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Abstract. For the flow determined by a nonautonomous linear differential equation, we char-
acterize the existence of a strong nonuniform exponential dichotomy in terms of the Fredholm
property of a certain linear operator. We consider both cases of one-sided and two-sided ex-
ponential dichotomies. Moreover, we use the characterizations to establish the robustness of
the notion of a strong nonuniform exponential dichotomy in a simple manner.
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1. Introduction

For the flow determined by a nonautonomous linear differential equation x′ =
A(t)x in a finite-dimensional space, we describe the relation between the exis-
tence of a strong nonuniform exponential dichotomy and the Fredholm prop-
erty of the linear operator R defined by

(Rx)(t) = x′(t) − A(t)x(t), t ≥ 0,

between certain Banach spaces (see Sect. 3 for the details). In particular, we
show that the equation x′ = A(t)x admits a strong nonuniform exponential
dichotomy on R

+
0 if and only if R is a Fredholm operator and the dynamics

satisfies a certain bounded growth property (see (8)).
Related results were first obtained by Palmer [13,14]. Further results were

obtained by Lin [10] for functional differential equations, by Blázquez [6], Ro-
drigues and Silveira [18], Zeng [20] and Zhang [21] for parabolic evolution
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equations, and by Chow and Leiva [7], Sacker and Sell [19] and Rodrigues and
Ruas-Filho [17] for abstract evolution equations. All these works consider only
uniform exponential dichotomies.

On the other hand, in the context of ergodic theory almost all linear varia-
tional equations with nonzero Lyapunov exponents of a measure-preserving
flow admit a strong nonuniform exponential dichotomy (see [3]). The ter-
m “nonuniform” means that the stability or conditional stability need not
be uniform, with a deviation from the uniform case that may grow expo-
nentially with the initial time. The term “strong” refers to the fact that be-
sides having upper bounds along the stable direction when the time increases
and along the unstable direction when the time decreases, one has also lower
bounds. As noted above, both situations are typical in the context of ergodic
theory.

We use the characterization of the existence of a strong nonuniform expo-
nential dichotomy, both for one-sided and two-sided exponential dichotomies,
to establish the robustness of the notion. In the case of uniform exponential
dichotomies, early related works are due to Massera and Schäffer [11], Cop-
pel [8], and in the case of Banach spaces to Dalec′kĭı and Krĕın [9]. For more
recent works we refer to [4,12,15,16] and the references therein.

2. Preliminaries

Let I ∈ {R+
0 ,R−

0 ,R}, where

R
+
0 = {x ∈ R : x ≥ 0} and R

−
0 = {x ∈ R : x ≤ 0}.

We consider a linear nonautonomous differential equation

x′ = A(t)x, (1)

where A : I → Md is a continuous function with values on the set Md of all
d×d matrices. Let T (t, τ), for t, τ ∈ I, be the associated evolution family such
that x(t) = T (t, τ)x(τ) for any solution x of Eq. (1). Now we consider a family
of norms ‖·‖t, for t ∈ I, such that:

1. there exist constants C > 0 and ε ≥ 0 such that

‖x‖ ≤ ‖x‖τ ≤ Ceε|τ |‖x‖
for every x ∈ X and τ ∈ I;

2. the map t �→ ‖x‖t is continuous on I for each x ∈ X.

We say that Eq. (1) admits a strong exponential dichotomy on I with respect
to the family of norms ‖·‖t if there exist projections Pt : Rd → R

d, for t ∈ I,
satisfying

PtT (t, τ) = T (t, τ)Pτ for t, τ ∈ I (2)
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and constants
λ ≤ λ < 0 < μ ≤ μ and D > 0 (3)

such that for each x ∈ X we have

‖T (t, τ)Pτx‖t ≤ Deλ(t−τ)‖x‖τ ,

‖T (τ, t)Qtx‖τ ≤ De−μ(t−τ)‖x‖t (4)

for t ≥ τ and

‖T (t, τ)Pτx‖t ≤ Deλ(t−τ)‖x‖τ ,

‖T (τ, t)Qtx‖τ ≤ De−μ(t−τ)‖x‖t (5)

for t ≤ τ , where Qτ = Id − Pτ . Moreover, we say that Eq. (1) admits a strong
nonuniform exponential dichotomy on I if:
1. there exist projections Pt : Rd → R

d, for t ∈ I, satisfying (2);
2. there exist constants as in (3) and ε ≥ 0 such that

‖T (t, τ)Pτ‖ ≤ Deλ(t−τ)+ε|τ |,

‖T (τ, t)Qt‖ ≤ De−μ(t−τ)+ε|t|

for t ≥ τ and

‖T (t, τ)Pτ‖ ≤ Deλ(t−τ)+ε|τ |,

‖T (τ, t)Qt‖ ≤ De−μ(t−τ)+ε|t|

for t ≤ τ , where Qτ = Id − Pτ .
The two notions are related as follows.

Proposition 1. Equation (1) admits a strong nonuniform exponential dichoto-
my on I if and only if it admits a strong exponential dichotomy on I with
respect to a family of norms ‖·‖t satisfying conditions 1 and 2.

3. One-sided exponential dichotomies

In this section we consider exponential dichotomies on R
+
0 . Let Y be the set

of all continuous functions x : R+
0 → R

d such that

‖x‖∞ := sup
t≥0

‖x(t)‖t < +∞.

It is easy to verify that Y is a Banach space with the norm ‖·‖∞.
Given a continuous function A : R+

0 → Md, let R be the linear operator
defined by

(Rx)(t) = x′(t) − A(t)x(t), t ≥ 0,

in the domain D(R) formed by all x ∈ Y such that Rx ∈ Y (this includes the
requirement that x′(t) exists and is continuous).
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Proposition 2. The operator R : D(R) → Y is closed.

Proof. Let (xk)k∈N be a sequence in D(R) converging to x ∈ Y such that
yk = Rxk converges to y ∈ Y . For each τ ≥ 0, we have

x(t) − x(τ) = lim
k→∞

(xk(t) − xk(τ))

= lim
k→∞

∫ t

τ

x′
k(s) ds

= lim
k→∞

∫ t

τ

(
yk(s) + A(s)xk(s)

)
ds

for t ≥ τ . Moreover, we have∥∥∥∥
∫ t

τ

yk(s) ds −
∫ t

τ

y(s) ds

∥∥∥∥ ≤
∫ t

τ

‖yk(s) − y(s)‖ ds

≤
∫ t

τ

‖yk(s) − y(s)‖s ds

≤ (t − τ)‖yk − y‖∞.

Since yk → y in Y , we obtain

lim
k→∞

∫ t

τ

yk(s) ds =
∫ t

τ

y(s) ds.

Similarly,∥∥∥∥
∫ t

τ

A(s)xk(s) ds −
∫ t

τ

A(s)x(s) ds

∥∥∥∥ ≤ M

∫ t

τ

‖xk(s) − x(s)‖ds

≤ M(t − τ)‖yk − y‖∞,

where

M = sup
{‖A(s)‖ : s ∈ [τ, t]

}
< +∞.

Since yk → y in Y , we obtain

lim
k→∞

∫ t

τ

A(s)xk(s) ds =
∫ t

τ

A(s)x(s) ds.

Therefore,

x(t) − x(τ) =
∫ t

τ

(
A(s)x(s) + y(s)

)
ds,

which implies that Rx = y and x ∈ D(R). �

For x ∈ D(R) we consider the graph norm

‖x‖R = ‖x‖∞ + ‖Rx‖∞. (6)

Since R is closed, (D(R), ‖·‖R) is a Banach space. Moreover, the operator
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R : (D(R), ‖·‖R) → Y (7)

is bounded and from now on we denote it simply by R.

Theorem 3. If equation (1) admits a strong exponential dichotomy on R
+
0 with

respect to a family of norms ‖·‖t, then R is a Fredholm operator with

indR = dim Im Pt for t ≥ 0

and there exist a,K > 0 such that

‖T (t, s)x‖t ≤ Kea|t−s|‖x‖s for t, s ≥ 0 and x ∈ R
d. (8)

Proof. We first show that R is onto. Take y ∈ Y and extend it to a function
y : R → X by letting y(t) = 0 for t < 0. For t ≥ 0, we define

x(t) =
∫ t

0

T (t, τ)P (τ)y(τ) dτ −
∫ +∞

t

T (t, τ)Q(τ)y(τ) dτ.

It follows from (4) that∫ t

0

‖T (t, τ)P (τ)y(τ)‖t dτ +
∫ +∞

t

‖T (t, τ)Q(τ)y(τ)‖t dτ

≤ D‖y‖∞

(∫ t

0

eλ(t−τ)dτ +
∫ +∞

t

e−μ(τ−t)dτ

)

= D

(
− 1

λ
+

1
μ

)
‖y‖∞

for t ≥ 0 and thus, x(t) is well defined and x ∈ Y . Moreover, for each t0 ≥ 0
we have

x(t) =
∫ t

t0

T (t, τ)y(τ) dτ −
∫ t

t0

T (t, τ)P (τ)y(τ) dτ

−
∫ t

t0

T (t, τ)Q(τ)y(τ) dτ +
∫ t

0

T (t, τ)P (τ)y(τ) dτ

−
∫ +∞

t

T (t, τ)Q(τ)y(τ) dτ

=
∫ t

t0

T (t, τ)y(τ) dτ +
∫ t0

0

T (t, τ)P (τ)y(τ) dτ

−
∫ +∞

t0

T (t, τ)Q(τ)y(τ) dτ

=
∫ t

t0

T (t, τ)y(τ) dτ + T (t, t0)x(t0)

and hence,

x(t) = T (t, t0)x(t0) +
∫ t

t0

T (t, τ)y(τ) dτ (9)
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for t ≥ 0. It follows from (9) that the function x : R → X is differentiable and
that Rx = y. On the other hand, one can verify that S : Ker R → R

d defined
by Sx = x(0) is a bijection onto ImP0 and thus dim KerR < +∞. Finally,
property (8) is a direct consequence of (4) and (5). �

Now we establish the converse of Theorem 3.

Theorem 4. If R is a Fredholm operator and there exist a,K > 0 satisfying (8),
then Eq. (1) admits a strong exponential dichotomy on R

+
0 with respect to a

family of norms ‖·‖t.

Proof. We start with an auxiliary result. �

Lemma 1. Given a continuous function y : R+
0 → R

d with bounded support,
there exists a continuous function x : R+

0 → R
d with bounded support such that

Rx = y.

Proof of the lemma. Take t0 > 0 such that y(t) = 0 for t ≥ t0 and let

v = −
∫ t0

0

T (0, s)y(s) ds.

We define

x(t) =

{
T (t, 0)v +

∫ t

0
T (t, s)y(s) ds if 0 ≤ t ≤ t0,

0 if t > t0.

The function x satisfies the desired properties. �

Now let Y0 be the closed subspace of all functions x ∈ Y such that
limt→+∞‖x(t)‖t = 0 and let E = R−1Y0. We write S = R|E : E → Y0 and we
denote by S∗ : Y ∗

0 → E∗ the adjoint operator.

Lemma 2. We have Ker S∗ = {0}.
Proof of the lemma. Take φ ∈ Ker S∗ and y ∈ Y0 with bounded support. By
Lemma 1, there exists x ∈ Y such that Rx = y and thus Sx = y. We have

φ(y) = φ(Sx) = (S∗φ)x = 0

for y ∈ Y0 with bounded support. Since the continuous functions with bounded
support are dense in Y0, we conclude that φ = 0. �

Lemma 3. For each y ∈ Y0, there exists x ∈ Y such that Rx = y.

Proof of the lemma. Since R is a Fredholm operator, its image and so also
Im S are closed. On the other hand, we have

{Im S}0 :=
{
φ ∈ Y ∗

0 : φ(x) = 0 for x ∈ Y0

}
= Ker S∗.

It follows from Lemma 2 that {Im S}0 = {0} and hence, by the Hahn–Banach
theorem we have Im S = Y0, which yields the statement in the lemma. �
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Lemma 4. There exists a subspace Z of R
d such that for each y ∈ Y0, there

exists a unique x ∈ Y with x(0) ∈ Z and Rx = y.

Proof of the lemma. Let Z be the subspace of R
d consisting of all vectors

x ∈ R
d such that

sup
t≥0

‖T (t, 0)x‖t = 0.

Moreover, let Z ′ be any subspace of Rd such that R
d = Z ⊕ Z ′. Given y ∈ Y0,

by Lemma 3 there exists x ∈ Y such that Rx = y. Write x0 = y0 + z0, where
y0 ∈ Z and z0 ∈ Z ′. Now we consider the function

x∗(t) = x(t) − T (t, 0)y(0).

Then x ∈ Y , x(0)∗ ∈ Z ′ and Rx∗ = y. Now assume that for some y ∈ Y0 there
exist functions xi ∈ Y satisfying Rxi = y and xi(0) ∈ Z ′ for i = 1, 2. We have

x1(t) − x2(t) = T (t, 0)(x1(0) − x2(0))

for t ≥ 0 and x1(0) − x2(0) ∈ Z. Hence, x1(0) − x2(0) ∈ Z ∩ Z ′ and so
x1(0) = x2(0). Therefore, x1(t) = x2(t) for t ≥ 0, that is, x1 = x2. �

It follows from Lemma 4 and results in [2] that Eq. (1) admits an expo-
nential dichotomy on R

+
0 with respect to a family of norms ‖·‖t (although [2]

considers a certain space Y1 instead of Y0, all goes through for the new space
exactly with the same proof). In view of condition (8) this is in fact a strong
exponential dichotomy. �

As an application of Theorems 3 and 4, we establish the robustness of
one-sided exponential dichotomies.

Theorem 5. Assume that Eq. (1) admits a strong nonuniform exponential di-
chotomy on R

+
0 and that B : R+

0 → Md is a continuous function satisfying

‖B(t) − A(t)‖ ≤ δe−εt (10)

for all t ≥ 0 and some δ > 0. If δ is sufficiently small, then the equation

x′ = B(t)x (11)

admits a strong nonuniform exponential dichotomy on R
+
0 with projections P ′

t

such that dim P ′
t = dim Pt for t ≥ 0.

Proof. By Proposition 1, there exists a family of norms ‖·‖t, for t ≥ 0, satisfy-
ing conditions 1 and 2 such that Eq. (1) admits a strong exponential dichotomy
on R

+
0 with respect to this family. We consider the operator R defined by (7).

By Theorem 3, R is Fredholm and property (8) holds.
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For the evolution facility S(t, s) associated to Eq. (11), it follows from (8)
and (10) that

‖S(t, s)x‖t =
∥∥∥∥T (t, s)x +

∫ t

s

T (t, τ)[B(τ) − A(τ)]S(τ, s)x dτ

∥∥∥∥
t

≤ Kea(t−s)‖x‖s + K

∫ t

s

ea(t−τ)
∥∥[B(τ) − A(τ)]S(τ, s)x

∥∥
τ

dτ

≤ Kea(t−s)‖x‖s + δCK

∫ t

s

ea(t−τ)‖S(τ, s)x‖τ dτ

for t ≥ s. This shows that the function φ(t) = e−at‖S(t, s)x‖t satisfies

φ(t) ≤ Kφ(s) + δCK

∫ t

s

φ(τ) dτ

for t ≥ s. Using Gronwall’s lemma, we obtain

φ(t) ≤ Kφ(s)eδCK(t−s)

or, equivalently,

‖S(t, s)x‖t ≤ Ke(a+δCK)(t−s)‖x‖s

for t ≥ s. A similar argument applies to the case when t ≤ s and so,

‖S(t, s)x‖t ≤ Ke(a+δCK)|t−s|‖x‖s for t, s ≥ 0.

Now let U be the linear operator associated to Eq. (11), defined by

(Ux)(t) = x′(t) − B(t)x(t), t ≥ 0,

in the domain D(U) formed by all x ∈ Y for which Ux ∈ Y . Moreover, let
P : Y → Y be the linear operator defined by

(Px)(t) = (B(t) − A(t))x(t).

By (10) we have

‖(B(t) − A(t))x(t)‖t ≤ Ceε|t|‖(B(t) − A(t))x(t)‖
≤ δC‖x(t)‖ ≤ δC‖x(t)‖t

for t ≥ 0. Hence,

sup
t≥0

‖(Px)(t)‖t ≤ δC‖x‖∞ ≤ δC‖x‖R

for t ≥ 0 and P is bounded. Since a sufficiently small perturbation of a Fred-
holm operator is a Fredholm operator with the same index, if δ is sufficiently
small, then, by Theorem 4, Eq. (11) admits a strong exponential dichoto-
my on R

+
0 with respect to a family of norms ‖·‖t, with projections P ′

t such
that dim P ′

t = dimPt. Hence, by Proposition 1, the equation admits a strong
nonuniform exponential dichotomy on R

+
0 . �
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4. Two-sided exponential dichotomies

In this section we consider exponential dichotomies on R. We shall always
assume that each norm ‖·‖t is induced by a scalar product 〈·, ·〉t. We emphasize
that there is no loss of generality in this assumption, since one can always
consider norms in Proposition 1 that are induced by scalar products. Then
there exists invertible d × d matrices Dt, for t ∈ R, such that

〈x, y〉t = 〈Dtx, y〉 for t ∈ R and x, y ∈ R
d.

Let Y be the set of all continuous functions x : R → R
d such that

‖x‖∞ := sup
t∈R

‖x(t)‖t < +∞.

It is easy to verify that Y is a Banach space with the norm ‖·‖∞. Moreover,
let R be the linear operator defined by

(Rx)(t) = x′(t) − A(t)x(t), t ∈ R,

in the domain D(R) formed by all x ∈ Y such that Rx ∈ Y . Proceeding as in
the proof of Proposition 2, we find that R is a closed operator. We can now
define a norm ‖·‖R as in (6) and from now on we denote by R the operator
in (7). We also consider the adjoint equation

x′ = −A(t)∗x. (12)

One can easily verify that its evolution family is T ′(t, s) = T (s, t)∗.

Theorem 6. If Eq. (1) admits a strong exponential dichotomy on R with respect
to a family of norms ‖·‖t, then R is a Fredholm operator and there exist a,K >
0 such that

‖T (t, s)x‖t ≤ Kea|t−s|‖x‖s for t, s ∈ R and x ∈ R
d. (13)

Proof. Let P+
t and P−

t be, respectively, the projections associated to the ex-
ponential dichotomies on R

+
0 and R

−
0 . Under the assumption in the theorem,

it is proved in [1] that the operator R is onto. Moreover, KerR consists of
all functions x ∈ Y such that x(t) = R(t, 0)x(0) for t ∈ R. This implies that
x(0) ∈ Im P+

0 ∩ Ker P−
0 and so dim KerR < +∞. Property (13) is a direct

consequence of (4) and (5). �

The following is a partial converse to Theorem 6 (see also Theorem 8).

Theorem 7. If R is a Fredholm operator and there exist a,K > 0 satisfy-
ing (13), then Eq. (1) admits strong exponential dichotomies on R

+
0 and R

−
0

with respect to a family of norms ‖·‖t.

Proof. We begin with the following statement. �
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Lemma 5. Given y ∈ Y with bounded support, there exists x ∈ Y with bounded
support such that Rx = y if and only if∫ ∞

−∞
T (0, s)y(s) ds = 0. (14)

Proof of the lemma. Assume that x ∈ Y satisfies Rx = y. Since y has bounded
support, for all sufficiently large t we have

x(t) = T (t, 0)
(

x(0) +
∫ ∞

0

T (0, s)y(s) ds

)
. (15)

Similarly, for sufficiently small t we have

x(t) = T (t, 0)
(

x(0) −
∫ 0

−∞
T (0, s)y(s) ds

)
. (16)

It follows from (15) and (16) that x has bounded support if and only if

x(0) +
∫ ∞

0

T (0, s)y(s) ds = x(0) −
∫ 0

−∞
T (0, s)y(s) ds = 0,

which implies that (14) holds. Now assume that (14) holds and define

x(t) =

{
T (t, 0)x0 +

∫ t

0
T (t, s)y(s) ds if t ≥ 0,

T (t, 0)x0 − ∫ 0

t
T (t, s)y(s) ds if t < 0,

where

x0 = −
∫ ∞

0

T (0, s)y(s) ds.

Then the function x has bounded support and Rx = y. �

Now let

Y0 =
{

x ∈ Y : lim
|t|→+∞

‖x(t)‖t = 0
}

and E = R−1c0. We consider the operator S = R|E : E → Y0 and its adjoint
S∗ : Y ∗

0 → E∗.

Lemma 6. Ker S∗ consists of all α ∈ Y ∗
0 for which there exists a function y

solving (12) such that:

1. ∫ ∞

−∞
‖D−1

t y(t)‖t dt < +∞ and sup
t∈R

‖D−1
t y(t)‖t < +∞; (17)

2.

α(x) =
∫ ∞

−∞
〈D−1

t y(t), x(t)〉t dt for x ∈ Y0. (18)
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Proof of the lemma. Take α ∈ Ker S and x ∈ Y with bounded support. Let
φ : R → R

+ be a continuous function with bounded support such that
∫ ∞

−∞ φ(t)
dt = 1. Finally, let

x̃(t) = x(t) − φ(t)
∫ ∞

−∞
T (t, s)x(s) ds. (19)

Then x̃ is a continuous function with bounded support and∫ ∞

−∞
T (0, s)x̃(s) ds =

∫ ∞

−∞
T (0, s)x(s) ds

−
∫ ∞

−∞
φ(t) dt

∫ ∞

−∞
T (0, s)x(s) ds = 0.

It follows from Lemma 5 that x̃ ∈ Im R and so x̃ ∈ Im S. Therefore, x̃ = Sz
for some z ∈ E and

α(x̃) = α(Sz) = (S∗α)z = 0.

Hence, it follows from (19) that α(x) = α(ψ), where

ψ(t) =
∫ ∞

−∞
φ(t) dt

∫ ∞

−∞
T (0, s)x(s) ds.

Let

y(t) =
d∑

i=1

α(φi)T (0, t)∗ei,

where {e1, . . . , ed} is the canonical basis of Rd and φi(t) = φ(t)T (t, 0)ei. We
note that y is a solution of (12). We have

∫ ∞

−∞
〈D−1

t y(t), x(t)〉t dt =
∫ ∞

−∞
〈y(t), x(t)〉 dt

=
∫ ∞

−∞

〈
d∑

i=1

α(φi)T (0, t)∗ei, x(t)

〉
dt

=
∫ ∞

−∞

〈
d∑

i=1

α(φi)ei, T (0, t)x(t)

〉
dt

=

〈
d∑

i=1

α(φi)ei,

∫ ∞

−∞
T (0, t)x(t) dt

〉

=
d∑

i=1

α(φi)e∗
i

∫ ∞

−∞
T (0, t)x(t) dt

= α(ψ) = α(x). (20)
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In particular,

∣∣∣∣
∫ ∞

−∞
〈D−1

t y(t), x(t)〉t dt

∣∣∣∣ = |α(x)| ≤ ‖α‖ · ‖x‖ (21)

for any x with bounded support. Now take T > 0 and consider a continuous
function φ : R → R

+
0 with bounded support such that φ(t) = 1 for t ∈ [−T, T ]

and φ(t) ≤ 2 for t ∈ R. Taking

x(t) = φ(t)
D−1

t y(t)
‖D−1

t y(t)‖ ,

it follows from (21) that

∫ T

−T

‖D−1
t y(t)‖ dt ≤ 2‖α‖.

Letting T → +∞ yields the first inequality in (17).
Now take s ∈ R and for each h > 0, consider a continuous function g : R →

R
+
0 vanishing outside [s − h, s + h] such that g(t) = 1 for t ∈ [s, s + h/2] and∫ ∞

−∞ g(t) dt = h. Let

x(t) = g(t)
D−1

t y(t)
‖D−1

t y(t)‖t

for t ∈ R.

Clearly, x ∈ Y0. Applying (21) yields the inequality

2
h

∫ s+h/2

s

‖D−1
t y(t)‖t dt ≤ 2‖α‖.

Letting h → 0, we obtain ‖D−1
s y(s)‖s ≤ 2‖α‖, which yields the second in-

equality in (17).
We define β : Y0 → R by

β(x) =
∫ ∞

−∞
〈D−1

t y(t), x(t)〉t dt for x ∈ Y0.

It follows from the first inequality in (17) that β is a bounded linear functional
on Y0. Moreover, by (20), β and α coincide on the dense set of functions with
bounded support. Hence, α = β and (18) holds.
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Now assume that α is given by (18) with y satisfying all the conditions in
the lemma. For each x ∈ Y0 we have

(S∗α)(x) = α(Sx)

=
∫ ∞

−∞

〈
D−1

t y(t), x′(t) − A(t)x(t)
〉

t
dt

=
∫ ∞

−∞

〈
y(t), x′(t) − A(t)x(t)

〉
dt

= 〈y(t), x(t)〉|∞−∞ −
∫ ∞

−∞

〈
y′(t) + A(t)∗y(t), x(t)

〉
dt

= 〈D−1
t y(t), x(t)〉t|∞−∞ −

∫ ∞

−∞

〈
y′(t) + A(t)∗y(t), x(t)

〉
dt = 0.

Therefore, α ∈ Ker S∗ and the proof of the lemma is complete. �

We continue with the proof of the theorem. We have

Im S =
{
x ∈ Y0 : α(x) = 0 for α ∈ Ker S∗}.

Let y1, . . . , ym be a basis of the space of solutions of (12) satisfying (17). For
each i = 1, . . . ,m, we define αi ∈ Y ∗

0 by

αi(x) =
∫ 0

−∞
〈D−1

t yi(t), x(t)〉t dt for x ∈ Y0.

Moreover, for each j = 1, . . . , d, we define βj ∈ Y ∗
0 by

βj(x) = xj(0) for x ∈ Y0,

where x = (x1, . . . , xd).

Lemma 7. The set {α1, . . . , αm, β1, . . . , βd} is linearly independent.

Proof of the lemma. Assume that
∑m

i=1 λiαi =
∑d

j=1 μjβj for some constants
λi, μj ∈ R. This implies that

∫ 0

−∞
〈D−1

t y(t), x(t)〉t dt =
d∑

j=1

μjx
j(0) (22)

for each x ∈ Y0, where y =
∑m

i=1 λiyi. Assume that y(t) 
= 0 for some t < 0.
Take x ∈ Y0 of the form

x(t) = φ(t)
D−1

t y(t)
‖D−1

t y(t)‖ ,

where φ : R → R
+
0 is a continuous function with φ(0) = 0. Then the left-hand

side of (22) is positive and x(0) = 0, thus leading to a contradiction. Hence,
y = 0, which implies that λ1 = · · · = λm = 0. Moreover, the functionals
β1, . . . , βd are clearly independent and so μ1 = · · · = μd = 0. �
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Now take z ∈ Y0. By Lemma 7, there exists x ∈ Y0 such that

αi(x) = −
∫ ∞

0

〈D−1
t yi(t), z(t)〉t dt for i = 1, . . . ,m (23)

and

βj(x) = xj(0) = zj(0)

for j = 1, . . . , d. We define a function x̃ by x̃(t) = x(t) for t ≤ 0 and x̃(t) = z(t)
for t ≥ 0. Clearly, x̃ ∈ Y0. It follows from (23) that∫ ∞

−∞
〈D−1

t yi(t), x̃(t)〉t dt = 0 for i = 1, . . . ,m

and thus, it follows from Lemma 6 that α(x̃) = 0 for α ∈ Ker S∗. We conclude
that x̃ ∈ Im S. Therefore, there exists a function w ∈ Y such that Sw = x̃ and
hence,

w′(t) − A(t)w(t) = x̃(t) = z(t)

for t ≥ 0. It follows from results in [2] (see also [5]) that Eq. (1) admits an
exponential dichotomy on R

+
0 with respect to a family of norms ‖·‖t. One

establishes similarly the existence of an exponential dichotomy on R
−
0 with

respect to a family of norms ‖·‖t. In view of condition (13) these are in fact
strong exponential dichotomies. �

We also have the following stronger statement.

Theorem 8. If R is a Fredholm operator and R
d = Im P+

0 ⊕ Ker P−
0 , then

Eq. (1) admits a strong exponential dichotomy on R with respect to a family
of norms ‖·‖t.

Proof. It follows from Theorem 7 that Eq. (1) admits strong exponential
dichotomies on R

+
0 and R

−
0 with respect to a family of norms ‖·‖t. Since

R
d = Im P+

0 ⊕ Ker P−
0 , it follows from results in [1] that Eq. (1) admits a

strong exponential dichotomy on R with respect to a family of norms ‖·‖t. �

The following result is a version of Theorem 5 for exponential dichotomies
on R.

Theorem 9. Assume that Eq. (1) admits a strong nonuniform exponential di-
chotomy on R and that B : R → Md is a continuous function such that

‖B(t) − A(t)‖ ≤ δe−ε|t|

for all t ∈ R and some δ > 0. If δ is sufficiently small, then either Eq. (11)
admits a strong nonuniform exponential dichotomy on R or there exists a con-
tinuous nonzero function x : R → R

d such that x′(t) = B(t)x(t) for t ∈ R and
supt∈R‖x(t)‖t < +∞, where ‖·‖t are norms associated to the strong nonuni-
form exponential dichotomy of Eq. (1) as in Proposition 1.
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Proof. It follows from Theorem 5 that Eq. (11) admits strong exponential di-
chotomies on R

+
0 and R

−
0 with respect to a family of norms ‖·‖t, say with

projections, P+
t and P−

t , respectively. Let U(t, τ) be the evolution family as-
sociated to Eq. (11). It is proved in [1] that

Im P+
t =

{
v ∈ R

d : sup
t≥0

‖U(t, 0)v‖t < +∞
}

for t ≥ 0

and

Ker P−
t =

{
v ∈ R

d : sup
t≤0

‖U(t, 0)v‖t < +∞
}

for t ≤ 0.

Moreover,

dim Im Pt = dim Im P+
t for t ≥ 0

and

dim Im Pt = dim Im P−
t for t ≤ 0.

Now assume that there exists a nonzero vector v ∈ Im P+
0 ∩ Ker P−

0 and
define a function x : R → R

d by x(t) = U(t, 0)v for t ∈ R. Clearly, x is
continuous, solves (11) and supt∈R‖x(t)‖t < +∞. If Im P+

0 ∩ Ker P−
0 = {0},

then

dim Im P+
0 + dim KerP−

0 = dim Im P0 + d − dim ImP0 = d

and so R
d = ImP+

0 ⊕Ker P−
0 . It follows from results in [1] that Eq. (11) admits

a strong exponential dichotomy on R with respect to a family of norms ‖·‖t.
Hence, by Proposition 1, the equation admits a strong nonuniform exponential
dichotomy on R. �
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