m)−ρ(n))(ρ(m)2+ρ(m)ρ(n)+ρ(n)2)Id.

Now take a ∈ R and consider the sequence Bm in (16). Proceeding as in Example 1
we find that the first inequalities in (12) and (13) hold taking Pm = 0 for m ∈ Z,
D = 1 and ε arbitrary, for some constant λ = λ(a) > 0; in fact one can take
λ(a) = λ(0) − a. On the other hand, the second inequality in (12), that is,

e(ρ(m)−ρ(n))(ρ(m)2+ρ(m)ρ(n)+ρ(n)2) ≤ Deµ(ρ(m)−ρ(n))+ε|ρ(n)|

cannot hold for any µ. Hence, the sequence Bm does not admit a ρ-strong dichotomy
and so Σ = R.
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Example 4 (Case of Σ= [a1, b1]∪ · · · ∪[ak, bk]). Take numbers as in (19) and
take positive integers n1, . . . , nk such that n1 + · · · + nk = d. For each n ∈ Z,
consider the block matrix

An = diag(A1
nIdn1 , . . . , A

k
nIdnk

), (30)

where Idni is the identity on R
ni and

Aj
n =


ebj(ρ(n+1)−ρ(n))+

√
|ρ(n+1)| cos ρ(n+1)−

√
|ρ(n)| cos ρ(n), n ≥ 0,

eaj(ρ(n+1)−ρ(n))+
√

|ρ(n+1)| cos ρ(n+1)−
√

|ρ(n)| cos ρ(n), n < 0

for j = 1, . . . , k. For each j = 1, . . . , k and m, n ∈ Z, let

Aj(m, n) =




Aj
m−1 · · ·Aj

n, m > n,

1, m = n,

(Aj
m)−1 · · · (Aj

n−1)
−1, m < n.

Then

Aj(m, n) =




ebj(ρ(m)−ρ(n))+
√

|ρ(m)| cos ρ(m)−
√

|ρ(n)| cos ρ(n), m, n ≥ 0,

ebjρ(m)−ajρ(n)+
√

|ρ(m)| cos ρ(m)−
√

|ρ(n)| cos ρ(n), m ≥ 0, n < 0,

eaj(ρ(m)−ρ(n))+
√

|ρ(m)| cos ρ(m)−
√

|ρ(n)| cos ρ(n), m, n < 0.

Clearly,

Aj(m, n) ≤ ebj(ρ(m)−ρ(n))+
√

|ρ(m)| cos ρ(m)−
√

|ρ(n)| cos ρ(n)

for m ≥ n and

Aj(m, n) ≤ eaj(ρ(m)−ρ(n))+
√

|ρ(m)| cos ρ(m)−
√

|ρ(n)| cos ρ(n)

for m ≤ n, since aj ≤ bj . Now take a > bj . We have

e−a(ρ(m)−ρ(n))Aj(m, n) ≤ e−(a−bj)(ρ(m)−ρ(n))+
√

|ρ(m)|+
√

|ρ(n)| (31)

for m ≥ n. On the other hand, given δ > 0, there exists D = D(δ) > 0 such that

e
√

|ρ(n)| ≤ Deδ|ρ(n)| for n ∈ Z. (32)

Hence, it follows from (31) that

e−a(ρ(m)−ρ(n))Aj(m, n) ≤ D2e−(a−bj)(ρ(m)−ρ(n))+δ|ρ(m)|+δ|ρ(n)|

≤ D2e−(a−bj−δ)(ρ(m)−ρ(n))+2δ|ρ(n)|

for m ≥ n. We also have

e−a(ρ(m)−ρ(n))Aj(m, n) ≤ e−(a−aj)(ρ(m)−ρ(n))+
√

|ρ(m)|+
√

|ρ(n)|

≤ D2e−(a−aj)(ρ(m)−ρ(n))+2δ|ρ(n)|

for m ≤ n. Since a−aj ≥ a−bj > 0 and δ is arbitrary, this shows that the sequence

Bj
m = e−a(ρ(m+1)−ρ(m))Aj

m (33)
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admits a ρ-strong contraction, that is, a ρ-strong dichotomy with projections Pm =
Id for m ∈ Z.

Similarly, one can show that for a < aj the sequence Bj
m in (33) admits a ρ-

strong expansion, that is, a ρ-strong dichotomy with projections Pm = 0 for m ∈ Z.
Indeed, by (32), for m ≤ n we obtain

e−a(ρ(n)−ρ(m))Aj(n, m) ≥ e−(a−aj)(ρ(n)−ρ(m))−
√

|ρ(m)|−
√

|ρ(n)|

≥ D−2e−(a−aj+δ)(ρ(n)−ρ(m))−2δ|ρ(n)|

and so,

e−a(ρ(m)−ρ(n))Aj(m, n) ≤ D2e−(a−aj+δ)(ρ(m)−ρ(n))+2δ|ρ(n)|.

Moreover, for m ≥ n, we have

e−a(ρ(n)−ρ(m))Aj(n, m) ≥ e−(a−bj)(ρ(n)−ρ(m))−
√

|ρ(m)|−
√

|ρ(n)|

≥ D−2e−(a−bj)(ρ(n)−ρ(m))−2δ|ρ(n)|.

Since a− bj ≤ a− aj < 0 and δ is arbitrary, this shows that Bj
m admits a ρ-strong

expansion.
Now take a ∈ [aj , bj]. We note that e−a(ρ(m)−ρ(n))Aj(m, n) is given by


e(bj−a)(ρ(m)−ρ(n))+
√

ρ(m) cos ρ(m)−
√

|ρ(n)| cos ρ(n), m, n ≥ 0,

e(bj−a)ρ(m)−(aj−a)ρ(n)+
√

|ρ(m)| cos ρ(m)−
√

|ρ(n)| cos ρ(n), m ≥ 0, n < 0,

e(aj−a)(ρ(m)−ρ(n))+
√

|ρ(m)| cos ρ(m)−
√

|ρ(n)| cos ρ(n), m, n < 0.

Since bj−a ≥ 0, the first branch precludes Bj
m from admitting a ρ-strong contraction

and since aj − a ≤ 0, the third branch precludes Bj
m from admitting a ρ-strong

expansion. Hence, it follows from the former discussion that Bj
m admits a ρ-strong

dichotomy if and only if a ∈ R\[aj , bj ].
Finally, we determine the strong nonuniform spectrum of the sequence (Am)m∈Z.

Take a ∈ R\⋃k
j=1[aj , bj]. When bj < a < aj+1 for some j, let

Pm(x1, . . . , xd) = (x1, . . . , xn1+···+nj , 0, . . . , 0).

Otherwise, when a > bk let Pm = Id and when a < a1 let Pm = 0. Then the
sequence Bm in (16) admits a ρ-strong dichotomy with these projections, since for
each j the sequence Bj

m admits a ρ-strong contraction or a ρ-strong expansion.
More precisely, assume that bj < a < aj+1. For i ≤ j we have

e−a(ρ(m)−ρ(n))Ai(m, n) ≤ D2e−(a−bi−δ)(ρ(m)−ρ(n))+2δ|ρ(n)|

≤ D2e−(a−bj−δ)(ρ(m)−ρ(n))+2δ|ρ(n)|

for m ≥ n and

e−a(ρ(m)−ρ(n))Ai(m, n) ≤ D2e−(a−ai)(ρ(m)−ρ(n))+2δ|ρ(n)|

≤ D2e−(a−a1)(ρ(m)−ρ(n))+2δ|ρ(n)|

for m ≤ n.
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Similarly, for i > j we have

e−a(ρ(m)−ρ(n))Ai(m, n) ≤ D2e−(a−ai+δ)(ρ(m)−ρ(n))+2δ|ρ(n)|

≤ D2e−(a−aj+1+δ)(ρ(m)−ρ(n))+2δ|ρ(n)|

for m ≤ n and

e−a(ρ(m)−ρ(n))Ai(m, n) ≤ D2e−(a−bi)(ρ(m)−ρ(n))+2δ|ρ(n)|

≤ D2e−(a−bk)(ρ(m)−ρ(n))+2δ|ρ(n)|

for m ≥ n. The cases when a > bk or a < a1 are analogous. This shows that
Σ ⊂ ⋃k

j=1[aj , bj].
For the reverse inclusion, we proceed by contradiction. Assume that for some

j there exists a ∈ [aj, bj ]\Σ. In particular, the sequence Bm admits a ρ-strong
dichotomy. The space

Xj = {0}n1+···+nj−1 × R
nj × {0}nj+1+···+nk

is invariant under Bj
m, that is, Bj

mXj = Xj for all m, and so it must be contained
either in the stable space or in the unstable space associated to Bm, since these
are also invariant (and it is impossible that Xj has elements in both spaces since
the blocks of the matrices Am are multiples of the identity). On the other hand, as
shown above, Bj

m admits neither a ρ-strong contraction nor a ρ-strong expansion,
which implies that Xj cannot contain vectors with the bounds along the stable and
unstable spaces associated to Bm. This contradiction shows that Σ =

⋃k
j=1[aj , bj].

5. Relation to Nonstrong Exponential Dichotomies

In this section we relate the notions of a strong nonuniform exponential dichotomy
and of a (nonstrong) nonuniform exponential dichotomy in an optimal manner. This
is a principal part of our paper since the somewhat unexpected relation between
the two is here detailed for the first time.

Let (Am)m∈Z be a sequence of invertible d×d matrices and let ρ be an increasing
function satisfying (11). We say that the sequence (Am)m∈Z admits a ρ-nonuniform
exponential dichotomy with an arbitrarily small nonuniform part or simply a ρ-
dichotomy if there exist projections Pm for m ∈ Z satisfying (2), a constant λ > 0
and for each ε > 0 a constant D = D(ε) > 0 such that

‖A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)|,

for m ≥ n and

‖A(m, n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n, where Qm = Id − Pm for each m ∈ Z.
The following is our main result describing the relation between the two notions

of exponential dichotomies. For each a ∈ R we denote by Ba the sequence of
matrices Bm in (16).
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Theorem 5. If Σ �= R and Ba admits a ρ-dichotomy, then Ba admits a ρ-strong
dichotomy.

Proof. Take a ∈ R such that the sequence Ba admits a ρ-dichotomy. Then there
exist projections Pn for n ∈ Z, a constant λ > 0 and for each ε > 0 a constant
D = D(ε) > 0 such that

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)|

for m ≥ n and

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. In particular,

‖Pn‖ ≤ Deε|ρ(n)| and ‖Qn‖ ≤ Deε|ρ(n)|

for n ∈ Z. Since Σ �= R, it follows from (26) and (27) that there exist a constant
µ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖A(m, n)‖ ≤ Deµ(ρ(m)−ρ(n))+ε|ρ(n)|

for m ≥ n and

‖A(m, n)‖ ≤ Deµ(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. Hence,

‖A(m, n)Qn‖ ≤ D2eµ(ρ(m)−ρ(n))+2ε|ρ(n)|

for m ≥ n and

‖A(m, n)Pn‖ ≤ D2eµ(ρ(n)−ρ(m))+2ε|ρ(n)|

for m ≤ n. Therefore, there exists ν > 0 such that

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ D2eν(ρ(m)−ρ(n))+2ε|ρ(n)|

for m ≥ n and

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ D2eν(ρ(n)−ρ(m))+2ε|ρ(n)|

for m ≤ n, and so Ba admits a ρ-strong dichotomy.

The following statements are simple consequences of Theorems 4 and 5
and reveal somewhat unexpected relations between the notions of a strong
nonuniform exponential dichotomy and of a (nonstrong) nonuniform exponential
dichotomy:

(1) either no Ba admits a ρ-strong dichotomy (for any a ∈ R) or any Ba that
admits a ρ-dichotomy also admits a ρ-strong dichotomy;

(2) if some Ba admits a ρ-dichotomy but not a ρ-strong dichotomy, then no Bb

admits a ρ-strong dichotomy;
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(3) if Ba admits a ρ-strong dichotomy for some a, then:

(a) any Bb admitting a ρ-dichotomy admits a ρ-strong dichotomy;
(b) some Bb does not admit a ρ-dichotomy;
(c) some Bb does not admit a ρ-strong dichotomy;
(d) Bb admits a ρ-strong dichotomy for any sufficiently large |b|.

6. Lyapunov Regularity

In this section we consider the concept of Lyapunov regularity for the Lyapunov
exponents associated to a sequence ρ(n). We say that a sequence (An)n∈Z of invert-
ible d × d matrices is ρ-Lyapunov regular if there exist a decomposition

R
d =

s⊕
i=1

Ei (34)

and real numbers λ1 < · · · < λs for some integer s ≤ d such that:

(1) if i = 1, . . . , s and v ∈ Ei\{0}, then

lim
n→±∞

1
ρ(n)

log‖A(n, 0)v‖ = λi; (35)

(2)

lim
n→±∞

1
ρ(n)

log|detA(n, 0)| =
s∑

i=1

λi dimEi. (36)

Example 5. Consider the numbers

Am =

{
eρ(m+1)−ρ(m), m ≥ 0,

e−ρ(m+1)+ρ(m), m < 0

for m ∈ Z. For v �= 0 we have

lim
n→+∞

1
ρ(n)

log‖A(n, 0)v‖ = 1 and lim
n→−∞

1
ρ(n)

log‖A(n, 0)v‖ = −1.

Hence, the sequence (Am)m∈Z is not ρ-Lyapunov regular.

Example 6. Consider the matrices

Am =

(
e−ρ(m+1)+ρ(m) 0

0 eρ(m+1)−ρ(m)

)

for m ∈ Z. Then (34) and (35) hold taking λ1 = −1, λ2 = 1,

E1 = {(x, 0) : x ∈ R} and E2 = {(0, x) : x ∈ R}.
Since detAm = 1, the sequence (Am)m∈Z is ρ-Lyapunov regular.

For a Lyapunov regular sequence of matrices the strong nonuniform spectrum
is simply the set of the Lyapunov exponents.
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Theorem 6. If the sequence (An)n∈Z is ρ-Lyapunov regular, then

Σ = {λ1, . . . , λs}. (37)

Proof. Given a ∈ R\{λ1, . . . , λs}, the Lyapunov exponents associated to the
sequence Bn in (16) are the numbers −a + λi for i = 1, . . . , s. Let P0 and Q0

be the projections associated to the decomposition

R
d =

( ⊕
i:λi<a

Ei

)
⊕
( ⊕

i:λi>a

Ei

)
.

By results in [5], the sequence (Bn)n∈Z admits a ρ-strong dichotomy on Z
+
0 with

projections

Pn = A(n, 0)P0A(0, n) for n ≥ 0.

Hence, there exists λ, µ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that
for m, n ≥ 0 we have

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ Deµ(ρ(m)−ρ(n))+ε|ρ(n)|

for m ≥ n and

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)|,

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ Deµ(ρ(n)−ρ(m))+ε|ρ(n)|

for m ≤ n. Moreover, the sequence (Bn)n∈Z admits a ρ-strong dichotomy on Z
−
0

with projections

Pn = A(n, 0)P0A(0, n) for n ≤ 0

and without loss of generality with the same constants λ, µ and D = D(ε) as above.
For n < 0 < m, we have

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖
≤ ‖e−a(ρ(m)−ρ(0))A(m, 0)P0‖ · ‖e−a(ρ(0)−ρ(n))A(0, n)Pn‖
≤ D2eε|ρ(0)|e−λ(ρ(m)−ρ(n))+ε|ρ(n)|

and

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖
≤ ‖e−a(ρ(m)−ρ(0))A(m, 0)Q0‖ · ‖e−a(ρ(0)−ρ(n))A(0, n)Qn‖
≤ D2eε|ρ(0)|eµ(ρ(m)−ρ(n))+ε|ρ(n)|.

Similarly, for m < 0 < n we have

‖e−a(ρ(m)−ρ(n))A(m, n)Qn‖ ≤ D2eε|ρ(0)|e−λ(ρ(n)−ρ(m))+ε|ρ(n)|

and

‖e−a(ρ(m)−ρ(n))A(m, n)Pn‖ ≤ D2eε|ρ(0)|eµ(ρ(n)−ρ(m))+ε|ρ(n)|.
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Therefore, the sequence (Bn)n∈Z admits a ρ-strong dichotomy on Z. This shows
that a /∈ Σ and so Σ ⊂ {λ1, . . . , λs}.

For the reverse inclusion, take i ∈ {1, . . . , s} and assume that the sequence
(e−λi(ρ(n+1)−ρ(n))An)n∈Z admits a ρ-strong dichotomy. Then there exist projections
Pm for m ∈ Z satisfying (2), a constant λ > 0 and for each ε > 0 a constant
D = D(ε) > 0 such that

‖A(m, n)Pn‖ ≤ De−(λ−λi)(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n (38)

and

‖A(m, n)Qn‖ ≤ De−(λ+λi)(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n. (39)

For v ∈ Ei\{0}, by (38), we have

lim sup
m→+∞

1
ρ(m)

log‖A(m, 0)P0v‖ ≤ −λ + λi < λi.

Hence, by (35), P0v �= v and

lim sup
m→+∞

1
ρ(m)

log‖A(m, 0)Q0v‖ = λi. (40)

On the other hand, by (39),

1
D

e(λ+λi−ε)ρ(m)‖Q0v‖ ≤ ‖A(m, 0)(Id − P0)v‖

for m ≥ 0. Since P0v �= v, we obtain

lim sup
m→+∞

1
ρ(m)

log‖A(m, 0)Q0v‖ ≥ λ + λi − ε > λi

for any sufficiently small ε > 0, which contradicts to (40). Therefore, λi ∈ Σ and
so {λ1, . . . , λs} ⊂ Σ. This completes the proof of the theorem.

The following result is a partial converse of Theorem 6 and follows easily from
Theorem 4.

Theorem 7. If (37) holds for some numbers λ1 < · · · < λs, then (35) holds taking
Ei = Wi(0) in (34). If in addition

lim
n→±∞

1
ρ(n)

log ∠(A(n, 0)v, A(n, 0)w) = 0 (41)

for any nonzero vectors v �= w in the same space Wi(0), then (36) also holds.

Proof. Taking ai = bi = λi and n = 0 in (22), we obtain

λi ≤ lim inf
m→±∞

1
ρ(m)

log‖A(n, 0)v‖ ≤ lim sup
m→±∞

1
ρ(m)

log‖A(n, 0)v‖ ≤ λi

for v ∈ Wi(0)\{0}, which yields property (35) taking Ei = Wi(0).
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For the second property, we first assume that s = d, in which case each space
Ei is one-dimensional and so condition (41) is automatically satisfied. Consider an
invertible matrix C whose ith column is a basis for Ei, for i = 1, . . . , d. Then

|detA(n, 0)C| =
d∏

i=1

‖A(n, 0)vi‖
d−1∏
j=1

sin ∠(A(n, 0)vj , A(n, 0)vj+1)

=
d∏

i=1

‖A(n, 0)vi‖
d−1∏
j=1

sin ∠(Wj(n), Wj+1(n)).

It follows now readily from (23) and (35) that

lim
n→±∞

1
ρ(n)

log|detA(n, 0)| =
d∑

i=1

lim
n→±∞

1
ρ(n)

log‖A(n, 0)vi‖

+
d−1∑
j=1

lim
n→±∞

1
ρ(n)

log sin∠(Wj(n), Wj+1(n))

=
d∑

i=1

λi =
d∑

i=1

λi dimEi,

and property (36) holds. When s �= d, we consider an invertible matrix C whose
columns are successively bases of E1, . . . , Es. Using condition (41), one can repeat
the former argument to conclude that property (36) also holds. This completes the
proof of the theorem.

Applying Theorems 6 and 7, we can describe further examples of regular and
nonregular sequences of matrices.

Example 7. Take numbers as in (19) and take positive integers n1, . . . , nk such
that n1+· · ·+nk = d. By construction, the sequence of matrices Am in (30) obtained
from these numbers satisfies property (41). Hence, it follows from Theorems 6 and 7
that the sequence (Am)m∈Z is ρ-Lyapunov regular if and only if

ai = bi for i = 1, . . . , k.

In particular, the sequence of matrices Am in (30) with

Aj
n =


eaj(ρ(n+1)−ρ(n))+

√
|ρ(n+1)| cos ρ(n+1)−

√
|ρ(n)| cos ρ(n), n ≥ 0,

eaj(ρ(n+1)−ρ(n))+
√

|ρ(n+1)| cos ρ(n+1)−
√

|ρ(n)| cos ρ(n), n < 0

for j = 1, . . . , k is ρ-Lyapunov regular.

7. Continuous Time

In this section we describe briefly versions of our results for continuous time. Con-
sider a linear differential equation

x′ = A(t)x (42)
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on R
d, where A(t) is a d × d matrix varying continuously with t ∈ R. Let T (t, s)

be the evolution family associated to Eq. (42) and let ρ : R → R be an increasing
function satisfying

lim
t→−∞ ρ(t) = −∞ and lim

t→+∞ ρ(t) = +∞.

We say that the evolution family T (t, s) admits a ρ-strong nonuniform exponential
dichotomy with an arbitrarily small nonuniform part or simply a ρ-strong dichotomy
if there exist projections P (t) for t ∈ R satisfying

P (t)T (t, s) = T (t, s)P (s)

for t, s ∈ R, constants λ, µ > 0 and for each ε > 0 a constant D = D(ε) > 0 such
that for every t, s ∈ R we have

‖T (t, s)P (s)‖ ≤ De−λ(ρ(t)−ρ(s))+ε|ρ(s)|,

‖T (t, s)Q(s)‖ ≤ Deµ(ρ(t)−ρ(s))+ε|ρ(s)|

for t ≥ s and

‖T (t, s)Q(s)‖ ≤ De−λ(ρ(s)−ρ(t))+ε|ρ(s)|,

‖T (t, s)P (s)‖ ≤ Deµ(ρ(s)−ρ(t))+ε|ρ(s)|

for t ≤ s, where Q(t) = Id − P (t) for each t ∈ R.
The strong nonuniform spectrum of Eq. (42) is the set Σ of all a ∈ R for which

the evolution family

Ta(t, s) = e−a(ρ(t)−ρ(s))T (t, s) (43)

does not admit a ρ-strong dichotomy. We note that when ρ is differentiable the
evolution family associated to the equation

x′ = (A(t) − aρ′(t)Id)x

is precisely Ta(t, s) in (43).
The following result is a version of Theorem 4 for continuous time. We emphasize

that the proof is analogous to the proof of Theorem 4 and so we omit it.

Theorem 8. For Eq. (42) the following properties hold:

(1) either Σ = R or Σ = [a1, b1] ∪ · · · ∪ [ak, bk], for some finite numbers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk and k ≤ d;

(2) in the second case, taking numbers c0 < a1, ck > bk and

ci ∈ (bi, ai+1) for i = 1, . . . , k − 1,

for each t, s ∈ R the subspaces Wi(t) = Uci−1(t) ∩ Sci(t) satisfy

T (t, s)Wi(s) = Wi(t) for i = 1, . . . , k
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and form the direct sum

R
d =

k⊕
i=1

Wi(t);

(3) the subspaces Wi(t) are independent of the numbers c0, . . . , ck;
(4) for each i = 1, . . . , k and v ∈ Wi(s)\{0} we have

ai ≤ lim inf
t→±∞

1
ρ(t)

log‖v(t)‖ ≤ lim sup
t→±∞

1
ρ(t)

log‖v(t)‖ ≤ bi,

where v(t) = T (t, s)v;
(5) for each i, j = 1, . . . , k with i �= j we have

lim
t→±∞

1
ρ(t)

log ∠(Wi(t), Wj(t)) = 0.

Finally, we consider also the concept of Lyapunov regularity. We say that
Eq. (42) is ρ-Lyapunov regular if there exist a decomposition as in (34) and real
numbers λ1 < · · · < λs for some integer s ≤ d such that:

(1) if i = 1, . . . , s and v ∈ Ei\{0}, then

lim
t→±∞

1
ρ(t)

log‖T (t, 0)v‖ = λi; (44)

(2)

lim
t→±∞

1
ρ(t)

log|detT (t, 0)| =
s∑

i=1

λi dim Ei. (45)

We also have the following version of Theorems 6 and 7 combined.

Theorem 9. If Eq. (42) is ρ-Lyapunov regular, then

Σ = {λ1, . . . , λs}. (46)

Moreover, if (46) holds for some numbers λ1 < · · · < λs, then (44) holds taking
Ei = Wi(0) in (34), and if in addition

lim
t→±∞

1
ρ(t)

log ∠(T (t, 0)v, T (t, 0)w) = 0

for any nonzero vectors v �= w in the same space Wi(0), then (45) also holds.
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