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1. Introduction and main results

1.1. Description of the problem and motivation

In the study of discrete dynamical systems, two problems are particularly important: 
the search of a normal form and the embedding problem. The search of a normal form 
means a definite process of choosing a representative of the class of conjugacy of the 
original system under topological, smooth or holomorphic conjugacies. This representa-
tive should be simpler than the original one. The embedding problem consists in finding 
a vector field such that the original system is the time-one map of its flow. These two 
problems are obviously connected: it should be easier to embed a normal form in a flow 
than the original system itself.

The study of holomorphic or real analytic systems at the origin of the ambient space 
naturally leads to the problems of formal normal form and formal embedding. These 
questions are discussed in detail, e.g., in [8, Chapter I, Sections 3 and 4]. The case of 
dimension 1 is well understood. Consider, for example, a parabolic formal series

f (z) = z + a1z
p+1 + zp+1ε (z) ,

where a1 ∈ C∗, ε (z) ∈ C [[z]] and ε (0) = 0. It is well known that the formal conjugacy 
class of f has a polynomial representative f0 (z) = z + zp+1 + az2p+1, where the residual 
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index a ∈ C is a formal invariant (see [9, Prop. 1.3.1], [1, Proposition 3.10] or [11]). The 
polynomial f0 is classically called the formal normal form of f . Moreover, f0 embeds 
formally in the flow of the vector field Xp,a =

(
zp+1 +

(
a − p+1

2
)
z2p+1

)
d
dz , or in the 

formally equivalent flow of the vector field Xp,a = zp+1

1+
(
p+1
2 −a

)
zp

d
dz .

It turns out that there exist interesting maps in one real variable which do not admit 
asymptotic expansion in integer powers of the variable at the origin. Consider for example 
a hyperbolic monodromic polycycle Γ of an analytic planar vector field (see [7, Chapter 0]
for precise definitions). It has been proved by Dulac in [4] that a semitransversal to Γ
can be chosen in such a way that the corresponding first return map (or Poincaré map) 
admits at the origin an asymptotic expansion, called a Dulac series (see e.g. [7, Chapter 0]
or [15, Chapter 3.3]). It is a formal series of the form:

D (x) = c0x
λ0 +

∞∑
i=1

xλiPi(log x), c0 > 0, (1.1)

where (λi)i∈N0
is an increasing sequence of strictly positive real numbers tending to 

infinity and each Pi, i ∈ N, is a polynomial with real coefficients. Here, it is understood 
that D (x) is an asymptotic expansion of P (x) at 0 if, for any N ∈ N, there exists 
kN ∈ N such that P (x) −

∑kN

i=1 x
λiPi (log x) = o 

(
xN

)
. The Dulac germs, as well as 

their asymptotic expansions, form a group for the composition (see [7, Chapter 0]). In 
particular, notice that the condition c0 > 0 in (1.1) guarantees that the composition of 
two Dulac series is well defined and is also a Dulac series (no iterated logarithms are 
generated in the composition). It can be proved that the exponents λi, i ∈ N, in (1.1) for 
the first return maps of hyperbolic monodromic polycycles belong to a finitely generated 
additive semigroup of R. We will say, following the terminology of [3, Section 7], that 
such series is of finite type. By [3, Section 7], the collection of Dulac series of finite type
form a subgroup of all Dulac series for the composition, and is denoted by D in the 
present work.

These examples lead us to consider formal normal form and formal embedding prob-
lems for series with real coefficients in the monomials xα (log x)k, α > 0, k ∈ Z, 
considered as germs of functions at 0+. More precisely, we are looking for classes of 
formal series which extend the collection D and inside which both questions can be 
solved. It turns out that the set D itself does not fit this purpose, mainly because Dulac 
series contain only polynomials in log x, see Example 6.2 in Section 6 for explanation. 
Hence, we introduce two classes LD and L of generalized series (or transseries if one 
follows the terminology introduced by Écalle in [6, Chapter 4]), with D ⊂ LD ⊂ L, and 
we prove that both of them have the required properties. Compared to Dulac series (1.1), 
the elements of LD and L are of transfinite nature: they involve not only polynomials in 
log x, but also infinite series in log x. We do not address here the question of summability
of transseries on some domain, nor the meaning of transseries asymptotic expansions of 
germs in general. The question of the existence of an analytic function on some domain 
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with an asymptotic expansion in the form of a given transseries is left for future research 
(possibly related to Écalle’s accelero-summability of transseries [5]).

We denote the set of positive real numbers by (0,∞) or R>0.
The elements of the class LD are the transseries

f (x) =
∑
α∈S

∞∑
k=Nα

aα,kx
α

(
− 1

log x

)k

, aα,k ∈ R, Nα ∈ Z, (1.2)

where S ⊂ R>0, and the pairs (α, k) are contained in a sub-semigroup of the additive 
semigroup R>0 × Z generated by {(0, 1)} and by finitely many elements of R>0 × Z. 
Obviously, D ⊆ LD. For short, we will say that the support of f (namely, the set S (f) =
{(α, k) ∈ R>0 × Z : aα,k �= 0}) is of finite type, or equivalently, that f itself is of finite 
type. Notice that, while the germ x at the origin 0+ of R>0 is a positive infinitesimal, 
the germ log x at 0+ is negative and infinitely large. This is why we prefer to work with 
the germ −1/ log x instead and to introduce the symbol

� = − 1
log x.

We denote the elements of LD as in (1.2) indifferently by f or by f (x). We call a germ 
xα�k, α > 0, k ∈ Z, a power-log monomial. Finally, the series f (x) = x will often be 
denoted simply by f = id.

In order to define the class L, let us recall that an ordered set X is called well-ordered if 
every non-empty subset of X has a smallest element. This property implies in particular 
that X is totally ordered. The elements of L are the formal transseries of the following 
form:

f(x) =
∑
α∈S

∑
k∈Z

aα,k x
α(− 1

log x )k =
∑
α∈S

∑
k∈Z

aα,kx
α�k, aα,k ∈ R, (1.3)

where S ⊂ R>0, and the support S (f) = {(α, k) ∈ R>0 × Z : aα,k �= 0} is a well-ordered 
subset of R>0 × Z, equipped with the lexicographic order �. It is equivalent to assume:

• (1) S (f) is a well-ordered subset of R>0 × Z;
• (2) S is a well-ordered subset of R>0 and, for every α ∈ S, there exists Nα ∈ Z, such 

that a pair (α, k) belongs to S (f) only if k ≥ Nα.

In particular, one can easily check that LD ⊂ L. Recall that a well-ordered subset of R
is countable; hence, the supports of the elements of L are countable. The lexicographic 
order � on pairs of exponents corresponds to the usual order ≤ on germs of functions at 
the origin, in the following way: given two pairs (α, k) and (α′, k′) in R>0 × Z, we have

(α, k) � (α′, k′) ⇐⇒ lim xα′
�k

′

k
< ∞ ⇐⇒ xα′

�k
′
≤ xα�k.
x→0+ xα�
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Similarly (α, k) ≺ (α′, k′) means that (α, k) � (α′, k′) and (α, k) �= (α′, k′). We call the 
pair (α, k) the order of the monomial xα�k. The order of a transseries f ∈ L, denoted 
by ord (f), is the smallest element of S (f). If (α, k) is the order of f then xα�k is called 
the leading monomial of f and is denoted by Lm(f), aα,k is called the leading coefficient
of f and is denoted by Lc(f), and aα,kxα�k is called the leading term of f and is denoted 
by Lt(f).

Notation. We will sometimes denote by [f ]α,k the coefficient of the monomial xα�k in 
the series f ∈ L.

While the questions of formal embeddings and formal normal forms in L and LD

can be considered as natural problems of independent interest, our motivation for this 
research lies in fractal analysis of orbits of germs. Given an orbit O of a germ, by its 
fractal analysis we mean understanding the function ε → A(ε), that assigns to each ε > 0
the Lebesgue measure of the ε-neighborhood of the orbit O. The question that we pose 
is if we can recognize a germ by fractal properties of its realizations (orbits). Fractal 
properties of orbits of Poincaré maps around limit periodic sets have been studied in [10]
and [19]. In the differentiable cases of elliptic points and limit cycles, it was proven 
in [19] that fractal analysis of orbits of Poincaré maps gives the multiplicity and the 
cyclicity. As already mentioned, in the nondifferentiable cases of hyperbolic polycycles, 
Poincaré maps have an expansion in LD. Furthermore, fractal analysis was performed 
on holomorphic complex germs in [13] and [14]. It was shown in [13] that the function 
ε → A(ε), ε > 0, characterizes the formal class of a parabolic germ. The analytic class 
cannot be characterized by A(ε), since it does not have an asymptotic expansion, as 
ε → 0, see [14]. In a subsequent work, we plan to introduce a new definition of the 
formal area A(ε), based on the formal embedding theorem proven in the present paper. 
With this new definition, we further hope for a sectorially analytic function which will 
reveal the analytic class of a germ. This would give a way to see the analytic class of a 
germ by looking at its orbits.

1.2. Overview of the results

Our main results (Theorems A and B) hold for a subclass of elements of LD and L. 
We say that an element f of L contains no logarithms in the leading term Lt(f) if f is 
of the form

(H) f(x) = λxα +
∑

(α,0)≺(β,k)

aβ,k x
β�k, λ > 0, αβ,k ∈ R.

We denote by LH the subset of transseries from L that satisfy (H), and by LH
D the 

intersection LD∩LH . There are two reasons for this additional assumption on the leading 
monomial. First, we have already mentioned that the Dulac series which are asymptotic 
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expansions of Poincaré maps of hyperbolic polycycles belong to LH
D . Second, unlike L, 

where iterated logarithms may be generated by compositions, the class LH is a group 
for the composition of transseries.

The leading term in the asymptotic expansion at 0 of a germ indicates the rate of 
convergence of its orbits (or backward orbits) towards 0. According to the standard ter-
minology used for holomorphic diffeomorphisms (see for example [1,11]), we distinguish 
three cases:

Definition 1.1. Let f ∈ LH , f(x) = λxα + · · · , λ > 0, α > 0. We say that f is

1. strongly hyperbolic, if α �= 1,
2. hyperbolic, if α = 1 and λ �= 1,
3. parabolic, if α = 1 and λ = 1.

Additionally, we say that a hyperbolic f is a hyperbolic contraction if 0 < λ < 1. If λ > 1, 
we call f a hyperbolic expansion.

Intuitively, strongly hyperbolic cases α > 1 correspond to strong contractions in the 
first term, and cases α < 1 to strong expansions. Hyperbolic cases 0 < λ < 1 correspond 
to exponential contractions, and cases λ > 1 to exponential expansions.

We denote by L0 ⊂ LH the set of formal changes of variables in L:

L0 = {ϕ ∈ LH : ϕ(x) = ax + h.o.t., a > 0}.

We use here the shortcut “h.o.t.” for “higher order terms”. Similarly, put L0
D = LD ∩L0. 

Unlike L, the classes LH , LH
D , L0 and L0

D are closed under formal compositions of 
transseries and they are groups with respect to this operation. We say that f, g ∈ LH

(resp. LH
D) are formally equivalent in L0 (resp. L0

D) if there exists a change of variables 
ϕ ∈ L0 (resp. ϕ ∈ L0

D) transforming f to g, g = ϕ−1 ◦ f ◦ ϕ.
We now recall the definitions needed to state our formal embedding theorem. In the 

settings of usual power series, similar definitions may be found in, for example, [8] or [9].

Definition 1.2 (The formal flow of a formal vector field). Consider a family (f t)t∈R
of 

elements of LH .

1. We say that (f t) forms a one-parameter group (we also say for short: defines a flow) 
if f0 = id and fs ◦ f t = fs+t, for all s, t ∈ R. An element f ∈ LH embeds in the flow 
(f t)t∈R

if f = f1.
2. The family (f t)t∈R

is called a C1-one-parameter group or a C1-flow if it defines a 
flow, and moreover:
(i) there exists a well-ordered subset S of R>0 × Z such that S (f t) ⊆ S for every 

t ∈ R, and
(ii) for every (α,m) ∈ S, the function t → [f t]α,m is C1 (R).
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3. Assume that (f t) is a C1-flow and let ξ := dft

dt |t=0 ∈ L. Then we say that (f t) is 
the C1-formal flow of the vector field X = ξ d

dx . In that case, f t is called the formal 
t-map of X, t ∈ R.

Remark 1.3. The third point of the former definition means that, if we write

f t (x) =
∑
α,k

[
f t
]
α,k

xα�k, ∀t ∈ R,

then

ξ (x) =
∑
α,k

d [f t]α,m
dt

∣∣∣
t=0

xα�k.

We show in Propositions 5.11, 5.12 and 5.13 in Section 5.2 that a vector field X = ξ d
dx , 

ξ ∈ L, such that (1, 0) � ord (ξ) admits a unique C1-formal flow (f t)t in LH , which is 
given by:

f t = exp(tX) · id = id + tξ + t2

2! ξ
′ξ + t3

3! (ξ
′ξ)′ξ + · · · , t ∈ R. (1.4)

Remark 1.4. We prove the convergence of formula (1.4) in Propositions 5.11 and 5.12 in 
Section 5.2. We will actually need two notions of convergence. The first one is relevant 
of what we call the formal topology, see Section 4.2. To describe it roughly, let us say 
that the formal topology takes into account the orders of monomials, but not the size 
of coefficients. The series (1.4) converges in this topology when (1, 0) ≺ ord (ξ). Never-
theless, it does not converge when ord (ξ) = (1, 0). Hence, we introduce a coarser weak 
topology (later: the product topology with respect to the Euclidean topology), in which 
the coefficients of the monomials play a role for the convergence of series. In this weak 
topology, the series (1.4) converges even when ord (ξ) = (1, 0), see Proposition 5.11.

Finally, if ord(ξ) ≺ (1, 0), the series (1.4) does not converge in any of these topologies 
(Proposition 5.28).

We now state the two main theorems of this paper. The precise, but more technical, 
formulations are given in Sections 4 and 5.

Theorem A. Let f ∈ LH ( resp. f ∈ LH
D). Then:

1. f is formally equivalent to a normal form f0 ∈ LH ( resp. f0 ∈ LH
D), given as a finite 

sum of power-log monomials.
2. If f is parabolic or hyperbolic, then f is formally equivalent to the formal time-one 

map f̂0 ∈ LH ( resp. f̂0 ∈ LH
D) of a (formal) vector field X = ξ d

dx , where ξ ∈ L (resp. 
ξ ∈ LD) is a rational function in power-log monomials.
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The formal normal forms of Theorem A are described by at most 4 scalars. The actual 
number of scalars depends on the type (parabolic, hyperbolic or strongly hyperbolic) of 
the diffeomorphism.

The proof of Theorem A in Section 4 is actually based on a transfinite algorithm which 
transforms any transseries f in LH or LH

D into its finite formal normal form f0.

Theorem B. Let f ∈ LH . Then f embeds in a flow (f t)t∈R
, f t ∈ LH . Moreover, if f is 

parabolic or hyperbolic, f embeds in the C1-flow of a unique vector field X = ξ d
dx , ξ ∈ L

(see Definition 1.2).

For the detailed statements discussing all cases (parabolic, hyperbolic, strongly hy-
perbolic) and their proofs, see Sections 4, 5 respectively.

2. Hahn fields and the structures of L, LH and L0 (resp. LD, LH
D

and L0
D

)

Various descriptions of the notion of transseries have been given in several publica-
tions. The detailed study of classical operations, such as the operations of fields, as well as 
derivation, integration or composition, in this setting, is given in detail in [3]. The classes 
of transseries considered in the present work are proper sub-classes of the general field 
R 
((
x−1))LE of logarithmic–exponential series (or LE-series) introduced in [3]. There-

fore, the operations we have to deal with are mostly specializations, in our framework, 
of the similar operations described there. In particular, the proof of the closure of LH

and L0 under composition can be checked by a careful, but straightforward, adaptation 
of the corresponding statement in R 

((
x−1))LE.

Hence, we just provide in this section the vary basic notions needed to perform the 
description of our classes L, LH and L0. We use, as in [3], the language of Hahn fields. 
Recall that given a multiplicative ordered abelian group Γ with unit 1, the Hahn field 
R ((Γ)) consists of generalized series with real coefficients and monomials in Γ. The 
elements of R ((Γ)) are the formal sums

f =
∑
γ∈Γ

fγγ,

with coefficients fγ ∈ R, such that Supp (f) = {γ ∈ Γ: fγ �= 0} is a reverse well-ordered
subset of Γ. If f �= 0 and γ0 is the biggest element of Supp (f), then the leading term
Lt (f) of f is fγ0γ0, its leading monomial Lm (f) is γ0 and its leading coefficient is fγ0 .

One of the most useful tools when dealing with algebraic operations on Hahn fields is 
a result due to Neumann [12]. Its statement requires the following notations.

Notation 2.1. Consider an ordered (multiplicative) abelian group Γ and two subsets A
and B of Γ. We denote:
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a) AB := {ab : a ∈ A, b ∈ B},
b) 〈A〉: the sub-semigroup of Γ generated by A (i.e. the smallest sub-semigroup of G

containing all elements of A),
c) Γ<γ0 := {γ ∈ Γ : γ < γ0}, Γ≤γ0 := {γ ∈ Γ : γ ≤ γ0}, γ0 ∈ Γ. Note that Γ<1 denotes 

the infinitesimals of the group Γ.

Lemma 2.2 (Neumann’s Lemma). Consider an ordered (multiplicative) abelian group Γ
and two reverse well-ordered subsets A and B of Γ. Then:

1. The product AB is reverse well-ordered.
2. For g ∈ AB, there are only finitely many pairs (a, b) ∈ A ×B such that g = ab.
3. If A ⊆ Γ<1 = {g ∈ Γ : g < 1} is reverse well-ordered, then 〈A〉 is also reverse well-

ordered. Moreover, for each g ∈ 〈A〉 there are only finitely many tuples (a1, . . . , an)
with n ∈ N, a1, . . . , an ∈ A, such that g = a1 · · · an.

These series can be added and multiplied in the following way: if f =
∑

γ∈Γ fγγ and 
g =

∑
γ∈Γ gγγ belong to R ((Γ)), then

f + g =
∑
γ∈Γ

(fγ + gγ) γ, f · g =
∑
γ∈Γ

⎛⎝∑
λμ=γ

fλgμ

⎞⎠ γ.

Notice that the reverse well-ordering of the supports of f and g guarantees, thanks to 
Neumann’s Lemma (see [12] or [3, p. 64] for example), that the product is well defined. 
Moreover, it is known that every nonzero element of R ((Γ)) admits a multiplicative 
inverse, so that R ((Γ)) is actually a field. If now Γ′ is a sub-semigroup of Γ, then the set

R [[Γ′]] = {f ∈ R [[Γ]] : Supp (f) ⊆ Γ′}

is a subring (actually an R-algebra) of R ((Γ)).
The LE-series introduced in [3] are generalized series in one variable whose monomials 

involve the logarithm and the exponential functions. Our classes L and LD are contained 
in the field of LE-series (up to the obvious modification which comes from the fact that 
the variable x is thought as “infinitely big” there, while it is infinitesimal in our work). 
Let us show how L and LD can be described by following the above Hahn’s construction. 
Consider the multiplicative group G:

G = {xα�k : α ∈ R, k ∈ Z},

and the multiplicative sub-semigroup G′ =
{
xα�k : α ∈ (0,∞) , k ∈ Z

}
of G, equipped 

with the order ≤ introduced in Section 1.1. Then the class L is equal to the ring R [[G′]]. 
It is a subring of a Hahn field R((G)), which is itself a subfield of the general field of 
LE-series. Notice that the support S (f) of a series f ∈ L is in Section 1.1 defined as 
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a subset of R>0 × Z. It differs from the support Supp (f) defined above for elements 
of general Hahn fields, which would be a set of monomials. The reason is that, in our 
situation, it is more convenient to work directly with exponents than to work with 
monomials. For the same reason, we will often refer to the additive version of Neumann’s 
Lemma adapted to sets of exponents rather than to the multiplicative version stated 
above, which is adapted to sets of monomials.

Finally, as a straightforward consequence of Neumann’s Lemma, LH is an additive 
and multiplicative sub-semigroup of L, and L0 is an additive sub-semigroup of LH . 
Furthermore, LH

D is an additive and multiplicative sub-semigroup of LD, and L0
D is an 

additive sub-semigroup of LH
D .

We consider now the operation of composition, as an imported operation from the gen-
eral field of LE-series. As mentioned above, it is proved in [3] that the field of transseries 
can be equipped with a composition operator, and that each nonzero LE-series admits a 
compositional inverse. The proof of these facts requires an elaborate construction, which 
was previously sketched in [6, Chapter 4]. Fortunately, the action of the restriction of 
these two operators to our classes is much simpler, due to the particular shape of the 
monomials in G′. To be more precise, the composition of two series is understood by 
classical Taylor expansions. It is mainly based on the following observations, which are 
used in almost all subsequent computations of this paper. Every series f ∈ LH can be 
written as:

f (x) = axλ (1 + ε (x)) with ε ∈ L, ε (0) = 0 and λ > 0.

For every real number α > 0, the composition defined in [3] leads to:

(xα ◦ f) (x) = (f (x))α = aαxλα
∞∑
j=0

(
α

j

)
ε (x)j .

In the same way, if f is positive (that is, if a > 0), we have:

log (f (x)) = log a + λ log (x) +
∞∑
j=1

(−1)j+1

j
εj (x) .

The analysis made in [3] shows how these formulas extend to composition of series in 
the following way. If g (x) =

∑
(α,k) cα,kx

α�k ∈ L and f ∈ LH , then

(g ◦ f) (x) =
∑
(α,k)

cα,k
(
f (x)

)α( −1
log f (x)

)k

is a well defined element of L. As a consequence of the results proved in [3, Section 7], 
the similar conclusion holds for LD, LH

D and L0
D (the finite type property of the support 

is preserved). We summarize the former results in the following proposition.



898 P. Mardešić et al. / Advances in Mathematics 303 (2016) 888–953
Proposition 2.3 (Properties of L, LH and L0).

1. L ( resp. LD) is an R-algebra without unity.
2. The algebra L ( resp. LD) is closed under right compositions with elements from LH

(resp. LH
D).

3. The sets LH and L0 ( resp. LH
D and L0

D) are groups under composition. In particular, 
they are closed under compositional inverses.

The next section is dedicated to adaptations of standard Lie bracket techniques to 
our transseries setting. These techniques are used in the proofs in Sections 4 and 5.

3. Lie brackets in search of normal forms

The method of producing normal forms for analytic or formal diffeomorphisms is 
an adaptation of the Lie bracket technique for normal forms of vector fields, which is 
described for example in [2] or [17]. As we plan to adapt the method for elements of our 
algebra L, we first recall briefly how it works in the classical case, more precisely, for 
formal power series in one variable.

Remark 3.1. In the sequel, the h.o.t., meaning higher-order terms, stands for monomials 
of higher order than the last one written.

3.1. The effect of a change of variables on the elements of R [[x]]

Consider a series f ∈ R [[x]] such that f (0) = 0. In order to transform f into its normal 
form, a classical approach consists in describing the effect on f of a change of variables 
ϕ ∈ R [[x]], such that ϕ (x) = x + h.o.t. The simplest method consists in considering the 
leading term ψ = Lt(f ◦ϕ −ϕ ◦ f). This leading term ψ is the same as the leading term 
of the difference ϕ−1 ◦ f ◦ ϕ − f . Using Taylor formula, we have:

f ◦ ϕ = ϕ ◦ f + ψ · (1 + η) , η ∈ xR [[x]]

ϕ−1 ◦ f ◦ ϕ = ϕ−1 (ϕ ◦ f + ψ · (1 + η))

ϕ−1 ◦ f ◦ ϕ (x) = f (x) +
(
ϕ−1)′ (ϕ ◦ f (x)) · ψ (x) + h.o.t.

= f (x) + ψ (x) + h.o.t., (3.1)

since ϕ′ (x) = 1 + h.o.t.
Recall that the goal of formal normalization is to produce a series in the class of 

formal conjugacy of f which contains the smallest possible number of terms. So, given 
a term τ in the expansion of f , the main step consists in removing τ (if possible) via 
an appropriate change of variables ϕ. To do this, we choose the change of variables ϕ
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such that the leading term Lt(f ◦ϕ −ϕ ◦ f) is the opposite of τ . This procedure is then 
repeated term by term.

In particular, if f is parabolic, that is if f (x) = x + ε (x) = x + axp + h.o.t., where 
p > 1, then we look for a change of variables ϕ (x) = x + η (x) = x + cxm, m > 1, c ∈ R. 
We obtain:

(f ◦ ϕ− ϕ ◦ f) (x) = f (x + η (x)) − ϕ (x + ε (x))

= f (x) + f ′ (x) η (x) − ϕ (x) − ϕ′ (x) ε (x) + h.o.t.

= x + ε (x) + (1 + ε′ (x)) η (x) − x− η (x) − (1 + η′ (x)) ε (x) + h.o.t.

= ε′ (x) η (x) − ε (x) η′ (x) + h.o.t. (3.2)

The series ηε′ − η′ε is called the Lie bracket (the commutator) of η and ε and is denoted 
by {η, ε}. The leading term ψ of f ◦ ϕ − ϕ ◦ f is given by the Lie bracket {cxm, axp} of 
the leading terms of η and ε.

3.2. Lie brackets in R[[x]] and the homological equation

The action of the Lie bracket of g is given by the following linear operator on R[[x]]:

adg(f) = [f, g], f ∈ R[[x]]. (3.3)

Denote by Hk the vector space of monomials of degree k, k ∈ N:

Hk =
{
axk : a ∈ R

}
, k ≥ 1.

The grading of the space Hk is given by the degree k of its monomials.
Let f (x) = x + axp + h.o.t. be a parabolic element of R [[x]]. It can be reduced 

to its formal normal form by solving a series of Lie bracket (commutator) equations, 
considering the action of the Lie bracket of the leading monomial of f − id to spaces Hl, 
l ∈ N. The idea is to work step by step and, in each step, to eliminate the monomial of 
a given degree, if possible. Here we describe a single step.

Applying the change of variables ϕ(x) = x + cxm, c ∈ R, m ∈ N, m > 1, we obtain, 
according to formula (3.2):

ϕ−1 ◦ f ◦ ϕ = f + adaxm(cxm) + h.o.t.

= f + ac(p−m)xp+m−1 + h.o.t. (3.4)

Since, adxm(Hl) ⊆ Hm+l−1, the action of the Lie bracket of any power preserves the 
grading. Moreover, for m, l ∈ N, we have:

Hm+l−1 = adxm(Hl) ⊕Gm+l−1, Gm+l−1 =
{
∅, m �= l,

H , m = l.
2m−1
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Here, the spaces Gk, k ∈ N, are subspaces of Hk that are not in the image of adxm

(consequently, these terms cannot be eliminated by changes of variables).
Consider now a term ψ = bxr of the expansion of f , with r > p. According to (3.4), in 

order to remove this term, we look for a change of variables ϕ (x) = x + cxm such that

ac (p−m)xp+m−1 = −bxr. (3.5)

This equation is classically called the homological equation. We find m = r − p + 1, so 
p − m = 2p − r − 1. It can be solved if and only if r �= 2p − 1. So the term of degree 
r = 2p − 1 cannot be removed from the expansion of f . In other words, the subspace 
H2p−1 is not in the image of the Lie bracket action operator of the leading monomial 
of f . In order to remove all possible monomials of f , we proceed with a sequence of 
changes of variable of the previous type. The normal form appears to be a formal limit 
of a sequence of elements of R [[x]], and to have the form:

f0 (x) = x + axp + βx2p−1, β ∈ R.

This procedure is an adaptation of a similar algorithm from [18] for reducing vector fields 
to their normal forms.

3.3. Lie brackets in L

The general idea of the proof of Theorem A is to mimic the former method for the 
elements of algebra L. However, because of the presence of logarithms in monomials, 
several complications are to be expected. Let us first explain the action of Lie brackets 
in our framework.

By Hγ,m ⊂ L we denote the one-dimensional vector spaces spanned by the monomial 
xγ�m, γ ≥ 1, m ∈ Z. We introduce the grading of Hγ,m by the order (γ, m) of its 
monomials. Notice that, for (α, k) ∈ (0,∞) × Z, we have

(
xα�k

)′
= αxα−1�k + kxα−1�k+1.

Hence, the action of the Lie bracket, as defined in (3.3), of a monomial xα�k on a space 
Hβ,l is given by:

adxα�k(cxβ�l) =
[
cxβ�l, xα�k

]
= c(α− β)xα+β−1�k+l + c(l − k)xα+β−1�k+l+1. (3.6)

We conclude that, on spaces Hγ,m, the action of the Lie bracket of a power-log mono-
mial does not preserve the grading, as in power series case. Therefore, we introduce the 
appropriate quotient spaces. By K0

γ,m and Kγ,m, we denote the direct sums:
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K0
γ,m =

⊕
(γ,m)	(γ′,m′)

Hγ′,m′ , Kγ,m =
⊕

(γ,m)≺(γ′,m′)

Hγ′,m′ .

Recall that the order � (resp. ≺) is the lexicographic order (resp. strict lexicographic 
order) on R × Z. We define the quotient spaces:

Jγ,m =
K0

γ,m

Kγ,m
.

Note that the quotient space Jγ,m can be identified with the vector space Hγ,m of 
monomials of order (γ, m). The grading of Jγ,m is given by the order (γ, m) of any 
representative. Based on these remarks, we can state the next proposition which claims 
that the grading is preserved on quotient spaces Jγ,m.

Proposition 3.2 (Action of the Lie bracket operator on quotient spaces Jγ,m). Let

Tα,k ∈ Jα,k, (α, k) ∈ R>0 × Z, (1, 0) ≺ (α, k),

be an element of the class Jα,k of the monomial xα�k. Let (γ, m) ∈ R>0 × Z, (1, 0) ≺
(γ, m). The operator ad Tα,k

acts on the quotient space Jγ,m by the following rule:{
Jα+γ−1,k+m = ad Tα,k

(Jγ,m), γ �= α,

J2α−1,k+m+1 = ad Tα,k
(Jα,m) ⊕G2α−1,k+l+1,

(3.7)

where

G2α−1,k+m+1 =
{
∅, m �= k,

J2α−1,2k+1, m = k.

Obviously, this different behavior of the action of the Lie bracket compared to its 
behavior in R [[x]] will induce a different treatment of the homological equation. These 
aspects are examined in details in the next section, where we give the precise form and 
the proof of Theorem A.

4. Proof of Theorem A

In this Section we construct changes of variables that transform a transseries from 
LH or LH

D to its formal normal form. These changes of variables will be obtained via 
transfinite compositions of elementary changes of variables. This important difference 
with the classical case comes from the fact that the supports of the elements of L are 
not any more contained in the set of positive integers, but are well-ordered subsets 
of (0,∞) × Z. In order to define properly the notion of a transfinite composition, we 
recall (for a non-specialized reader) in the next section a few well known facts about 
well-ordered sets and about transfinite sequences.
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4.1. Basic properties of ordinal numbers, well-ordered sets and transfinite sequences

A set is an ordinal number (or an ordinal for short) if it is transitive and well-ordered 
by ∈. Recall that a set X is called transitive if every element of X is also a subset of X. 
Usually, the class of all ordinals is denoted by On. It is totally ordered (moreover, well-
ordered) by the relation: α < β if and only if α ∈ β. Recall the von Neumann construction 
of the class On. The empty set is the smallest ordinal, denoted by 0. Every ordinal α
coincides with the set of all ordinals smaller than α, that is α = {β ∈ On : β < α}.

There are two types of ordinals:

(1) The successor ordinal: The successor of an ordinal α, denoted by α+1, is the ordinal 
α ∪ {α}.

(2) The limit ordinal: If α is not a successor ordinal, then α = sup {β : β < α}. Such α
is called a limit ordinal.

The smallest limit ordinal is the set of non-negative integers, usually denoted by ω.
The classical principle of induction is generalized by the following principle, called the 

principle of transfinite induction. Consider a class C of ordinals, such that:

1. 0 ∈ C;
2. if α ∈ C then α + 1 ∈ C (non-limit case);
3. if α is a nonzero limit ordinal and β ∈ C for all β < α, then α ∈ C (limit case).

Then C is the class On of all ordinals.
Consider now a set A. A transfinite sequence (or θ-sequence) of elements of A is a 

function that takes values in A and whose domain is an ordinal θ ∈ On. We denote such 
sequence by (aβ)β<θ, aβ ∈ A. Suppose that A is a topological space. We say that the 
θ-sequence {aβ : β < θ} of elements of A converges to a ∈ A when β goes to θ if, for 
every neighborhood U of a, there exists an ordinal β0 < θ such that aβ ∈ U for all β
such that β0 < β < θ. We put a := limβ→θ aβ or a := lim aβ for short.

Recall that two totally ordered sets (P,<) and (Q,<) are called isomorphic if there 
exists an order-preserving one-to-one function f : P → Q. Finally, the strong connection 
between well-ordered sets and ordinals is established by the following result: every well-
ordered set is isomorphic to a unique ordinal number. This ordinal number will be called 
the order type of the well-ordered set. It implies that the elements of a well-ordered set 
can be enumerated as an increasing θ-sequence (transfinite sequence). The ordinal θ is 
then its order type. Also conversely: the elements of a well-ordered set can be used as 
the indices of a transfinite sequence. In particular, given a well-ordered set W and a 
sequence (aw)w∈W of elements of a topological space A, we say that (aw) converges to 
a ∈ A if, for every neighborhood U of a, there exists w0 ∈ W such that, for every w ∈ W , 
w0 < w, it holds that aw ∈ U . We denote this limit by limw∈W aw.
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Notice that, due to the density of the set of rational numbers in R, every well-ordered 
subset of R or of R × Z is countable.

In the sequel, we build transfinite sequences of elements of L algorithmically, and we 
study their convergence in L.

4.2. Transfinite sequences of elements of L

In order to study convergence of (transfinite) sequences of elements of L, we endow 
L with the following topologies, introduced in order of the decreasing strength.

1. The formal topology on L. Consider f ∈ L and (α, k) ∈ R>0 × Z. Then the (open) 
ball B (f, (α, k)) centered at f is the set

{g ∈ L : ord (g − f) � (α, k)} .

Given two different balls B1 and B2 centered at f ∈ L, either B1 ⊂ B2 or B2 ⊂ B1. 
Hence, the collection of balls centered at f form a fundamental system of neighborhoods. 
The family of all balls generates a Hausdorff topology on L.

Consider now an ordinal θ and a transfinite sequence (fμ)μ<θ of elements of L. Then 
the sequence (fμ) converges to f ∈ L when μ goes to θ in the formal topology if, for 
every (α, k) ∈ R>0 × Z, there exists an ordinal μ0 < θ such that ord (f − fμ) � (α, k)
for every μ0 < μ < θ.

2. The product topology on L with respect to the discrete topology on R. Let us endow 
R with the discrete topology, and the product RR>0×Z with the product topology. Each 
transseries f ∈ L is understood as a function f : R>0 × Z → R, which assigns to each 
pair (α, k) the coefficient of the monomial xα�k in f . We will denote that coefficient by 
[f ]α,k. Hence, we can consider L as a subspace of RR>0×Z, equipped with the induced 
topology.

Let (fμ)μ<θ be a transfinite sequence of elements from L. In this product topology, 
the sequence (fμ) converges to f ∈ L when μ → θ if, for every (α, k) ∈ R>0 × Z, there 
exists an ordinal μ0 < θ such that the coefficient [fμ]α,k equals the coefficient [f ]α,k, for 
every μ0 < μ < θ.

3. The weak topology on L (i.e. the product topology with respect to the Euclidean 
topology on R). The topology is similar to the one described in 2. The only difference is 
that we endow R with the Euclidean topology instead of the discrete one. The sequence 
(fμ) converges to f ∈ L when μ → θ in the weak topology if, for every (α, k) ∈ R>0 ×Z

and ε > 0, there exists an ordinal μ0 < θ such that 
[
f − fμ

]
α,k

∈ (−ε, ε), for every 
μ0 < μ < θ.

The three topologies introduced above will be used in this work. We need the product 
topology with respect to the discrete topology in the proof of Theorem A. In the proof of 
Theorem B, depending on the type of elements of L considered (parabolic or hyperbolic), 
we use formal or weak topology.
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Remark 4.1. As has already been mentioned, the above topologies are ordered by their 
strength. For example, the sequence (fn)n∈N ∈ L,

fn(x) = x2− 1
n ,

converges to f ≡ 0 in the product topology with respect to the discrete topology, but 
not in the formal topology.

Likewise, the sequence

fn(x) = 1
n
x

converges to f ≡ 0 in the weak topology, but not in the product topology with respect 
to the discrete topology nor in the formal topology.

In all three cases, we set f = limμ→θ fμ, with an indication of the topology to which 
we refer. From now on, unless explicitly stated otherwise, we endow L with the prod-
uct topology with respect to the discrete topology, so every limit or convergence to be 
mentioned in the sequel is understood with respect to this topology.

Remark 4.2. Given a well-ordered subset W of R>0 ×Z, we can define in the same way, 
if it exists, the limit f = lim(α,k)∈W fα,k of a transfinite sequence (fα,k) of elements of L. 
In the rest of this article, we will deal indifferently with sequences indexed by ordinals 
or by elements of a well-ordered subset of R>0 × Z.

We define the elementary changes of variables in L0 by:⎧⎪⎪⎨⎪⎪⎩
ϕ1,0(x) = ax, a ∈ R, a > 0, a �= 1,
ϕ1,m(x) = x + cx�m, m ∈ N, m �= 0, c ∈ R,

ϕβ,m(x) = x + cxβ�m, β > 1, m ∈ Z, c ∈ R.

(4.1)

Notice that ord(ϕβ,m − id) = (β, m).
We now define the notion of a composition of a transfinite sequence in L. We will 

apply this notion to transfinite compositions of elementary changes of variables in L0.

Definition 4.3. Consider an ordinal θ and a transfinite sequence (ϕμ)μ<θ of elements 
from L0. We say that the transfinite composition ◦μ<θ ϕμ exists and is equal to ϕ ∈ L0

if the following conditions are satisfied:

1. We can define a sequence (ψμ)μ<θ of elements of L0 (which we call the partial com-
positions) in the following way:
(a) ψ0 := id;
(b) If μ = ν + 1 is a successor ordinal, then ψν+1 := ϕν ◦ ψν (non-limit case);
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(c) If μ < θ is a limit ordinal, the sequence (ψν)ν<μ converges to ψμ ∈ L0 when ν
goes to μ (limit case).

2. The sequence (ψμ)μ<θ converges to ϕ ∈ L0 when μ goes to θ.

We write: ϕ = ◦μ<θ ϕμ.

Proposition 4.4 (Convergence of partial normal forms (fμ)μ<θ ∈ LH). Let f ∈ LH . 
Let (ϕμ)μ<θ, ϕμ ∈ L0, be a transfinite sequence of changes of variables such that the 
composition ψ = ◦μ<θ ϕμ exists in L0 (as the limit of the transfinite sequence (ψμ)μ<θ

introduced in the former definition). Let (fμ)μ<θ be a transfinite sequence in LH , defined 
by:

fμ := ψ−1
μ ◦ f ◦ ψμ, μ ≤ θ, with ψθ := ψ.

Then fμ → fθ, as μ → θ.

In the proof, we use the following auxiliary lemma. Consider a topology T on L. We 
say that an application F : LH → LH is transfinitely sequentially continuous with respect 
to T if, for every transfinite sequence (gμ)μ<θ in LH such that the supports of all the gμ
are contained in a well-ordered subset of R>0 × Z, and such that gμ → g with respect 
to T , then F (gμ) → F (g) with respect to T .

Lemma 4.5 (Transfinite sequential continuity). Assume L equipped with the product topol-
ogy (the discrete case).

1. Let h ∈ LH . The applications defined on L0 by

(i) g −→ g ◦ h, g −→ h ◦ g, (ii) g −→ g−1

are transfinitely sequentially continuous.
2. Consider two transfinite sequences (hμ)μ<θ in LH , and (gμ)μ<θ in L0, such that 

hμ → 0 as μ → θ and the supports of all the hμ and gμ are contained in a common 
well-ordered subset of R>0 × Z. Then hμ ◦ gμ → 0 as μ → θ.

Proof. All these statements can be proven by analyzing the supports of the composition 
and of the inverse as in (4.2) and applying Neumann’s Lemma 2.2.3. Concluding similarly 
as in (4.2), for two transseries g, h ∈ LH , such that ord(g) = (α0, 0), we obtain:

S(h ◦ g) ⊂ S(h) ∪H.

Here, H is a sub-semigroup of R≥0×Z generated by (α0β, k) for (β, k) ∈ S(h), (α−α0, m)
for (α, m) ∈ S(g) and (0, 1). Moreover, every coefficient of the composition is a sum of 
finitely many finite products of coefficients of h and g by Neumann’s lemma. Additionally, 
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each product contains exactly one coefficient from h among its factors. (1) (i) and (2) 
follow.

To prove (1) (ii), due to (1), it suffices to prove the easier statement: if gμ → id as 
μ → θ, then g−1

μ → id, as μ → θ. It can be checked that the coefficients of g−1
μ − id are 

sums of finitely many finite products of coefficients of gμ − id, which eventually vanish, 
by Neumann’s lemma. Therefore, the coefficients of g−1

μ − id eventually vanish. �
Proof of Proposition 4.4. Let f, (fμ)μ<θ ∈ LH be as defined in the proposition. Knowing 
that ψμ → ψ, we prove that ψ−1

μ ◦ f ◦ ψμ → ψ−1 ◦ f ◦ ψ, as μ → θ (in the product 
topology, the discrete case).

Since ψμ → ψ, it follows by Lemma 4.5 (1)(i) that ψμ ◦ ψ−1 → id, and further by 
(1)(ii) that ψ◦ψ−1

μ → id. By (1)(i), f ◦ψ◦ψ−1
μ → f ◦ id = f and ψ◦ψ−1

μ ◦f → id◦f = f . 
Therefore,

f ◦ ψ ◦ ψ−1
μ − ψ ◦ ψ−1

μ ◦ f → 0,
(2), ψμ→ψ=⇒ f ◦ ψ − ψ ◦ ψ−1

μ ◦ f ◦ ψμ → 0,

ψ ◦ ψ−1
μ ◦ f ◦ ψμ → f ◦ ψ,

ψ−1
μ ◦ f ◦ ψμ → ψ−1 ◦ f ◦ ψ. �

As we did above for a composition of a transfinite sequence of elements of L0, we 
can define in particular, if it exists, a composition of a sequence (ϕβ,m) of elementary 
changes of variables indexed by elements of a well-ordered subset W ⊂ R>0 ×Z, via the 
sequence (ψβ,m) of partial compositions. Again, we have to consider non-limit cases and 
limit cases.

The following proposition gives an important characterization of elements of L0 or 
L0
D in terms of transfinite compositions of elementary changes of variables.

Proposition 4.6 (Characterization of changes of variables in L0 or L0
D). Let L0 be en-

dowed with the product topology with respect to the discrete topology.

1. Let W ⊂ R>0 × Z be well-ordered. Let (ϕα,m)(α,m)∈W be a transfinite sequence of 
elementary changes of variables, such that the sequence of orders ord(ϕα,m − id) =
(α,m) is strictly increasing. Then the transfinite composition ϕ = ◦(α,m)∈Wϕα,m is 
well defined in L0. Moreover, if W ⊂ R>0 × Z is of finite type, then ϕ ∈ L0

D.
2. For every transseries ϕ ∈ L0 ( resp. ϕ ∈ L0

D) there exist a well-ordered subset ( resp. 
a subset of finite type) W ⊂ R>0 × Z and a transfinite sequence (ϕα,m)(α,m)∈W of 
elementary changes of variables such that ϕ = ◦(α,m)∈Wϕα,m.

Proof. (1) We first give a preliminary computation which describes the change in the 
support of an element of L0 after composition with an elementary change of variables, 
and prove implicitly that the composition remains in L0. Let h = id + ε ∈ L0 (i.e. 
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ord(ε) � (1, 0)). Consider an elementary change of variables ϕβ,	 (x) = x + cxβ�	, 
c ∈ R, (β, �) � (1, 0). A straightforward computation shows that, for every in-

teger p ≥ 1, the support of the p-th derivative 
(
xβ�	

)(p)
is contained in the set 

{(β − p, �) , (β − p, � + 1) , . . . , (β − p, � + p)}. Hence, it follows from Taylor formula that

(ϕβ,	 ◦ h) (x) =
(
x + cxβ�	

)
◦ (x + ε (x))

= h(x) + cxβ�	 +
∞∑
p=1

p∑
jp=0

bp,jpx
β−p�	+jpε (x)p , bp,jp ∈ R. (4.2)

Notice that, for each p ≥ 1, every element (γ, r) of the support of ε (x)p has the form

(γ, r) =
(
αi1 + · · · + αip , ki1 + · · · + kip

)
,

where the exponents (αis , kis), s = 1, . . . , p, belong to S (ε). Hence, every element of the 
support of the double sum in the formula (4.2) has the form

(β, �) +
(
αi1 − 1 + · · · + αip − 1, ki1 + · · · + kip

)
+
(
0, jip

)
, (4.3)

where p ≥ 1, (αis , kis) ∈ S (h) and jip ∈ {0, . . . , p}.
Two main facts follow from this computation. Denote by H the (additive) sub-

semigroup of R≥0 × Z generated by (β, �), the elements (α− 1, k) for (α, k) ∈ S (h)
and (0, 1). First, by (4.2), the support S (ϕβ,	 ◦ h) of the composition is contained in 
the union S (h) ∪H. Since S (h) is well-ordered, and since, by Neumann’s Lemma 2.2, 
H is well-ordered, the support S (ϕβ,	 ◦ h) is also well-ordered. Second, by Neumann’s 
Lemma 2.2, the composition ϕβ,	 ◦ h is well-defined, meaning that every monomial in 
the support of ϕβ,	 ◦ h has a well-defined coefficient. This in particular implies that 
ϕβ,	 ◦ h ∈ L0. Now, assume additionally that h ∈ L0

D, so S (h) is contained in a (addi-
tive) sub-semigroup of R>0×Z generated by finitely many elements (γ1, p1) , . . . , (γr, pr)
of R>0×Z. For n ∈ N, we can write (nγi − 1, npi) = (n− 1) (γi, pi)+(γi − 1, pi). Hence, 
S (ϕβ,	 ◦ h) is contained in the (additive) sub-semigroup of R≥0 ×Z generated by (β, �), 
(0, 1) and the elements (γi, pi), (γi − 1, pi) for i = 1, . . . , r. In particular, ϕβ,	 ◦ h ∈ L0

D.
Consider now the sequence (ϕα,m)(α,m)∈W given in the statement of the proposition. 

We prove the existence of the composition ◦(α,m)∈W ϕα,m by transfinite induction. Let 
(α0, m0) be the smallest element of W . Put ψα0,m0 := ϕ(α0,m0) ∈ L0. Consider the 
sub-semigroup W ⊂ R≥0 × Z generated by the elements of W , the elements (α− 1, p)
for (α, p) ∈ W , and (0, 1). We already know that W is well-ordered, and of finite type if 
W is of finite type.

Existence of partial compositions in L0 in the non-limit case follows directly by 
the above considerations. Moreover, the support of the partial compositions is con-
tained in W . Consider the limit case. Suppose (αθ, mθ) is a limit ordinal (or the order 
type of W ), and for every (β, l) ∈ W , (β, l) ≺ (αθ, mθ), it holds that ψβ,l ∈ L0
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and S(ψβ,l) ⊂ W . We prove that ψβ,l converge in L0 in the product topology, as 
(β, l) → (αθ, mθ), and that the support of the limit belongs to W .

By (4.2), S(ψ) ⊂ S(ϕβ,l ◦ ψ) ⊆ W for every partial sum ψ and every change of 
variables ϕβ,l, (β, l) ∈ W . Thus, if (γ, k) ∈ S(ψβ,l), then (γ, k) ∈ S(ψα,m), for all 
(β, l) ≺ (α, m) ≺ (αθ, mθ). To prove the convergence in the product topology, we have 
to prove that the coefficient of monomial xγ�k eventually stabilizes in the sequence of 
partial sums (ψβ,l)(β,l)≺(αθ,mθ). Since (β, l) is a summand of (4.3) and the sequence 
(β, l) ∈ W is strictly increasing, it follows from Neumann’s Lemma 2.2.3. that each 
(γ, k) ∈ W is realized at most finitely many times as sum of the type (4.3). That is, the 
coefficient of monomial xγ�k in the support of (ψβ,l) changes only finitely many times in 
the course of compositions ◦(β,l)≺(αθ,kθ)ϕβ,l. This guarantees the convergence in L0 of 
partial compositions in the limit case, for the product topology. The limit is the partial 
composition for the limit ordinal (αθ, mθ):

ψαθ,mθ
= ◦(β,l)≺(αθ,mθ) ϕβ,l := lim

(β,l)→(αθ,mθ)
ψβ,l,

with S(ψαθ,mθ
) ⊆ W by construction.

(2) Let ϕ ∈ L0, ϕ(x) = ax + h.o.t., a ∈ R. Obviously, ϕ(x) = ax ◦ ϕ0(x), where 
ϕ0(x) = x + axα0�m0 + h.o.t. tangent to the identity. By Neumann’s Lemma 2.2, the 
sub-semigroup W of R>0 × Z generated by S(ϕ − a · id) is well-ordered, with (α0, m0)
its smallest element. We prove that ϕ0 can be decomposed in a transfinite composition 
of elementary changes of variables (ϕβ,m)(β,m)∈V , for some V ⊆ W . More precisely: we 
build, by transfinite induction, a sequence (ϕβ,m)(β,m)∈V , V ⊆ W , of elementary changes 
of variables, such that, for every (α, k) ∈ W , there exists (β(α, k),m(α, k)) ∈ V and a 
partial composition

ψβ(α,k),m(α,k) = ◦(β,m)≺(β(α,k),m(α,k))ϕ(β,m)

with ord
(
ϕ− ψβ(α,k),m(α,k)

)
� (α, k). Moreover, the function (α, m) ∈ W →

(β(α, k),m(α, k)) ∈ V is increasing, but not necessarily strictly. Since W contains ar-
bitrarily big elements with respect to the order topology, it means that the sequence 
(ψβ,m)(β,m)∈V converges towards ϕ in the formal topology. In particular, it converges 
towards ϕ in the product topology with respect to the discrete topology.

Put ψα0,m0(x) := ϕα0,m0(x) = x + axα0�m0 . Consider (α, k) ∈ W . By the induction 
hypothesis, for all (γ, r) ∈ W , (γ, r) ≺ (α, k), there exists a transfinite composition 
ψβ(γ,r),m(γ,r) ∈ L0, such that (γ, r) ≺ ord(ϕ − ψβ(γ,r),m(γ,r)). We prove that then there 
exists a transfinite composition ψβ(α,k),m(α,k), such that (α, k) ≺ ord(ϕ −ψβ(α,k),m(α,k)).

In the non-limit case, consider the predecessor (α′, k′) of (α, k) in W , and the partial 
composition ψβ(α′,k′),m(α′,k′) ∈ L0. Then either ψβ(α′,k′),m(α′,k′) = ψβ(α,k),m(α,k), or 
there exists an elementary change of variables ϕα,k(x) = x +cxα�k, with c ∈ R such that 
the term of order (α, k) from ϕ − ψβ(α′,k′),m(α′,k′) is cancelled in ϕ − ψβ(α,k),m(α,k):
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ϕ− ψβ(α,k),m(α,k) = ϕ− ϕα,k ◦ ψβ(α′,k′),m(α′,k′)

= (ϕ− ψβ(α′,k′),m(α′,k′)) − cxα�k + h.o.t.

Obviously, ψβ(α,k),m(α,k) = ϕα,k ◦ ψβ(α′,k′),m(α′,k′) ∈ L0. Hence, the claim is proved in 
the non-limit case.

In the limit case, when (α, k) is a limit ordinal, we put ψβ(α,k),m(α,k) =
lim(γ,r)≺(α,k) ψβ(γ,r),m(γ,r), as in Definition 4.3. By (1), this limit exists and belongs 
to L0.

We conclude the proof by noticing that, if ϕ ∈ L0
D, that is, if S (ϕ) is of finite type, 

so is the set W . �
Propositions 4.4 and 4.6 will be used in the proof of Theorem A to derive the formal 

normal forms of f ∈ LH by transfinite induction: eliminating terms from f , step by step, 
by elementary changes of variables, when possible.

By Definition 4.3, the composition of a transfinite sequence (fμ)μ<θ ∈ L0 exists, if the 
transsequence of partial compositions (ψμ)μ<ν at any limit ordinal ν ≤ θ converges in 
the product topology in L0. That is if, for every (β, l) ∈ R>0 × Z, there exists an index 
μβ,l such that, for μβ,l < μ < ν, the coefficient [ψμ]β,l remains constant. In the proof of 
Proposition 4.6, for transfinite compositions of elementary changes of variables we have 
proved (by Neumann’s lemma) even more: for every (β, l) ∈ R>0 × Z, the coefficient 
[ψμ]β,l changes in the sequence of partial compositions (ψμ)μ<ν at most at finitely many
indices.

4.3. The precise form of Theorem A

We now give the precise statement of Theorem A, which was given with less details 
on page 894.

Theorem A (Formal normal forms). Let f ∈ LH ( resp. f ∈ LH
D).

1. f is formally equivalent in L0 (resp. in L0
D) to the finite normal form f0 ∈ LH

(actually in LH
D):

(a) (Parabolic case)

f (x) = x + axα�k + h.o.t., α ≥ 1, k ∈ Z, (α, k) � (1, 0); a ∈ R, a �= 0;

f0 (x) = x + axα�k + bx2α−1�2k+1, b ∈ R.

(b) (Hyperbolic case)

f (x) = λx + ax� + h.o.t., a ∈ R, λ > 0, λ �= 1;

f0 (x) = λx + ax�.
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(c) (Strongly hyperbolic case)

f(x) = λxα + h.o.t., λ > 0, α �= 1; f0(x) = xα.

2. Let f be hyperbolic or parabolic. Then f is formally equivalent in L0 ( resp. ∈ L0
D) 

to f̂0 ∈ LH ( resp. in LH
D), given as the formal time-one map of the following vector 

fields:
(a) (Parabolic case)

f0(x) = exp(Xα,k,a,b).id,

Xα,k,a,b = axα�k

1 + aα
2 xα−1�k − (ak2 + b

a )xα−1�k+1
d
dx.

(b) (Hyperbolic case)

f̂0(x) = exp(Xλ,a).id, Xλ,a = log λ · x
1 + a

2(λ−1)�

d
dx.

In the parabolic case, the formal normal forms are described by the quadruples:

(α, k, a, b); α ≥ 1, k ∈ Z, b ∈ R, a �= 0.

Additionally, if α > 1, a can be replaced by sgn(a), up to a linear change.

It is worth recalling that in the hyperbolic case, the series exp (Xλ,a) · id does not 
converge in L neither for the formal topology nor for the product topology with respect 
to the discrete topology. Nevertheless, it converges for the weak topology (the product 
topology with respect to the Euclidean topology), which takes into account not only 
the supports, but also the size of their coefficients. For details, see the proof of Proposi-
tion 5.11.

Note that the formal normal form of a strongly hyperbolic transseries cannot be ex-
pressed as the formal time-one map of a vector field in L. The exponential of a parabolic 
vector field does not converge in L in any of the three topologies that we mentioned on 
page 904. The formula (1.4) for the formal-time map of a parabolic field does not make 
sense in L. The detailed description of this phenomenon is given in Proposition 5.28.

Furthermore, notice that if f ∈ R[[x]] is a parabolic formal power series, its formal 
normal form f0 in L0 is different from the standard formal normal form (recalled in 
Section 3.2). Indeed, due to the fact that we use a wider class of changes of variables, 
the residual term can also be eliminated. See Example 6.3 for details.

4.4. Proof of the precise form of Theorem A

The proof is divided in three parts. Let f ∈ LH (resp. f ∈ LH
D).
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1. Part 1 is the step of the algorithm. We describe a process which allows, by an 
appropriate elementary change of variables as defined on page 904, to eliminate the 
smallest possible monomial of S (f).

2. Part 2 is the convergence of the algorithm. We prove that the collection of consecutive 
changes of variables made in Part 1 is actually a transfinite sequence, which can 
be indexed by a well-ordered subset of R>0 × Z. The main difficulty here is the 
following one: each execution of a local step of the algorithm, while eliminating a 
single monomial of the support of the transseries to which it is applied, may at the 
same time add infinitely many new monomials to the support. Hence, we have to 
prove that, nevertheless, all the monomials which appear during the process (except 
at most finitely many of them) will be ultimately eliminated by a transfinite sequence 
of elementary changes of variables.

3. Finally, in Part 3, we show how to obtain another normal form, which is the formal 
time-one map of a vector field in the sense of Definition 1.2.

Part 1 (the step of the algorithm).
Let f ∈ LH . We examine three possible situations: f parabolic, hyperbolic, or strongly 

hyperbolic. In each case, we show how to construct an elementary change of variables 
which will eliminate the smallest possible monomial of S (f). We give a detailed descrip-
tion for f parabolic. The other cases follow the similar scheme.

(a) f parabolic. Let us write:

f(x) = x + axα�k + a1x
α�k+1 + h.o.t.,

a ∈ R, a �= 0, (α, k) � (1, 0).

In Part 2 of the proof we want to eliminate the term of smallest possible order in the 
expansion of f , and proceed by induction. To see which terms can be eliminated, we 
examine the action of an elementary change of variables ϕβ,m:

ϕβ,m(x) = x + cxβ�m, c ∈ R, c �= 0, (β,m) ∈ R>0 × Z, (1, 0) ≺ (β, l).

We apply the method described in Section 3. Recall from (3.1) that if ψ is the leading 
term of the difference f ◦ ϕβ,m − ϕβ,m ◦ f , then

ϕ−1
β,m ◦ f ◦ ϕβ,m = f + ψ + h.o.t. (4.4)

We prove that ψ is exactly the leading term of adaxα�k(cxβ�m), that is,

ψ = Lt
(
adaxα�k(cxβ�m)

)
,

where Lt() denotes the leading term of expression in brackets. Indeed, write

f (x) = x + ε (x) , ϕβ,m (x) = x + η (x) ,
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with (1, 0) ≺ ord (ε) and (1, 0) ≺ ord (η). We obtain, using Taylor formula:(
ϕβ,m ◦ f − f ◦ ϕβ,m

)
(x) = ϕβ,m (x + ε (x)) − f (x + η (x))

= ϕβ,m (x) + ϕ′
β,m (x) ε (x) + 1

2ϕ
′′
β,m (x) ε2 (x)

− f (x) − f ′ (x) η (x) − 1
2f

′′ (x) η2 (x) + h.o.t.

= x + η (x) + (1 + η′ (x)) ε (x) + 1
2η

′′ (x) ε2 (x)

− x− ε (x) − (1 + ε′ (x)) η (x) − 1
2ε

′′ (x) η2 (x) + h.o.t.

= η′ (x) ε (x) − η (x) ε′ (x)

+ 1
2
(
η′′ (x) ε2 (x) − ε′′ (x) η2 (x)

)
+ h.o.t.

The expansion of this expression gives(
ϕβ,m ◦ f − f ◦ ϕβ,m

)
(x)

= ca (β − α)xα+β−1�m+k

+ ca1 (β − α)xα+β−1�m+k+1 + ca (m− k)xα+β−1�m+k+1

+ 1
2

(
ca2β (β − 1)xα+β−1+(α−1)�m+2k − c2aα (α− 1)xα+β−1+(β−1)�2m+k

)
+ h.o.t.

Let us examine various possibilities for the leading term, depending on α, β, k, m. 
If β �= α, then the leading term of this expression is ca (β − α)xα+β−1�m+k. If 
β = α, notice that one of the terms of the second line could contribute to the or-
der (α + β − 1,m + k + 1), when α = 1, or when β = 1. But in this case, since 
α = β = 1, the coefficients of these terms vanish. So, in any case, the leading 
term ψ of the former expression is exactly the leading term of ad axα�k(cxβ�m) =
ca (β − α)xα+β−1�m+k + ca (m− k)xα+β−1�m+k+1. By (4.4), we now have:

ϕ−1
β,m ◦ f ◦ ϕβ,m = f + Lt

(
ad axα�k(cxβ�m)

)
+ h.o.t.

In order to find the change of variables ϕβ,m whose action would eliminate a given 
monomial dxγ�l in the expansion of f , we need to solve the homological equation:

Lt
(
ad axα�k(cxβ�m)

)
= dxγ�r. (4.5)

That is, as in the proof of Proposition 3.2, we want to see which monomials are not in 
the image of ad axα�k(Jβ,m) for any (β, m) � (1, 0), since these cannot be eliminated by 
elementary changes of variables. The homological equation (4.5) leads to α+ β − 1 = γ. 
That is, to β = γ − α + 1. We have three possibilities:
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(i) If β �= α, i.e. if γ �= 2α− 1, then we put m = r− k and we can solve the homological 
equation.

(ii) If β = α, i.e. if γ = 2α − 1, then the homological equation becomes
ca (m− k)xγ�m+k+1 = dxγ�r. This equation leads to m + k + 1 = r, that is, 
m = r − k − 1. If m �= k, i.e. if r �= 2k + 1, the homological equation can be solved.

(iii) If r = 2k + 1, then the homological equation cannot be solved, so the term dxγ�r

cannot be eliminated from f . We have

dxγ�r /∈ ad axα�k

( ⋃
(1,0)≺(β,m)

Jβ,m

)
.

Note that the assumption (1, 0) ≺ (β, m) on order of elementary changes of variables 
ϕβ,m − id is necessary so that ϕβ,m ∈ L0.

If α > 1, it follows from our computations that all the terms in the expansion of f
can be eliminated except for the first term axα�k, and the residual term dx2α−1�2k+1.

If α = 1, along with these two terms, we observe that the term a1x�
k+1 is not in 

the image of ad ax�k . Indeed, to solve the homological equation, we need a change of 
variables ϕ1,0, which is impossible by the comment above. Nevertheless, in that case, as 
initial step we apply the appropriate linear change of variables, ϕ1,0 (x) = cx, c �= 0. 
The action of the linear change of variables on the first terms of f is explained in the 
following computation:

ϕ−1
1,0 ◦ f ◦ ϕ1,0 = x + acα−1xα�k+

+ cα−1(a1 − ka log c
)
xα�k+1 + h.o.t. (4.6)

Hence, if (1, k + 1) ∈ S (f), we eliminate the term a1x�
k+1 with the linear change of 

variables ϕ1,0(x) = e
a1
k·ax.

Notice that, if α > 1, we can use the linear change of variables ϕ1,0(x) = cx, with 
c = |a|− 1

α−1 , to normalize the coefficient a to sign (a).
(b) f hyperbolic. Let

f(x) = λx + ax� + h.o.t.

Applying the change of variables ϕβ,m(x) = x +cxβ�m, c ∈ R, (1, 0) ≺ (β, m), we obtain:

ϕβ,m ◦ f − f ◦ ϕβ,m =

= c(λβ − λ)xβ�m+

−
(
ac(1 − βλβ−1) + cmλβ log λ

)
xβ�m+1 + h.o.t.

Then we proceed as in (a) above: every term can be eliminated, except for the terms of 
order (1, 0) and (1, 1).
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(c) f strongly hyperbolic. First, by the linear elementary change of variables ϕ1,0(x) =
λ− 1

α−1x, we normalize the first term. Then, as in the parabolic case, we want to remove 
the other monomials by appropriate elementary changes of variables ϕβ,m(x) = x +
cxβ�m, c ∈ R, (1, 0) ≺ (β, m). Let:

f(x) = xα + dxγ�r + h.o.t., (α, 0) ≺ (γ, r), d ∈ R, d �= 0.

As above, we consider the difference (ϕβ,m ◦ f − f ◦ ϕβ,m) (x) = tϕβ,m
(x) + h.o.t. Here, 

the leading monomial tϕβ,m
is given by:

tϕβ,m
(x) =

⎧⎪⎪⎨⎪⎪⎩
c(αm − α)xα�m, β = 1,
−cαxα+β−1�m, α > 1, β �= 1,
cαmxαβ�m, α < 1, β �= 1.

(4.7)

By the change of variables ϕβ,m which solves the equation tϕβ,m
(x) = dxγ�r, we eliminate 

the term xγ�r from f . Notice that, unlike in the former cases, in the strongly hyperbolic 
case all the monomials except for the first one can be eliminated.

Part 2 (the convergence of the algorithm).
Let f ∈ LH . We repeatedly apply to f the changes of variables built in local Part 1

of the proof. This step by step process leads to some collection (ϕμ)μ∈I of elementary 
changes of variables from L0, indexed by some initial segment I of the ordinals:

f −→
ϕ0

f1 = ϕ−1
0 ◦ f ◦ ϕ0 −→

ϕ1
f2 = ϕ−1

1 ◦ f1 ◦ ϕ1 → · · · .

For each step μ, the change of variables ϕμ is designed to eliminate the smallest possible 
monomial of the support S (fμ). We have to prove that the collections (ϕμ) and (fμ)
obtained in the process are transfinite sequences. That is, that there exists a bounding 
ordinal θ such that I is the set of ordinals {μ < θ}. The idea is to analyze the orders of 
elementary changes of variables used in step by step eliminations of all possible monomi-
als from f . The analysis for f parabolic (other two cases can be done similarly) is given 
in Section 7, Subsections 7.1 and 7.2. For f(x) = x + axα�k + h.o.t., a �= 0, we prove 
that the supports of all (fμ − id) belong to the set R ⊂ R>0 × Z:

R =
〈
S(f − id) \ {α, k} − (α, k + 1)

〉
+ N∗ (α− 1, k) + {1} × N∗.

The orders of the elementary changes of variables used for normalization thus belong to 
the set R1 ⊂ R>0 × Z explicitly obtained from R:

R1 =
〈
S(f − id) \ {α, k} − (α, k + 1)

〉
+ N (α− 1, k) + {0} × N.

Both R and R1 are well-ordered by Neumann’s Lemma 2.2, since S(f−id) is well-ordered. 
The computations in Part 1 of the proof show that, in each step, not only the monomial 
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of smallest order in fμ is eliminated, but no other monomial of smaller order is added to 
the support, so that the orders of (fμ − id) and accordingly of (ϕμ − id) strictly increase 
and at the same time stay inside well-ordered sets R resp. R1. The steps of eliminations 
can be carried through, since we know from Propositions 4.4 and 4.6 that the partial 
compositions ψν and fν at any limit ordinal ν do exist in L0.

Let us now index the collection (ϕμ) of elementary changes of variables by the orders 
ord(ϕμ − id). The orders form a strictly increasing, well-ordered subset W of R≥0 × Z. 
Therefore, we obtain a transfinite sequence of elementary changes of variables and we use 
the notation (ϕβ,m)(β,m)∈W . According to Proposition 4.6, the transfinite composition 
ϕ = ◦(β,m)∈Wϕβ,m is a well-defined element of L0. On the other hand, Proposition 4.4
guarantees that our transfinite process of eliminations ends, that is, converges to an 
element from LH . By construction in the algorithm, the limit is the normal form f0 ∈ LH .

If additionally f ∈ LH
D , that is if f is of finite type, we prove that the normalizing 

change of variables ϕ is also of finite type. The proof of this fact is quite long and 
technical. It is described in detail for the parabolic case in Section 7: Appendix. The 
proof of the hyperbolic and the strongly hyperbolic case follow the same lines and are 
left to the reader.

Part 3 (the 2nd normal form).
(i) Take the vector field X as in (2.a) or (2.b) of the theorem. Expanding the coefficient

ξ(x) of the vector field in the geometric series, we see that ξ ∈ L and that (1, 0) �
ord (ξ). By Propositions 5.11 and 5.12 of Sections 5.2 and 5.4, the exponential of X
(formula (1.4)) converges in L and gives a normal form as the formal time-one map 
f̂0 ∈ LH . It should be mentioned that the appropriate topology for the convergence of 
the series in (1.4) depends on whether ord (ξ) is equal to or bigger than (1, 0). This is 
why the proof of Proposition 5.11 is split between Subsection 5.2 and 5.4. Finally, we 
simply observe from this expansion that f̂0 = f0 + h.o.t.

(ii) Let f ∈ LH , and let f0 and f̂0 be as in the statements 1. and 2. of the theorem. 
We show that there exists a change of variables ϕ̂ ∈ L0 that conjugates f to f̂0. Indeed, 
by Theorem A(1), there exists ϕ ∈ L0 such that

f = ϕ ◦ f0 ◦ ϕ−1. (4.8)

On the other hand, by (i) above, f̂0 ∈ LH and f̂0 = f0 + h.o.t. Applying the transfinite 
algorithm described in Parts 1–2 of the proof to f̂0 ∈ LH , we obtain an element ψ ∈ L0

such that:

f̂0 = ψ ◦ f0 ◦ ψ−1. (4.9)

By (4.8) and (4.9), it follows that f can be transformed into f̂0 by composition ϕ̂ =
ϕ ◦ψ−1, ϕ̂ ∈ L0. That is, f is conjugated to f̂0 in L0. Note that by Proposition 4.6(2) ϕ̂ can 
be considered as a transfinite step by step process of elementary changes of variables 
applied to f . �
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Remark 4.7. Let f0 ∈ LH be already in the form as in Theorem A(1), (a), (b) or (c). Let 
the beginning of f ∈ LH coincide with f0:

f = f0 + h.o.t.

It is easy to see that the algorithm described in the proof of Theorem A transforms f to 
f0 itself. In other words, every transseries from LH which begins by one of the normal 
forms f0 from Theorem A has f0 itself as its normal form in L.

5. Proof of Theorem B

In this section we state and prove the precise form of Theorem B. It turns out that, 
unlike in the proof of Theorem A, the techniques involved depend strongly on the na-
ture (parabolic, hyperbolic, or strongly hyperbolic) of the element f ∈ LH . Hence, we 
divide the statement and the proof in different subsections. In Subsection 5.1, we recall 
and state some useful facts about linear operators on L, more specifically about isomor-
phisms and derivations on L. An important part is the relationship between elements of 
LH and linear operators acting on L. Subsection 5.2 is dedicated to vector fields, that 
present a particular class of derivations on L. Finally, Subsections 5.3, 5.4, 5.5 contain 
the statement and the proof of Theorem B respectively in parabolic, hyperbolic and 
strongly hyperbolic case.

5.1. Operators acting on L, isomorphisms and derivations

Some notions considered in this section are similar to [8, Chapter I.3] for formal power 
series.

By an operator on L (respectively LD), we denote a strongly linear map
B : L (resp. LD) → L (resp. LD). By strongly linear, we mean that

B

⎛⎝∑
α,k

cα,kx
α�k

⎞⎠ =
∑
α,k

cα,kB
(
xα�k

)
, cα,k ∈ R,

for every transseries 
∑

α,k cα,kx
α�k ∈ L (resp. LD).

We denote by L(L), respectively L(LD), the set of all operators B : L (resp. LD) →
L (resp. LD).

For an operator B ∈ L(L) and an element f ∈ L, we denote indifferently by B · f or 
B (f) the image of f under B. The identity operator will be denoted by Id.

Definition 5.1 (Operators defined as a series of operators). Let (Bj)j∈N be a sequence of 
operators in L(L) (resp. in L(LD)).
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1. We say that the operator B ∈ L(L) (resp. B ∈ L(LD)) is well-defined by the series ∑∞
j=0 Bj if, for every f ∈ L (resp. f ∈ LD), the sequence 

∑N
j=0 Bj · f converges 

towards B · f in the formal topology, as N → ∞.
2. If for every f ∈ L (resp. LD) the sequence 

∑N
j=0 Bj · f converges towards B · f in 

the weak topology, we say that B is weakly well-defined by 
∑∞

j=0 Bj .

In both cases, we write B :=
∑∞

j=0 Bj .

The notion weakly used throughout the article indicates relation to the weak topology 
on L, see also the Definition 5.22 of the small operator in the weak sense in Section 5.4.

Note that well-defined is a stronger notion than weakly well-defined, since it relates 
to the stronger formal topology. That is, if an operator B is well-defined by a series 
of operators, then it is also weakly well-defined by the same series. Note also that the 
operator series defines an operator in L(L) as soon as the convergence of the series is 
weak.

Definition 5.2 (Formal differential operator in L(L)). We say that an operator B ∈ L(L)
(resp. B ∈ L(LD)) is a formal differential operator if there exists a sequence (hj)j∈N of 
elements of L (resp. LD) such that B is (weakly) well-defined by the series

B =
∞∑
j=0

hj
dj

dxj
.

The following definition of a small operator is inspired by [3, Section 1.3].

Definition 5.3. An operator B : L → L is small if there exists a well-ordered set R ⊆
R≥0 ×Z of exponents strictly bigger than (0, 0) such that S (B.f) ⊆ S (f)+R, for every 
f ∈ L. An operator B : LD → LD is small if the set R is in addition of finite type.

Proposition 5.4. Let B be a small operator on L (resp. LD) and let (ck)k∈N∪{0} be a 
sequence of real numbers. The sum

S :=
∞∑
k=0

ckB
k (5.1)

is a well-defined operator on L (resp. LD). Here, Bk denotes the k-th iterate of B.

Proposition 5.4 is a special case of a more general fact used repeatedly in [3]. 
Note that the proof is based on the smallness property of operator B. It implies in-
deed that S(S.f) ⊆ S(f) + 〈R〉, where 〈R〉 denotes the (additive) sub-semigroup of 
R≥0 × Z generated by R. Furthermore, for any f ∈ L, the order ord(Bk.f) strictly 
increases as k increases, by at least min{R} in every step. Consequently, the series 
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Sn :=
∑n

k=0 ckB
k.f ∈ L converges to S ∈ L in the formal topology. We omit the details 

of the proof.

Proposition 5.5. Let B be a small operator on L (resp. LD). Then

exp (B) :=
∞∑
k=0

Bk

k! , log (Id + B) :=
∞∑
k=1

(−1)k+1
Bk

k
,

exp
(
log(Id+B)

)
and log exp(B) are well-defined operators on L (resp. LD). Moreover,

exp
(
log(Id + B)

)
= Id + B and log exp(B) = B. (5.2)

Proof. Since B is a small operator, by Proposition 5.4, log(Id + B) and expB are 
well-defined operators on L (LD). Moreover, by Definition 5.3 of small operators on L
(resp. LD), we obtain inductively:

S(B.f) ⊆ S(f) + R, S(Bk · f) ⊆ S(f) + 〈R〉, k ∈ N0,

where R is as in Definition 5.3. Therefore,

S(log (Id + B)), S(exp (B)) ⊆ S(f) + 〈R〉.

The operators expB and log (Id + B) are small in L(L) (resp. L(LD)). It follows from 
Proposition 5.4 that exp

(
log(Id + B)

)
and log exp(B) are also well-defined operators 

in L(L) (resp. L(LD)). The equality (5.2) now follows by symbolic computation from 
the standard properties of formal exp–log series, similarly as in the proof of Proposi-
tion 5.9. �
Definition 5.6. Let B : L → L be an operator on L.

1. We say that B is a derivation if it satisfies the usual Leibniz’s rule.
2. We say that B : L → L is a morphism if it satisfies the morphism property: B (f · g) =

B (f) ·B (g), f, g ∈ L.
3. We say that B : L → L is an isomorphism of L if B is a bijective morphism.

Remark 5.7 (Isomorphisms associated with f ∈ LH parabolic or hyperbolic). Let f ∈ LH

be parabolic or hyperbolic. The map F : L → L defined by

F (g) = g ◦ f, g ∈ L, (5.3)

is an isomorphism of L. Moreover, the same conclusion holds in finitely generated case. 
If f ∈ LH

D is parabolic or hyperbolic, then F defined by (5.3) is an isomorphism of LH
D .
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We call such F the isomorphism associated with f and denote it by

F = iso(f).

The morphism property is easily checked. Moreover, since a parabolic (resp. hyperbolic) 
element f ∈ LH admits a parabolic (resp. hyperbolic) compositional inverse f−1 ∈ LH , 
then F is bijective, with the inverse F−1 : L → L, F−1(g) = g ◦ f−1, g ∈ L.

Lemma 5.8. Let f ∈ LH (resp. f ∈ LH
D) be parabolic or hyperbolic contraction. Let the 

operator F be defined as in (5.3). Then the formal operators logF ∈ L(L), exp logF ∈
L(L) (resp. L(LD)) are weakly well-defined. Moreover,

exp logF = F.

Finally, if f is parabolic, these operators are well-defined.

Proof of Lemma 5.8. We prove here the lemma for f parabolic. For f hyperbolic, the 
proof is postponed to Section 5.4. We write f (x) = x + ε (x), with ord (ε) � (1, 0). By 
Taylor expansion, for every g ∈ L, we have:

g (f (x)) = g (x + ε (x))

= g (x) +
∞∑
k=1

g(k) (x)
k! ε (x)k . (5.4)

Hence, we can write F = Id+P = Id +
∑∞

k=1
ε(x)k
k!

dk

dxk . Obviously, P · g = g ◦ f − g ∈ L, 
g ∈ L. We show that P is a small operator. By (5.4), we have:

S(P · g) =
⋃
k∈N

S
(
g(k)εk

)
.

The support S
(
g(k)εk

)
contains pairs of the form:(

(β1 − 1) + · · · + (βk − 1) + α, l1 + · · · + lk + m + j
)
,

where (βi, li) ∈ S (ε), i = 1, . . . , k, (α,m) ∈ S (g) and j ∈ {0, . . . , k}. Therefore,

S(P · g) ⊆ S(g) + R, (5.5)

where R is a sub-semigroup R ⊆ R≥0 × Z generated by elements (β − 1, l) for (β, l) ∈
S (ε), and (0, 1). By Neumann’s lemma and since (1, 0) ≺ ord(ε), R is well ordered and 
its elements are of order strictly greater than (0, 0). Therefore, the operator P is small. 
By Proposition 5.5, the operators logF and exp(logF ) : L → L are well-defined.
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It remains to be proven that

exp(logF ).f = F.f, f ∈ L. (5.6)

But once formal convergence is proven, this property follows from the well-known formal 
identities concerning exp− log series.

In the finitely generated case (f ∈ LD), the semigroup R above is in addition of finite 
type (a subset of a finitely generated sub-semigroup of R≥0×Z), for details see the “finite 
part” of the proof of Proposition 4.6. The operator P is small in L(LD), and the result 
follows by Proposition 5.5. �

We suspect that the next statement is already known, but we could not find it in the 
literature. Therefore, we give a short proof.

Proposition 5.9. Let A : L → L be a linear morphism. Assume that the operator 
logA : L → L is (weakly) well-defined. Then logA is a derivation.

Proof of Proposition 5.9. Take any f, g ∈ L. We prove the Newton–Leibniz rule, that is,

logA(fg) = logA (f) g + f logA (g) .

Put H = A − Id. Using the fact that A is a morphism acting on L, we compute:

H(fg) = A(fg) − fg = A (f)A (g) − fg = (f + H (f)) · (g + H (g)) − fg =

= H (f) g + fH (g) + H (f)H (g) . (5.7)

Using the linearity of H and (5.7), we compute H2(fg):

H2(fg) = H2 (f) g + 2H2 (f)H (g) + 2H (f)H (g) + 2H (f)H2 (g) + fH2 (g) .

We proceed by symbolic computation. We substitute

xi for Hi (f) , yi for Hi (g) , i ∈ N0.

By induction, the symbolic computation allows to substitute

(x + xy + y)k for Hk(fg), k ∈ N0.

Hence, we have:

logA(fg) = (substitution) =
∞∑
i=1

(−1)i+1

i
(x + xy + y)i =

= log(1 + x + xy + y) = log
(
(1 + x)(1 + y)

)
=
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= log(1 + x) + log(1 + y) =

= (substitution) = logA (f) g + f logA (g) ,

which proves that logA is a derivation. �
5.2. Vector fields and differential operators

We focus in this subsection on a special type of derivations. We denote by d
dx the 

usual derivation on germs of functions. Note that, by strong linearity, the derivation d
dx

can be extended as an operator on L.

Definition 5.10. An operator B on L is a vector field if there exists ξ ∈ L such that 
B = ξ d

dx .

Notice that there is an important difference here between L and R [[x]]. A vector field 
is determined by its value on the element x ∈ L. But since L contains infinitely many 
elements, which are, on R, algebraically independent of x (such as, for example, the 
powers xα, α ∈ R>0 \Q), then all the derivations on L cannot be vector fields.

Theorem B discusses the possible embedding of an element f ∈ LH (in the three 
cases) in a formal flow of a vector field from L. Let us recall the definition of a formal 
flow, adapted from the standard definition in the usual setting of formal power series to 
our class L. The next discussions follow the lines of similar results for usual power series 
(see [8, Chapter I.3], for example).

Proposition 5.11 (The existence of a formal flow of a formal vector field in L, the 
parabolic case). Let X = ξ d

dx , ξ ∈ L, be a vector field in L such that (1, 0) ≺ ord (ξ). Then 
the vector field X admits the C1-formal flow {ht ∈ L0 : t ∈ R} defined by ht := Ht · id, 
where {Ht ∈ L(L) : t ∈ R} is the one-parameter group of isomorphisms of L well-defined 
by:

Ht := exp(tX) =
∞∑
k=0

tk

k!X
k. (5.8)

Moreover, Ht are the isomorphisms associated to ht, t ∈ R, in the sense of Remark 5.7.
If, in addition, ξ ∈ LD, then Ht ∈ L(LD), ht ∈ L0

D, t ∈ R.

Proposition 5.12 (The existence of a formal flow of a formal vector field, the hyperbolic 
case). Let X = ξ d

dx , ξ ∈ L, be a vector field in L such that ord(ξ) = (1, 0). Then the 
statements of Proposition 5.11 hold in this case as well, with the difference that Ht is 
just weakly well-defined by (5.8).

Note that the time-t map ht of X in Propositions 5.11 and 5.12 is given by the 
following formula:



922 P. Mardešić et al. / Advances in Mathematics 303 (2016) 888–953
ht = Ht · id = id + tξ + t2

2! ξ
′ξ + t3

3!
(
ξ′ξ

)′
ξ + · · · . (5.9)

Note also that in the case (1, 0) ≺ ord(ξ), ht ∈ L are parabolic, while in the case 
ord(ξ) = (1, 0) they are hyperbolic. Moreover, the formula (5.9) converges in the formal 
topology if (1, 0) ≺ ord(ξ), and in the weak topology if ord(ξ) = (1, 0).

Proof of Proposition 5.11. The assumption ord(ξ) guarantees that X = ξ d
dx is a small 

operator in the sense of Definition 5.3. It is easy to check that

S(X.g) = S(ξ · g′) ⊆ S(g) + R, g ∈ L, (5.10)

where R is a sub-semigroup of R≥0 × Z generated by elements (β − 1, l), (β, l) ∈ S(ξ), 
and (0, 1). All elements of R are of order strictly bigger than (0, 0). Hence, the sum (5.8)
gives by Proposition 5.4 a well-defined operator Ht for all t ∈ R.

The statement in LD follows as in the proof of finite part of Lemma 5.8. By (5.10), 
we have that S(Ht.g) ⊆ S(g) + R, g ∈ L, t ∈ R.

Finally, the proof of the morphism property of operators Ht, t ∈ R, and the proof 
that the family (ht)t is a flow of X (see Definition 1.2) are routine, following the lines of 
similar results for formal power series, see for example [8, Chapter I.3].

To prove that Ht.f = f ◦ ht, f ∈ L, we combine Lemma 5.17 below in this section 
and Proposition 5.18. �

The proof of Proposition 5.12 (the case ord (ξ) = (1, 0)) is more involved and is 
postponed to Subsection 5.4. In fact, in this case X is not a small operator in the sense 
of Definition 5.3. Therefore, Ht is not well-defined by (5.8). Nevertheless, we prove in 
Subsection 5.4 that it is weakly well-defined by (5.8).

Proposition 5.13 (Uniqueness of the C1-formal flow of a vector field). Consider a vector 
field X = ξ d

dx , ξ ∈ L.

1. If (1, 0) � ord (ξ), then there exists a unique C1-formal flow (f t)t∈R of X, f t ∈ LH , 
in the sense of Definition 1.2. Moreover:
(i) if (1, 0) ≺ ord(ξ), then the f t ∈ LH are parabolic;
(ii) if ord(ξ) = (1, 0), then the f t ∈ LH are hyperbolic.

2. If ord (ξ) ≺ (1, 0), then X does not admit any C1-flow.

Proof. 1. The existence of a C1-flow for the vector field X is shown by an explicit con-
struction in Propositions 5.11 and 5.12. Suppose now that X admits two C1-flows (f t)t∈R

and (gt)t∈R
in LH . Let S be a well-ordered subset of R>0×Z such that S (f t) and S (gt)

are contained in S for all t ∈ R. Let (α,m) be the smallest element of S (which exists 
since S is well-ordered) such that the coefficient h (t) of xα�m in f t (x)− gt (x) does not 
vanish identically. Since (f t) and (gt) are both C1-formal flows of X = ξ d

dx , we have the 
integral equation in L:
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f t (x) − gt (x) =
t∫

0

(
ξ (fs) (x) − ξ (gs) (x)

)
ds, ∀t ∈ R, (5.11)

where the integral on (5.11) is applied on each coefficient of the integrand. The coefficient 
of the monomial xα�m on the left-hand side of (5.11) is h (t). Hence, in order to estimate 
the coefficient of the same monomial on the right-hand side of this equation, we write, 
based on the definition of (α,m):

fs (x) = M (s;x) + h1 (s)xα�m + h.o.t.

gs (x) = M (s;x) + h2 (s)xα�m + h.o.t.

Here, M (s;x) = b (s)xβ + h.o.t., (β, 0) ≺ (α,m), is a transseries with monomials in S
and coefficients in C1 (R) such that b is not identically zero, and h1, h2 are C1-functions. 
Obviously, h = h1 − h2.

Let axγ�n be the leading term of ξ. We see that the leading term of the difference 
ξ (fs) − ξ (gs) is

a

(
1
β

)n

γb (s)γ−1 (h1 (s) − h2 (s))xα+β(γ−1)�m+n

= a

(
1
β

)n

γb (s)γ−1
h (s)xα+β(γ−1)�m+n.

If (1, 0) ≺ (γ, n), the order of the right-hand side is bigger than (α,m). It would imply 
h ≡ 0, which is a contradiction. On the other hand, if (γ, n) = (1, 0), by comparing the 
coefficients of xα�m on both sides of (5.11), we see that:

h (t) = a

t∫
0

h (s) ds, so |h (t)| ≤ |a|
t∫

0

|h (s)|ds, a ∈ R.

It follows from Gronwall’s lemma applied to |h| that h ≡ 0, which is again a contradiction.
The points (i) and (ii) follow by uniqueness on one hand, and by the explicit con-

struction of the flow done in the proof of Propositions 5.11 and 5.12 on the other hand.
2. Assume now that (β,m) := ord (ξ) ≺ (1, 0) and that X admits a C1-flow (f t)t∈R

. 
We show that this assumption leads to a contradiction. As above, let S be a well-ordered 
subset of R>0 ×Z such that S (f t) ⊆ S for all t ∈ R. Let (α,m) be the smallest element 
of S such that the coefficient h (t) of xα�m in f t does not vanish identically. Let t0 ∈ R

with h (t0) �= 0. In particular, ord (f t0 (x)) = (α,m). We have:

df t ∣∣∣ (x) = ξ
(
f t0 (x)

)
.
dt t=t0
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The order of the left-hand side of this equation is bigger than or equal to (α,m). But 
since ord (ξ) ≺ (1, 0), the order of the right-hand side is strictly smaller than (α,m), and 
we get a contradiction. �
Corollary 5.14. Let X = ξ d

dx , ξ ∈ L (resp. LD) and let (1, 0) � ord(ξ). Then its C1-flow 
(f t)t, f t ∈ LH (resp. LH

D), is given uniquely by the formula:

f t := exp(tX).id, t ∈ R.

Proof. The proof follows by Propositions 5.11 and 5.12 and the uniqueness result in 
Proposition 5.13. �
Lemma 5.15. Let X = ξ d

dx , ξ ∈ L (resp. LD), be such that (1, 0) ≺ ord(ξ) or ξ(x) =
λx + h.o.t. with λ < 0. The operators exp(X) and log exp(X) are weakly well-defined in 
L(L) (resp. L(LD)) and

log exp(X) = X.

Moreover, in the case ord(ξ) � (1, 0), the operators are well-defined.

Proof. The result in the case ord(ξ) � (1, 0) follows directly from Proposition 5.5, since 
X is a small operator in this case. The case ord(ξ) = (1, 0) is proven in Section 5.4. �
Proposition 5.16 (The convergence of the Taylor expansion). Let f ∈ LH (resp. LH

D) be 
parabolic or hyperbolic contraction. Let F = iso(f) ∈ L(L) (resp. L(LD)). Put f = id+ε. 
Then F is weakly well-defined as the formal differential operator:

F = Id +
∞∑
k=1

εk

k!
dk

dxk
.

Moreover, if f is parabolic, then F is well-defined by the above series.

Note that Proposition 5.16 claims that in parabolic and hyperbolic cases the Taylor 
expansions converge in L (in the respective topologies). That is, for every g ∈ L, we can 
write:

F.g (x) = g ◦ f(x) = g (x + ε (x)) = g (x) +
∞∑
k=1

ε (x)k

k! g(k) (x) . (5.12)

Proof. (i) f parabolic. Since ord(ε) � (1, 0), the Taylor expansion (5.12) converges in 
the formal topology to g ◦ f . Indeed, the orders ord(εkg(k)) strictly increase by a fixed 
value (0, 0) ≺ ord(h) − (1, 0), as k increases.
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(ii) f a hyperbolic contraction. We prove that if ord(ε) = (1, 0) the Taylor expan-
sion (5.12) converges in the weak topology. Additionally, we prove that the coefficients 
of respective monomials converge absolutely.

Let f(x) = λx + h.o.t. be hyperbolic, with 0 < λ < 1. Then ε(x) = f(x) − x =
(λ −1)x +Ψ(x), (1, 0) ≺ ord(Ψ). We prove that the Taylor expansion (5.12) for monomials 
g(x) = xα, α > 0, and g(x) =

( 1
− log x

)m, m ∈ Z, converges in the weak topology. 
The convergence is then deduced for all elements g ∈ L, since products of absolutely 
convergent series converge absolutely.

1. g(x) = xα. By definition of compositions in L, see Section 2, we have:

(
f(x)

)α =
(
λx + Ψ(x)

)α = λαxα
(
1 + Ψ(x)

λx

)α

= λαxα
∞∑
k=0

(
α

k

)
λ−k

(Ψ(x)
x

)k

. (5.13)

Since ord(Ψ(x)
x ) � (1, 0), the above series converges in the formal topology.

Consider the series corresponding to the Taylor expansion (5.12):

∞∑
k=0

(
xα
)(k)

k!
(
(λ− 1)x + Ψ(x)

)k
=

∞∑
k=0

(
xα
)(k) · xk

k! (λ− 1)k
(
1 + Ψ(x)

(λ− 1)x

)k

=

=
∞∑
k=0

α(α− 1) · · · (α− k + 1) · xα

k! (λ− 1)k
(
1 + Ψ(x)

(λ− 1)x

)k

=

=
∞∑
k=0

(
α

k

)
xα(λ− 1)k

[ k∑
l=0

(
k

l

)( Ψ(x)
(λ− 1)x

)l]
. (5.14)

We show that the series converges in L in the weak topology to 
(
f(x))α above. 

It can be easily seen that both the monomials of (5.13) and of (5.14) belong to 

S =
⋃

k∈N0
S
((Ψ(x)

x

)k
xα
)
. For every k0 ∈ N0, xα

(
Ψ(x)
x

)k0
is present in infinitely many 

elements of (5.14), but, due to the fact that |λ − 1| < 1, its coefficient converges to the 

coefficient of xα
(

Ψ(x)
x

)k0
in (5.13):

∞∑
k=k0

(
α

k

)
(λ− 1)k−k0

(
k

k0

)
=

∞∑
k=k0

(
α

k0

)(
α− k0

k − k0

)
(λ− 1)k−k0

=
(
α

k0

)
(1 + λ− 1)α−k0 =

(
α

k0

)
λα−k0 .

Moreover, the convergence is absolute.
On the other hand, since (1, 0) ≺ ord

(Ψ(x)
x

)
, for every monomial xβ�n ∈ S there exists 

N ∈ N such that xβ�n /∈ S
((Ψ(x))kxα

)
for k > N . Together with the above analysis, 
x
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this proves the convergence of coefficients of every monomial in (5.14) to its coefficient 
in (5.13). That is, the Taylor expansion (5.14) converges in the weak topology.

2. g(x) =
( 1
− log x

)m. The proof of convergence of Taylor expansion for g(x) =( 1
− log x

)m, m ∈ Z, follows the same idea, so we omit it. �
The next Lemma 5.17 is a weaker version of the well-known diffeomorphism–

isomorphism correspondence for the algebra C[[x]] of formal power series, see [8, Sec-
tion 3A]. It is used, together with Proposition 5.18 below, to finish the proof of Propo-
sitions 5.11 and 5.12 concerning the correspondence ht ↔ Ht. Their Corollary 5.19 is 
used to prove uniqueness in Theorem B.

Lemma 5.17 (Formal diffeomorphism–isomorphism correspondence for L). Let B ∈ L(L)
(resp. L(LD)) be a morphism which is also a (weakly) well-defined formal differential 
operator (in the sense of Definition 5.2), and such that h := B · id ∈ L0 is parabolic or 
a hyperbolic contraction. Then B = iso(h), h ∈ L0 (resp. L0

D).

Proof. Since B is a formal differential operator, put

B = Id + h1
d
dx + h2

d2

dx2 + · · · , hi ∈ L (resp. LD), i ∈ N. (5.15)

Given an integer p > 1, we compute B (xp) in two different ways and compare. First, 
by (5.15), we have:

B (xp) = xp +
p∑

n=1
hn(x)dn(xp)

dxn
= xp +

p∑
n=1

hn(x)n!
(
p

n

)
xp−n.

Since B is a morphism, we have:

B (xp) = (B · x)p = (x + h1(x))p = xp +
p∑

n=1

(
p

n

)
hn

1 (x)xp−n.

Identifying these two expressions for every integer p > 1, we see that

hn = hn
1
n! , n ∈ N ∪ {0}. (5.16)

Let h = B · id = id + h1, h ∈ L (resp. LD). Let H = iso(h), as defined in Remark 5.7. It 
follows from Proposition 5.16 that:

H = Id +
∞∑

n=1

hn
1
n!

dn

dxn
.

By (5.15) and (5.16), B = H. Note that B is additionally well-defined by differential 
series (5.15) if f is parabolic. �
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Proposition 5.18. Let X = ξ d
dx , ξ ∈ L (resp. LD) with (1, 0) � ord(ξ). The operators 

Ht = exp(tX) from Propositions 5.11 and 5.12 are weakly well-defined formal differential 
operators. If moreover ord(ξ) = (1, 0), they are well-defined formal differential operators.

Proof. Let f ∈ L. Then by (5.8) we have:

Ht · f = exp(tX) · f = f + tξf ′ + t2

2! (ξf
′)′ξ + t3

3!
(
(ξf ′)′ξ

)′
ξ + · · · =

= f + tξf ′ + t2

2! (ξξ
′f ′ + ξ2f ′′)

+ t3

3!
(
ξ(ξ′)2f ′ + ξ2ξ′′f ′ + ξ2ξ′f ′′ + 2ξ2ξ′f ′′ + ξ3f ′′′)+ · · · . (5.17)

We prove in both cases ((1, 0) ≺ ord(ξ) and ord(ξ) = (1, 0)) that we can change the order 
of the summation in the respective topologies so that we group the terms multiplying f , 
f ′, f ′′, etc:

Ht · f = f +
(
tξ + t2

2! ξξ
′ + t3

3! ξ(ξ
′)2 + t3

3! ξ
2ξ′′ + · · ·

)
f ′ +

( t2
2! ξ

2 + t3

3! 3ξ
2ξ′ + · · ·

)
f ′′

+
( t3
3! ξ

3 + · · ·
)
f ′′′ + · · ·

= f + h1 f
′ + h2f

′′ + h.o.t. (5.18)

Obviously, by (5.17), h1 = Ht.id ∈ L, h2 = 1
2 (Ht.x2 − x2) −xh1 ∈ L, etc. Thus, hn ∈ L, 

n ∈ N.
(i) (1, 0) ≺ ord(ξ). The orders of the summands in (5.18) increase by the fixed value 

ord(ξ) −(1, 0) � (0, 0), so (5.18) converges in the formal topology in L to an element of L. 
Moreover, it converges to the same limit as (5.17), since the difference of partial sums 
of (5.17) and (5.18) converges to zero in the formal topology. Indeed, by Proposition 5.11
(5.17) the order of summands increases by the fixed value ord(ξ) − (1, 0) � (0, 0) also 
in (5.17).

(ii) ord(ξ) = (1, 0). Let us represent Ht.f by the following grid:

f

∗ f ′

∗ f ′ ∗f ′′

∗ f ′ ∗f ′′ ∗f ′′′

∗ f ′ ∗f ′′ ∗f ′′′ ∗f (4)

... . . .

(5.19)

Here, ∗ denotes the coefficients (transseries in ξ) of the respective powers of f in (5.17). 
The first row represents the first bracket in (5.17), the second row the second bracket 
in (5.17) etc.
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Let us fix a monomial from the support S(Ht.f). The order of terms remains the same 
by rows and by columns, in contrast with the parabolic case. Therefore, a fixed monomial 
may appear in every term of every row and of every column of (5.19). Nevertheless, we 
have proven in Proposition 5.12 that (5.17) converges in the weak topology, meaning 
exactly that the coefficients of the given monomial converge when summation is done 
by rows. We prove that we can change the order of the summation of coefficients of the 
chosen monomial from summation by rows as in (5.17) to summation by columns as 
in (5.18). It would give us the convergence of (5.18) in the weak topology in L (to the 
same limit as (5.17)).

By the proof of Proposition 5.12, the coefficient of a fixed monomial of the support 
S(Ht.f) converges absolutely in (5.17). Moreover, we see that each row of (5.19) contains 
only finitely many elements of L. Consequently, a fixed monomial can appear only finitely 
many times in each row. By the Moore–Osgood theorem stated on p. 939 (or see [16, 
Theorem 8.3]), we are allowed to change the order of the summation in our double sum 
and to sum coefficients by columns.

The finitely generated case follows easily. �
Corollary 5.19. Let X = ξ d

dx , ξ ∈ L (resp. LD), be such that (1, 0) ≺ ord(ξ) or ξ(x) =
λx + h.o.t. with λ < 0. Then, for any t �= 0, the following two statements are equivalent:

1. exp(tX) · id = f ,
2. exp(tX) · h = h ◦ f , h ∈ L (resp. LD).

Proof. By Proposition 5.18, the operator exp(tX) is a (weakly) well-defined formal 
differential operator. (2) ⇒ (1) is obvious. We prove (1) ⇒ (2). Suppose (1) holds. 
By Lemma 5.17, exp(tX) is the isomorphism associated with exp(tX) · id = f , which 
proves (2). �
5.3. Theorem B in the parabolic case

This section is dedicated to the precise statement and the proof of Theorem B for 
parabolic elements of L.

Theorem (Precise form of Theorem B for parabolic elements). Let f ∈ LH ( resp. 
f ∈ LH

D) be parabolic. Then there exists a unique formal vector field

X = ξ
d
dx, ξ ∈ L (resp. ξ ∈ LD),

such that f embeds in its C1-flow. Moreover,

f = exp(X) · id.

Here, (1, 0) ≺ ord(ξ), and exp(X) is well-defined in L(L) (resp. L(LD)).
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Let f ∈ L (resp. LD) be a parabolic element as in the statement of Theorem B. Let 
F = iso(f):

F.h = h ◦ f, h ∈ L (resp. LD).

We prove that the vector field X is given by X = logF . Note that by Lemma 5.8 and 
Proposition 5.9, the operator X = logF is a well-defined operator on L (resp. LD) and 
a derivation. The proof is now given in three steps:

(1) We prove in Lemma 5.21 that X = logF is a formal differential operator 
∑

k hk
dk

dxk , 
hk ∈ L (resp. LD).

(2) Since X is a derivation and at the same time a formal differential operator of the 
above form, we prove that X is necessarily a vector field. Moreover, we prove that 
f is the time-one map of X.

(3) We prove the uniqueness of the formal vector field whose time-one map is f .

Lemma 5.20. Let f ∈ L0 (resp. L0
D) be parabolic and let F = iso(f) ∈ L(L) (resp. 

L(LD)). Let H = F − Id. Then all the iterates Hk can be written as well-defined formal 
differential operators on L (resp. LD):

Hk =
∞∑
	=1

hk
	

d	

dx	
, hk

	 ∈ L (resp. LD), k ∈ N. (5.20)

Proof. Let f = id + h, h ∈ L with (1, 0) ≺ ord(h). The lemma is proven by induction. 
The induction basis (k = 1) follows easily by Taylor expansion:

H · g = g ◦ f − g =
∞∑
	=1

h	

�!
d	g

dx	
, g ∈ L.

Thus, H =
∑∞

	=1 h
0
	

d�

dx� , with the coefficients h0
	 = h�

	! ∈ L, � ∈ N. Assume that the 
operators Hm, m ≤ k can be written in the form (5.20), with formal convergence on L. 
Note that the formal convergence of series Hm ·g from (5.20) is equivalent to asking that 
the orders of summands ord(hm

	 g(	)) infinitely increase as � → ∞. We prove (5.20) for 
the operator Hk+1. By Taylor expansion, we have:

Hk+1 · g (x) = H(Hk · g) (x) = Hk · g (x + h(x)) −Hk · g (x)

=
∞∑
i=1

h(x)i

i!
di(Hk.g)

dxi

=
∞∑
i=1

hi

i!
di

dxi

( ∞∑
	=1

hk
	

d	g

dx	

)
=

∞∑
i=1

( ∞∑
	=1

hk
i	

d	g

dx	

)
, (5.21)
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with hk
i	 ∈ L, i, � ∈ N. We represent the double sum by the following grid:

Hk+1 · g :

	→
i ↓ h11

dg
dx h12

d2g
dx2 h13

d3g
dx3 . . .

h21
dg
dx h22

d2g
dx2 h23

d3g
dx3 . . .

h31
dg
dx h32

d2g
dx2 h33

d3g
dx3 . . .

...
...

...

(5.22)

The order of the summation in (5.21) is by rows. Since f is parabolic, the Taylor expan-
sion in (5.21) converges in the formal topology. Moreover, we assumed formal convergence 
of the differential expansion of Hk.g. Therefore, the order of the terms increases indefi-
nitely along the rows and along the columns of (5.22). The monomials up to some fixed 
order exist only in finitely many first rows and columns. Consequently, we are allowed to 
change the order of the summation from summation by rows to summation by columns, 
and the following sum converges in L in the formal topology:

∞∑
	=1

( ∞∑
i=1

hk
i	

d	g

dx	

)
=

∞∑
	=1

hk+1
	

d	g

dx	
. (5.23)

Here, hk+1
	 :=

∑∞
i=1 h

k
i	. By increasing orders, we immediately obtain hk+1

	 ∈ L. The 
difference of partial sums of (5.21) and (5.23) converges to zero in the formal topology, 
so the limit of both series is the same, that is, Hk+1 · g. Thus we have:

Hk+1 =
∞∑
	=1

hk+1
	

d	

dx	
, hk+1

	 ∈ L,

with the formal convergence.
Note additionally that from (5.20) we have that hk

1 = Hk · id, hk
2 = 1

2H
k · x2 − xhk

1 , 
etc. by induction, k ∈ N. The finitely generated case follows directly. �
Lemma 5.21. Let f ∈ L0 (resp. L0

D) be parabolic. Let F = iso(f) ∈ L(L) (resp. L(LD)) 
and H = F − Id. Let X = logF = log(Id +H). Then X can be written as a well-defined 
formal differential operator on L (resp. LD):

X =
∞∑
	=1

h	
d	

dx	
, h	 ∈ L (resp. LD). (5.24)

Proof of Step (1). By Lemma 5.20, all operators Hk, k ∈ N, can be written as differential 
operators, with convergence in the formal topology in L. By Lemma 5.8, the operator 
X · g given by the logarithmic series

X · g = log(Id+H) · g = H · g − 1
2H

2 · g + 1
3H

3 · g + · · · (5.25)
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also converges in the formal topology. We put the convergent expansions (5.20) for 
Hk · g in (5.25). Due to the formal convergence of all series, proceeding exactly as in 
Lemma 5.20, we are allowed to change the order of the summation from rows to columns, 
that is, to group together the terms in front of the same derivative of g. The new sum 
again converges formally to the same limit:

X · g = H · g − 1
2H

2 · g + 1
3H

3 · g + · · · =

=
(
h1

1g
′ + h1

2g
′′ + h1

3g
′′′ + · · ·

)
+
(
h2

1g
′ + h2

2g
′′ + h2

3g
′′′ + · · ·

)
+
(
h3

1g
′ + h3

2g
′′ + h3

3g
′′′ + · · ·

)
+ · · · =

=
(
h1

1 + h2
1 + h3

1 + · · ·
)
· g′ +

(
h1

2 + h2
2 + h3

2 + · · ·
)
· g′′

+
(
h1

3 + h2
3 + h3

3 + · · ·
)
· g′′′ + · · · =

∞∑
	=1

h	g
(	).

Here, h	 :=
∑∞

k=1 h
k
	 ∈ L, since the orders of the terms increase indefinitely. �

Proof of Step (2). We now finish the proof of Theorem B. By Lemma 5.21, we have that 
X is a formal differential operator:

X =
∞∑
	=1

h	
d	

dx	
, h	 ∈ L (resp. LD). (5.26)

We now prove that, due to the Leibniz’s property of X (X is a derivation by Proposi-
tion 5.9), all the h	 except h1 vanish. We apply (5.26) successively to test monomials xn, 
n ∈ N, and use the Leibniz’s rule. We deduce from (5.26) applied to g = id that:

h1 = X · id.

We then apply (5.26) to g(x) = x2. It follows from Leibniz’s rule that:

X · x2 = 2xh1(x) = h1(x) · 2x + 2h2(x).

It follows that h2 ≡ 0, and, by induction, that hi ≡ 0, i ≥ 2. Putting ξ := h1, (5.26) be-
comes:

X = ξ
d
dx, ξ ∈ L,

which is the desired vector field. By Lemma 5.8, we have:

exp(X) · id = exp(logF ) · id = F · id = f,

so f is the time-one map of X in the sense of Definition 1.2. The finitely generated case 
follows easily. �
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Proof of Step (3). Let X = ξ d
dx , ξ ∈ L, be any vector field in whose C1-flow f embeds. 

Since f is parabolic, it follows from Proposition 5.13 that (1, 0) ≺ ord(ξ). By Proposi-
tion 5.11, exp(tX) · id defines a C1-flow of X. Since by Proposition 5.13 the C1-flow of X
is unique, it follows that

f = exp(X) · id.

By Corollary 5.19, it now necessarily follows that

exp(X) · h = h ◦ f = F · h, h ∈ L,

so exp(X) = F . By Lemma 5.15, X is uniquely given by X = logF . �
5.4. Theorem B in the hyperbolic case

Theorem (Precise form of Theorem B for hyperbolic elements). Let f ∈ LH ( resp. 
f ∈ LH

D) be hyperbolic. Then there exists a unique formal vector field on R,

X = ξ
d
dx, ξ ∈ L (resp. ξ ∈ LD),

such that f embeds in the flow of X as its time-one map in the sense of Definition 1.2. 
Moreover,

f = exp(X) · id.

Here, ord(ξ) = (1, 0) and exp(X) is a weakly well-defined operator in L (resp. LD).

Let f(x) = λx + h.o.t. ∈ LH , λ > 0, λ �= 1. In the proof of the theorem we suppose 
without loss of generality that f is a formal contraction, that is 0 < λ < 1. If λ > 1
(a formal expansion), we consider its formal inverse f−1 ∈ LH , which is a formal con-
traction. Obviously, f−1 embeds in the flow of X (in the sense of Theorem B) if and 
only if f embeds in the flow of −X.

In the previous section, the standard notion of a small operator was used to prove the 
convergence of operator power series in L(L), see Proposition 5.5. The convergence of 
the series was in formal topology on L. In the parabolic case, this notion was sufficient 
to obtain the embedding result of Theorem B. Here, we introduce the definition of small 
operator in the weak sense with the aim of giving a meaning to operator power series 
in L(L) under weaker assumptions, needed for case. The convergence of operator power 
series will be in the weak topology on L.

Definition 5.22 (Small operator in the weak sense with respect to a sequence). An operator 
B : L → L is small in the weak sense with respect to the sequence (ck)k∈N0 of real numbers
if:
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1. there exists a well-ordered set R ⊆ R≥0 × Z of exponents equal to or strictly bigger 
than (0, 0) such that S (B · f) ⊆ S (f) + R, for every f ∈ L;

2. For every f ∈ L and for every (α, m) ∈ S(f) +〈R〉, there exists a sequence (Ck
α,m)k∈N0

of strictly positive numbers such that:∣∣[Bk · f ]α,m
∣∣ ≤ Ck

α,m, (5.27)

and such that the series
∞∑
k=0

ckC
k
α,m (5.28)

converges absolutely. Here, [Bk · f ]α,m denotes the coefficient of monomial xα�m in 
Bk · f (the notation introduced in Section 4.2).

An operator B : LD → LD is small in the weak sense with respect to the sequence (ck)k
if the set R is in addition of finite type.

Notice that from (1) we obtain by induction that S(Bk · f) ⊆ S(f) + 〈R〉, k ∈ N, so 
(2) makes sense.

Proposition 5.23 (A version of Proposition 5.4 in the weak sense). Let (ck)k∈N0 be a 
sequence of real numbers and let B ∈ L(L) (resp. L(LD)) be a small operator in the 
weak sense with respect to the sequence (ck). Then an operator B ∈ L(L) (L(LD)) is
weakly well-defined by the series

B :=
∞∑
k=0

ckB
k. (5.29)

Proof. The proof is straightforward by (5.27) and the absolute convergence of the series ∑∞
k=0 ckC

k
α,m. �

We state and prove in this section the analogous of Lemmas 5.8, 5.15, 5.20 and 5.21. 
We prove Proposition 5.12. All of them are needed for the proof of Theorem B in the 
hyperbolic case. Then the proof in the hyperbolic case follows the same steps as the 
proof in the parabolic case, but using the corresponding weak notions.

Lemma 5.24 (Lemma 5.8 for hyperbolic elements). Let f = λx + h.o.t. ∈ LH (resp. 
f ∈ LH

D) be a hyperbolic contraction (0 < λ < 1). Let F = iso(f) ∈ L(L) (resp. L(LD)), 
as in Remark 5.7. Then logF is a weakly well-defined operator in L(L) (resp. L(LD)).

Proof. Put F = Id + H, H : L → L. Then

logF = log(Id + H) =
∞∑

(−1)k+1H
k

k
. (5.30)
k=1
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We prove that operator H ∈ L(L) is small in the weak sense (see Definition 5.22) with 

respect to the sequence 
( (−1)k+1

k

)
k
. Applying Proposition 5.23, we conclude that the 

series logF is a weakly well-defined operator logF : L → L.
Take g ∈ L. Then H ·g = g ◦f −g = g

(
λx +ψ(x)

)
−g. For xα�m ∈ S(g), we compute:

(λx + ψ(x))α�(λx + ψ(x))m − xα�m =

= λαxα�m
(
1 + λ−1x−1ψ(x)

)α(
1 − log λ�− � log

(
1 + λ−1x−1ψ(x)

))−m

− xα�m.

(5.31)

Here, ψ(x) = f(x) − λx, with (1, 0) ≺ ord(ψ). We conclude that, for every g ∈ L,

S(H · g) ⊆ S(g) + R,

where R is a sub-semigroup of R≥0×Z generated by (0, 1) and (β−1, �) for (β, �) ∈ S(ψ)
and containing (0, 0). Obviously, since (1, 0) ≺ ord(ψ), all the elements of R except (0, 0)
are of order strictly bigger than (0, 0). By Neumann’s lemma, R is well-ordered.

Now take any (α, m) ∈ R+S(g). If (α, m) /∈ S(Hk.g), for any k ∈ N, then (5.27) holds 
for every Cα,m > 0. Suppose that there exists some � ∈ N such that (α, m) ∈ S(H	.g). 
It can be seen from (5.31), since λ �= 1, that (α, m) then appears in every Hk · g, k ≥ �

(unlike the parabolic case). We prove nevertheless that the coefficient of xα�m evolves 
controllably with k in the sense of (5.27) and (5.28).

To this end, we analyze in what ways we can obtain the monomial xα�m in iterates 
Hk · g, k ∈ N. The monomial xα�m evolves from some initial monomial xβ�n ∈ S(g)
through iterates H · g, H2 · g, etc. The evolution of coefficients and exponents from one 
iterate Hk · g to the next one Hk+1 · g is described by (5.31). Hence, the rule which 
governs this evolution is the following: in each step, the corresponding monomial xγ�n

either stays the same while its coefficient is multiplied by λγ − 1, or it is multiplied by a 
monomial from R \ {(0, 0)}. We can thus write a finite chain of changes corresponding 
to this evolution:

xβ�n → xβ+γ1�n+n1 → xβ+γ1+γ2�n+n1+n2 → · · · → xβ+γ1+···+γr�n+n1+···+nr = xα�m,

(5.32)

where (β, n) ∈ S(g), (γi, ni) ∈ R \ {(0, 0)}, i = 1, . . . , r, r ∈ N0. By Neumann’s lemma, 
for every (α, m) ∈ R+S(g), there exist only finitely many chains describing the evolution 
of monomial xα�m from elements of S · g. Given a chain as in (5.32), the integer r ∈ N0
as well as the pairs (β, n) and (γi, ni), i = 1, . . . , r, do not depend on k. We fix one 
such chain (5.32) and prove (5.27) and (5.28) only for this chain (in the end we sum 
up the coefficients of finitely many chains contributing to xα�m and conclude for the 
whole xα�m). For the coefficient of xα�m obtained by this chain in Hk · g, we obtain, 
using (5.31):
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∣∣[Hk · g]α,m
∣∣ =

(
k

r

)
· a(λβ − 1)k1 · C1 · (λβ+γ1 − 1)k2 · C2 · · · (λβ+γ1+···+γr−1 − 1)kr

· Cr · (λα − 1)kr+1 , k ≥ k0.

Here, k0 is the index of the first iterate Hk0 · g in which xα�m obtained by chain (5.32)
appears, and a ∈ R is the coefficient of the initial monomial, axβ�n. We choose r iterates 
(out of k in total) in which the monomial changes: Hk1 · g, Hk1+k2 · g, . . . , Hk1+···+kr · g. 
Note also that k1 + · · · + kr + kr+1 = k − r. Note also that the change of the coefficient 
in r steps in which the monomial changes depends only on the fixed chain and not on k. 
That is why, in the above formula, we multiply by numbers C1, . . . , Cr which depend on 
f and on the given chain, but not on k. The remaining (k − r) steps are characterized 
by multiplications by respective λγ − 1, k − r times in total. Therefore,

∣∣[Hk · g]α,m
∣∣ ≤ (

k

r

)
· C1

f · |λα − 1|k−r ≤
(
k

r

)
Cf |λα − 1|k, k ≥ k0. (5.33)

Here, C1
f , Cf are constants that depend only on initial f , on g and on the fixed chain; 

they are independent of k.
For the given chain (5.32) contributing to the coefficient of xα�m, the inequality (5.27)

in Definition 5.22 is, by (5.33), satisfied with

Ck
α,m =

(
k

r

)
· Cf · |λα − 1|k, k ≥ k0.

Moreover, the series

∞∑
k=k0

(−1)k+1

k
Ck

α,m =
∞∑

k=k0

(−1)k+1

k

(
k

r

)
· Cf · |λα − 1|k

converges absolutely (which can easily be checked by, for example, the ratio test) since 
0 < λ < 1. The operator H ∈ L(L) is therefore small in the weak sense with respect to 

the sequence 
( (−1)k+1

k

)
k
. By Proposition 5.23, the series (logF ) · g, g ∈ L, converges in 

L in the weak topology to an element of L. The operator logF ∈ L(L) is thus weakly 
well-defined.

Finally, the claim in finitely generated case (LD) follows easily, since R is then finitely 
generated. �

We prove here the Proposition 5.12 stated in Subsection 5.2. The problem consists in 
giving a meaning to the formal time-one map of a vector field X = ξ d

dx in the case where 
ξ = λx + h.o.t. is hyperbolic. The question is: does X admit a formal one-parameter 
flow? Hence we need to study the convergence in L of the exponential of X = ξ d

dx . 
The problem, compared to the case (1, 0) ≺ ord(ξ) proven in Subsection 5.2, is that 
the operator X = ξ d is not small any more if ord(ξ) = (1, 0). Hence, its exponential 
dx
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Ht = exp (tX), t ∈ R, is not a well-defined operator in L(L). Moreover, given f ∈ L, the 
formula:

Ht · f = exp(tX) · f = f + tf ′ξ + t2

2! (f ′ξ)′ ξ + t3

3!

(
(f ′ξ)′ ξ

)′
ξ + · · · (5.34)

does not converge in L even with respect to the weaker product topology with respect 
to the discrete topology. Indeed, a fixed monomial is present in infinitely many terms of 
the sum (5.34). Nevertheless, we show here that operator X is small in the weak sense 
with respect to the sequence 

(
tn

n!
)
n
, see Definition 5.22. Applying Proposition 5.23, we 

conclude that Ht = exp (tX) is a weakly well-defined operator in L(L). In other words, 
the series (5.34) converges in L in the weak topology.

Proof of Proposition 5.12. Let X = ξ d
dx , with

ξ = λ · id + ψ, λ �= 0.

Here, ψ ∈ L such that (1, 0) ≺ ord(ψ). Recall that

Ht · f =
∞∑

n=0

tn

n!X
n · f.

Since X·f = ξf ′, f ∈ L, we conclude that S(X·f) ⊆ S(f) +R, where R is a sub-semigroup 
of R≥0 × Z generated by (0, 1), (β − 1, k) for (β, k) ∈ S(ψ), and containing (0, 0). Note 
that (0, 0) ≺ ord(β − 1, k), since (1, 0) ≺ ord(ψ). Each Xn · f is by (5.34) a sum of 2n
terms of the type

(
((f ′ · ∗)′ · ∗)′ . . .

)′ · ∗, (5.35)

with n stars representing either λx or ψ.
Fix any (α, m) ∈ ∪n∈N0S(Xn · f) ⊆ S(f) + R. Then (α, m) ∈ S(Xn0 · f), for some 

n0 ∈ N. Since f is hyperbolic, we see by (5.35) that (α, m) ∈ S(Xn ·f), for infinitely many 
n ≥ n0 in general (the coefficient of xα�m may sometimes vanish due to cancellations). 
In order to prove (5.27) and (5.28), we analyze the coefficient of xα�m in Xn · f , n ∈ N, 
n ≥ n0.

Let n ≥ n0. The fixed monomial xα�m in Xn · f is obtained in the course of iterates 
X	 · f , 0 ≤ � ≤ n, from some initial monomials axβ�p ∈ S(f), a ∈ R, which evolve in 
n steps of iteration to xα�m. By (5.35), we see that in each step � we differentiate the 
respective monomial and then multiply by either a monomial from ψ or by λx. After say 
k multiplications by monomials from ψ and the remaining n − k multiplications by λx, 
each following one differentiation, the initial monomial xβ�p ∈ S(f) transforms to:

xβ+(α1−1)+···+(αk−1)�p+p1+···+pk+r,
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where xαi�pi ∈ S(ψ), i = 1, . . . , k, and r ∈ N0, 0 ≤ r ≤ n (r corresponding to the 
number of differentiations of the logarithm part). In order to obtain all chains of changes 
of monomials resulting in xα�m ∈ S(Xn · f), whose coefficients then add up to the 
coefficient of xα�m in Xn ·f , we search for all (β, p) ∈ S(f), k, r ∈ N0 and (αi, pi) ∈ S(ψ), 
i = 1, . . . , k, such that:

xβ+(α1−1)+···+(αk−1)�p+p1+···+pk+r = xα�m.

By Neumann’s lemma, there are only finitely many such choices.
For any such choice (of finitely many), put L := (k + 1) · maxi=1...k{|p|, |pi|} + r. Its 

contribution to the coefficient of xα�m in Xn · f is absolutely bounded by:

∣∣[Hn.f ]α,m
∣∣ ≤ a · αn−rLr

(
n

k

)
λn−k ≤ Cξ,f ·

(
n

k

)
(αλ)n, n ≥ N.

Here, N is the smallest iterate XN · f containing xα�m obtained in this chain, and 
Cξ,f > 0 is a coefficient depending on the coefficients of ξ and f and on the chosen 
chain, but independent of n. The term αn−rLr comes from differentiating n times the 
initial monomial xβ�p. The term 

(
n
k

)
λn−k comes from n − k multiplications by λx. For 

the given chain, we put Cn
α,m = Cξ,f ·

(
n
k

)
(αλ)n, n ≥ N . The series

∞∑
n=N

tn

n!C
n
α,m =

∞∑
n=N

tn

n!Cξ,f ·
(
n

k

)
(αλ)n

converges absolutely. Summing contributions to the coefficient of xα�m of all (finitely 
many) possible chains, we conclude the same for the absolute convergence of the whole 
coefficient of xα�m. By Proposition 5.23, the operator exp(tX) : L → L is weakly 
well-defined.

The final statements are proven in the same way as in the proof of Proposition 5.11
from Section 5.2. Finally, the finitely generated case follows easily, since the semigroup 
R is then finitely generated. �
Lemma 5.25 (Lemma 5.20 in the hyperbolic case). Let f ∈ L0 (resp. L0

D) be a hyperbolic 
contraction. Let F = iso(f) ∈ L(L) (resp. L(LD)) and let H = F − Id. Then all 
the iterates Hk can be written as weakly well-defined formal differential operators on L
(resp. LD):

Hk =
∞∑
	=1

hk
	

d	

dx	
, hk

	 ∈ L (resp. LD), k ∈ N; (5.36)

Proof. Let f = λ · id + ψ, ψ ∈ L, ord(ψ) � (1, 0) and 0 < λ < 1. Let h = f − id =
(λ −1) · id+ψ. Note that ord(h) = (1, 0). The proof is by induction. It is a more elaborate 
version of the proof of Lemma 5.21 in the parabolic case. The induction basis (k = 1) 
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follows easily by Taylor expansion, which we have proven to converge to H.g ∈ L in the 
weak topology:

H · g = g(x + h) − g(x) =
∞∑
	=1

h	

�!
d	g

dx	
, g ∈ L. (5.37)

Thus, H =
∑∞

	=1 h
0
	

d�

dx� , with the coefficients h0
	 := h�

	! ∈ L, � ∈ N. Note that, unlike 
the parabolic case, all summands of the series are of the same order ord(g). For every 
monomial of Taylor expansion (5.37), the series of its coefficients converges absolutely. 
Assume now that operators Hm, m ≤ k, can be written in the form (5.36) of a differential 
operator, where the series converges in the weak topology on L. That is, if a monomial 
appears in infinitely many summands, the series of its coefficients is convergent. Suppose 
additionally that the series of coefficients of every monomial in the expansion (5.36)
converges absolutely.

The induction step: we prove that the operator Hk+1 can be written in the differential 
form (5.37). Moreover, we prove the absolute convergence of series of coefficients of every 
monomial of the support of Hk+1 · g in this formula. By Taylor expansion, we obtain:

Hk+1 · g (x) = H(Hk · g) (x) = Hk · g (x + h(x)) −Hk · g (x)

=
∞∑
i=1

h(x)i

i!
di(Hk · g)

dxi

=
∞∑
i=1

hi

i!
di

dxi

( ∞∑
	=1

hk
	

d	g

dx	

)
=

∞∑
i=1

( ∞∑
	=1

hk
i	

d	g

dx	

)
, (5.38)

with hk
i	 ∈ L, i, � ∈ N. The elements of the double sum (5.21) can be represented by the 

grid:

Hk · g hk
1g

′ hk
2g

′′ hk
3g

′′′ . . .

h d
dx (Hk · g) h d

dx (hk
1g

′) h d
dx (hk

2g
′′) . . .

h2

2!
d2

dx2 (Hk · g) h2

2!
d2

dx2 (hk
1g

′) h2

2!
d2

dx2 (hk
2g

′′) . . .

h3

3!
d3

dx2 (Hk · g)
...

...
...

...

(5.39)

Unlike the parabolic case, the order of the terms stays the same along the rows and along 
the columns, so that one monomial from the support may appear in every term of every 
row and of every column. The order of the summation in (5.38) is by rows. The double 
sum (5.38) converges in this order of the summation in the weak topology on L (by 
assumption and by convergence of Taylor expansions). In the sequel, we prove that the 
coefficient of a fixed monomial of the support of Hk+1.g converges (to the same limit) 
if we change the order of summation from the summation by rows to the summation by 
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columns. Since each derivative of g appears only in finitely many first columns, we have 
thus proven that the following sum converges in L (in the weak topology), to the same 
limit Hk+1 · g:

Hk+1 · g =
∞∑
	=1

( ∞∑
i=1

hk
i	

d	g

dx	

)
=

∞∑
	=1

hk+1
	

d	g

dx	
. (5.40)

We also have that hk+1
	 :=

∑∞
i=1 h

k
i	 ∈ L.

We use the following version of the Moore–Osgood theorem (see for example [16, 
Theorem 8.3]): given a real double sequence am,n, if the sum∑

m∈N

∑
n∈N

|am,n|

converges, then the following iterated sums exist and commute:∑
m∈N

∑
n∈N

am,n =
∑
n∈N

∑
m∈N

am,n.

Therefore, in order to prove the step of the induction, we need to prove that the double 
sum of absolute values of coefficients of every monomial of (5.38) converges in this order 
of the summation.

By the induction assumption, the convergence of series of coefficients of every mono-
mial along the first row in (5.39) is absolute. Fix a monomial xα�m from the support 
of (5.38). We prove here that the convergence of its respective coefficient along every 
other row is absolute, and that these limits converge by columns. By the Moore–Osgood 
theorem stated above, this will prove the step of the induction.

Note that S(hk
j g

(j)), S
(
h�

	!
d�

dx� (hk
j g

(j))
)
⊆ S(g) + R, for every j, � ∈ N. Here, R is a 

sub-semigroup generated by (0, 1), (β− 1, p) for (β, p) ∈ S(ψ), and containing (0, 0). We 
denote, for a monomial xα�m ∈ S(g) + R,

c0j (α,m) := [hk
j g

(j)]α,m, c	j(α,m) :=
[h	

�!
d	

dx	
(hk

j g
(j))

]
α,m

, j, � ∈ N.

We prove that ∑
	∈N

∑
j∈N

|c	j(α,m)| < ∞, (α,m) ∈ S(g) + R.

In order to bound |c	j(α, m)|, note that the monomial xα�m ∈ S
(
h�

	!
d�

dx� (hk
j g

(j))
)
, � ∈ N, 

is obtained from some initial monomial b0jxβ�n ∈ S(hk
j g

(j)), b0j = [hk
j g

(j)]β,n, undergoing 
� differentiations and the multiplication by

h	

= 1 ((λ− 1)x + ψ(x)
)	 = (λ− 1)	

x	
(
1 + x−1 ψ(x) )	

.

�! �! �! λ− 1



940 P. Mardešić et al. / Advances in Mathematics 303 (2016) 888–953
We obtain:

b0j · β(β − 1) · · · (β − (�− r) + 1) · n(n + 1) · · · (n + r − 1)xβ−	�n+r·

· (λ− 1)	

�! x	

(
�

s

)
(λ− 1)−sb1x

β1−1�p1 · · · bsxβs−1�ps = � xα�m. (5.41)

Here, 0 ≤ r ≤ � is the number of derivatives applied on the logarithmic components, 
s ∈ N0, 0 ≤ s ≤ �, bixβi�pi ∈ S(ψ), i = 1 . . . s. By Neumann’s lemma, there are only 
finitely many choices for r, s ∈ N0, (β, n) ∈ S(g) + R, (βi, pi) ∈ S(ψ), i = 1, . . . , s. 
The choices are independent of �, k, j. We analyze here only one of the combinations 
(afterwards, we sum up finitely many bounds to obtain a bound on the whole coefficient 
c	j(α, m)):

|c	j(α,m)| ≤ C · |c0j (β, n)| ·
∣∣∣( β

�− r

)∣∣∣ · (�
s

)
· (1 − λ)	−s

�! ,

where C ≥ 0 depends only on the given combination (independent of j, � or k). Therefore,

∑
	≥r,s

∑
j∈N

|c	j(α,m)| ≤ C ·
∑
	≥r,s

∣∣∣( β

�− r

)∣∣∣(�
s

)
· (1 − λ)	−s

�!
∑
j∈N

|c0j (β, n)|.

By the induction assumption, C(β, n) :=
∑

j∈N
|c0j (β, n)| < ∞. We have now:

∑
	≥r,s

∑
j∈N

|c	j(α,m)| ≤ C · C(β, n)
∑
	≥r,s

∣∣∣( β

�− r

)∣∣∣(�
s

)
(1 − λ)	−s

�!

≤ C · C(β, n)
∑
	≥r,s

∣∣∣( β

�− r

)∣∣∣(1 − λ)	−s < ∞. (5.42)

The last sum converges by the ratio test, since 0 < 1 − λ < 1. We have thus proven 
that the summation in (5.39) may be done by columns instead of by rows, while the sum 
Hk+1.g remains the same. The formula (5.36) for Hk+1.g, g ∈ L, thus converges in the 
weak topology. Moreover, in this formula, the series of absolute values of coefficients of 
every fixed monomial xα�m converges to (5.42) (more accurately, to a finite sum of sums 
of the type (5.42), each for every possible combination).

Note additionally that from (5.36) we have that hk
1 = Hk · id, hk

2 = 1
2H

k · x2 − xhk
1 , 

etc., for every k ∈ N. The finitely generated case follows directly. �
Lemma 5.26 (Lemma 5.21 in the hyperbolic case). Let f ∈ L0 (resp. L0

D) be a hyperbolic 
contraction. Let F = iso(f) ∈ L(L) (resp. L(LD)) and H = F − Id. Let X = logF =
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log(Id+H). Then X can be written as a weakly well-defined formal differential operator 
on L (resp. LD):

X =
∞∑
	=1

h	
d	

dx	
, h	 ∈ L (resp. LD). (5.43)

Proof. By Lemma 5.24, the operator X.g is given by the logarithmic series which con-
verges in the weak topology:

X · g = log(Id+H) · g = H · g − 1
2H

2 · g + 1
3H

3 · g + · · ·

=
(
h1

1g
′ + h1

2g
′′ + h1

3g
′′′ + · · ·

)
− 1

2
(
h2

1g
′ + h2

2g
′′ + h2

3g
′′′ + · · ·

)
+ 1

3
(
h3

1g
′ + h3

2g
′′ + h3

3g
′′′ + · · ·

)
+ · · · . (5.44)

By Lemma 5.25, all operators Hk, k ∈ N, can be written as differential operators (5.36), 
with convergence in the weak topology in L. Thus the double sum (5.44) converges to 
X.g in this order of the summation, in the same topology.

Let us consider a fixed monomial from the support of (5.44), xα�m ∈ S(g) + R, see 
Lemma 5.25. The monomial may appear in every term of the double sum (5.44). By 
the proof of Lemma 5.25, in each bracket of (5.44), the series of coefficients of xα�m

converges absolutely. We denote the absolute limit in the k-th bracket by Ak > 0. By the 
Moore–Osgood theorem stated in the proof of Lemma 5.25, to prove that we are allowed 
to change the order of the summation in (5.44), that is, to group the terms in front of 
every derivative of g, we need to prove the convergence of the sum:

∑
k∈N

Ak

k
. (5.45)

The following argument is similar as in the proof of Proposition 5.8. In the proof of 
Lemma 5.25, we have described the iterative step in which the (k + 1)-st bracket is 
deduced from the k-th bracket of (5.44) (that is, the differential form for Hk+1.g from the 
differential form for Hk.g). All monomials from (5.44) belong to S(g) +R. By Neumann’s 
lemma, there are only finitely many ways in which a fixed monomial xα�m belonging to 
some bracket of (5.44) is obtained from previous brackets and, initially, from monomials 
of S(g), independently of the bracket. We adopt the notion of chains to describe the 
evolution of monomials, similarly as in the proof of Lemma 5.8. We fix one (of finitely 
many chains): an initial monomial xβ0�n0 ∈ S(g) evolves in k steps to xα�m, through 
(necessarily distinct) monomials xβi�pi , i = 1, . . . , r, r ∈ N0, as described in (5.41):

xβ0�n0 → xβ1�p1 → xβ2�p2 → · · · → xβr�pr = xα�m. (5.46)
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To estimate Ak, k ≥ r, for this fixed combination, we use the estimate (5.42) from the 
proof of Lemma 5.25, where the sum of absolute values of coefficients of a monomial 
in the (� + 1)-st bracket is estimated by the sum of absolute values of coefficients of 
its corresponding (for the given chain) monomial in the �-th bracket, � ∈ N. Note that 
the estimate (5.42) is independent of �. For the above combination (5.46), in k − r of 
total k steps the monomial remains the same, and changes in the remaining r steps. Let 
C	(βi, pi) denote the sum of absolute values of coefficients of the monomial xβi�pi in the 
�-th bracket, � ∈ N. By (5.42), in the steps where the respective monomial stays the 
same (then, r = s = 0, C = 1), we have the estimate:

C	+1(βi, pi) ≤ C	(βi, pi) ·
∑
j≥0

∣∣∣(βi

j

)∣∣∣(1 − λ)j , � ∈ N.

Note that it is sufficient to prove that the terms of (5.44) starting from some fixed 
derivative can be regrouped as in the statement of the lemma (the terms with first 
finitely many derivatives form a finite sum of series, so the order of the summation can 
be changed trivially). Therefore, in the above sum, without loss of generality we can 
take j ≥ j0 instead of j ≥ 0, for any j0 ∈ N. To each chain, we associate a number 
0 < A < 1 and an integer j0 ∈ N0, such that the sum 

∑
j≥j0

∣∣∣(βi

j

)∣∣∣(1 − λ)j above is 
bounded by A, for every (βi, pi) of the given chain. This follows from the convergence of 
the series and the fact that there exist only finitely many βi-s in the given chain. Notice 
that the constant 0 < A < 1 depends only on the chain. Therefore, for the steps in which 
the monomial remains the same, we have:

C	+1(βi, pi) ≤ A · C	(βi, pi), � ∈ N, 0 < A < 1.

On the other hand, there are only finitely many (r) steps (for the given chain) in which 
the corresponding monomial xβi�pi changes to xβi+1�pi+1 , i = 0 . . . r − 1. By (5.42), we 
have a simple estimate:

C	+1(βi+1, pi+1) ≤ DC	(βi, pi), i = 0, . . . , r − 1, � ∈ N,

where D > 0 depends only on the chain. We obtain the estimate:

Ak ≤ a ·DrAk−r ≤ CAk.

Here, a ∈ R is the coefficient of xβ0�p0 in g, and C > 0 and 0 < A < 1 depend only 
on the chain. The series (5.45) thus converges. Since there are only finitely many chains 
contributing to the coefficient of xα�m in (5.44), the result follows. �
Proof of Theorem B in the hyperbolic case. Let f(x) = λx + h.o.t. ∈ L, 0 < λ < 1. Let 
F = iso(f) ∈ L(L), see Remark 5.7. By Lemma 5.24, the operator logF ∈ L(L) is weakly 
well-defined. Using Proposition 5.9 and Lemma 5.26, we prove (as in the parabolic case 
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in Section 5.3) that the operator X = logF is a vector field: X = ξ d
dx , ξ ∈ L with 

ord(ξ) = (1, 0). It follows from Lemma 5.8, that:

exp(X) · id = exp(logF ) · id = F · id = f,

so f is the time-one map of X.
We now prove the uniqueness of X. Let X = ξ d

dx be any vector field such that f

(a hyperbolic contraction) is its time-one map. Since f is hyperbolic, by Proposition 5.13
it follows that ord(ξ) = (1, 0). By Proposition 5.12, the family exp(tX) defines a C1-flow 
of X. By Proposition 5.13, the C1-flow of X is unique, so it follows that:

f = exp
(
ξ

d
dx

)
· id = ξ + 1

2!ξ
′ξ + 1

3!(ξ
′ξ)′ξ + · · · .

Using the above expansion, we additionally conclude that ξ(x) = λx +h.o.t. if and only if 
f(x) = eλ x +h.o.t. Since f is a hyperbolic contraction, it follows that ξ(x) = λx +h.o.t.
with λ < 0. By Corollary 5.19, we have:

exp(X) · h = h ◦ f = F · h, h ∈ L.

That is, expX = F . By Lemma 5.15, X = logF and uniqueness follows. �
Finally, we prove Lemma 5.8 and Lemma 5.15 from Sections 5.1 and 5.2 for the 

hyperbolic case.

Proof of Lemma 5.8 in the hyperbolic case. By Lemma 5.24, the operator logF ∈ L(L)
is weakly well-defined. As in the proof of Theorem B above, using Proposition 5.9 and 
Lemma 5.26, the operator logF is a vector field. Thus, logF = ξ d

dx , ξ ∈ L, with ord(ξ) =
(1, 0). By Proposition 5.12, exp(logF ) ∈ L(L) is weakly well-defined. Having proven that 
all operators are weakly well-defined, the equality follows by symbolic computation with 
formal exp–log series. �
Proof of Lemma 5.15 in the case ord(ξ) = (1, 0). By Proposition 5.12, exp(X) ∈ L(L)
is a weakly well-defined operator and an isomorphism associated with f = exp(X) · id. 
f ∈ L is hyperbolic since ord(ξ) = (1, 0). More precisely, we compute:

f(x) = exp(X) · id = x + ξ + 1
2!ξ

′ξ + 1
3!(ξ

′ξ)′ξ + · · ·

= x + (λx + h.o.t.) + 1
2!(λ

2x + h.o.t.) + 1
3!(λ

3x + h.o.t.) + · · ·

= eλx + h.o.t. (5.47)

Since λ < 0, we have 0 < eλ < 1, so f is a hyperbolic contraction. By Lemma 5.24, 
the operator logF is a weakly well-defined operator. The equality follows by symbolic 
computation with formal exp–log series. �
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We illustrate the convergence of coefficients (that is, the convergence in the weak 
topology in L of respective series) in the hyperbolic case on the simplest hyperbolic 
elements of L:

Example 5.27.

1. Let f(x) = λx, 0 < λ < 1. By Theorem B (hyperbolic case), the embedding vector 
field for f is given by X = ξ d

dx , where

ξ(x) = log(F ) · id = (λ− 1)x− 1
2(λ− 1)2x + 1

3(λ− 1)3x + · · · = log λ · x ∈ L.

2. Let X = ax d
dx , a ∈ R. By Proposition 5.12, the field X admits a flow {ft : t ∈

R} ⊂ L:

ft(x) = exp(tX) · id = x + tξ + t2

2! ξ
′ξ + · · · = x + tax + t2a2

2! x + t3a3

3! x + · · ·

= eta · x, t ∈ R.

The above series converge in L in the weak topology. Note that they do not converge in 
L neither in the formal topology nor in the product topology with respect to the discrete 
topology, since the monomial x appears in every term.

5.5. Theorem B in the strongly hyperbolic case

We first observe that a strongly hyperbolic element of LH does not embed in the 
C1-flow of a vector field. Indeed, let X = ξ d

dx . If (1, 0) � ord (ξ), it follows from Propo-
sitions 5.11 and 5.12 that all the elements of the C1-flow of X are either parabolic or 
hyperbolic. If ord (ξ) ≺ (1, 0), it follows from Proposition 5.13 that X does not admit any 
C1-flow. We have moreover the following negative version of Propositions 5.11 and 5.12:

Proposition 5.28. Let X = ξ d
dx , ξ ∈ L, such that ord (ξ) ≺ (1, 0). Then the exponential 

operator exp (tX), t ∈ R, is not weakly well-defined.

Proof. Consider the expansion

exp (tX) · id = id + tξ + t2

2! ξ
′ξ + t3

3! (ξ′ξ)′ ξ + · · · . (5.48)

We observe that the orders of the terms in this expansion are unboundedly increasing 
instead of decreasing. Hence this exponential series does not converge in L in any of the 
topologies considered in this work (see Subsection 4.2). �

However, the results of Section 4 lead to the following embedding statement, which is 
a weak version of Theorem B for strongly hyperbolic elements:
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Theorem (Weaker version of Theorem B, the strongly hyperbolic case). Let f ∈ LH

(resp. f ∈ LH
D) be strongly hyperbolic. Then f embeds in a flow (f t)t∈R

of elements 
of LH (resp. LH

D).

Proof. Write f (x) = λxα + h.o.t., λ �= 0, α �= 1. According to Theorem A (c), there 
exists a change of variables ϕ ∈ L0 such that f0 (x) = ϕ−1 ◦ f ◦ ϕ (x) = xα. Obviously, 
f0(x) = xα embeds in the f t

0 (x) = x
(
αt
)
, t ∈ R. Hence, f embeds in the flow:

f t (x) =
(
ϕ ◦ f t

0 ◦ ϕ−1) (x) , t ∈ R. (5.49)

The claim in the finitely generated case follows easily. �
We notice here an important difference between the parabolic or hyperbolic case 

and the strongly hyperbolic case. If f ∈ LH is parabolic or hyperbolic, there exists a 
well-ordered subset S ⊆ R>0 × Z which contains the supports of all the elements of 
the C1-flow in which f embeds. It is not the case anymore if f is strongly hyperbolic. 
Moreover, in this case, the monomials of the (f t)t, and not only their coefficients, depend 
on t ∈ R. The following example illustrates these facts, as well as other specific features 
of the strongly hyperbolic situation.

Example 5.29 (A counterexample to the exponential formula for the flow in the strongly 
hyperbolic case). Consider the flow f t

0 (x) = x
(
αt
)
, t ∈ R. The strongly hyperbolic element 

f1
0 (t) = xα embeds in this flow, and all the elements f t

0 are strongly hyperbolic. Since 
S (f t

0) = {(αt, 0)}, these supports are not contained in a common well-ordered subset of 
R>0 × Z. Hence the family (f t

0), t ∈ R, is not a C1-flow in the sense of Definition 1.2.
Let us now consider

ξ (x) := df t
0 (x)
dt

∣∣∣
t=0

= − logα · x�−1 ∈ L.

It would seem that (f t
0) is a flow of the vector field X = ξ d

dx . But we have just noticed 
that (f t

0) is not a C1-flow. Moreover, since ord (ξ) = (1,−1) ≺ (1, 0), we have seen in 
Proposition 5.13 that X does not admit any C1-flow.

It is nevertheless interesting to observe the result of the exponential formula (5.8) for 
the field X = ξ d

dx . We obtain:

exp
(
− logα · x�−1 · d

dx
)
· id = x− logα · x�−1+

+ log2 α

2! (x�−2 − x�−1)+

+ log3 α

3! (−x�−3x + 3x�−2 − x�−1)+

+ log4 α

4! (x�−4 − 6x�−3 + 7x�−2 − x�−1) + · · · .
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The order of terms obviously increases, and the above sum does not converge in L in 
any of the mentioned topologies. Formally, it is not even an element of L. However, if 
we regroup and sum the terms along the diagonals going from bottom to top, using the 
convergence of the exponential series, we obtain:

exp
(
− logα · x�−1 d

dx
)
· id =

= x− x�−1 · (elog α − 1) + x�−2 · 1
2! · (e

log α − 1)2 − x�−3 · 1
3! · (e

log α − 1)3 + · · · =

= x− x�−1 · (α− 1) + 1
2!x�

−2 · (α− 1)2 − 1
3!x�

−3 · (α− 1)3 + · · · = x · e(α−1) log x

= xα ∈ L.

Hence in some sense f0 embeds in the flow of X, but not as it is defined in the present 
work. We intend to give a precise meaning to the above computations in a subsequent 
work.

6. Examples

Example 6.1.

f(x) = x + x� + h.o.t.

By Theorem A, we obtain the formal normal form f0 and its embedding vector field X0:

f0(x) = x + x� + bx�3,

f̂0 = exp(X0).id, X0 = x

�−1 + 1/2 + (1/2 + b)�
d
dx.

Here, b ∈ R depends on the terms of f up to x�3.

In the next example we explain on a very simple example of a Dulac germ why we 
need a transfinite sequence of power-logarithmic changes of variables to derive the finite 
formal normal form from Theorem A. That is, we illustrate why a standard sequence of 
changes of variables is not sufficient for elimination.

Example 6.2 (Dulac germ). Take f(x) = x + x2�−1 + x2. This germ is of Dulac type – it 
has the expansion f(x) = x + x2P1(− log x), where P1(x) = x + 1. By Theorem A, the 
finite formal normal form of f in L is:

f0(x) = x + x2�−1 + bx3�−1, b ∈ R.

Let us illustrate on this example the process used in the proof of Theorem A. We first 
eliminate the term x2 from f . Computing the first finitely many (important) terms of 
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f ◦ ϕ − ϕ ◦ f , for a change of variables ϕ(x) = x + cxβ�	, (β, �) � (1, 0), c ∈ R, we 
obtain:

f ◦ ϕ− ϕ ◦ f = c(β − 2)xβ+1�	−1 + c(� + 1)xβ+1�	 − c2xβ+1�2	−1

+ c(2 − β)(−1)mxβ+1�	−m + h.o.t.

We conclude: by a change of variables ϕ(x) = x + cx�−m+1, m ≤ 0, for an appropriate 
c ∈ R, we eliminate the term x2�−m, but at the same time we generate the next one: 
x2�−m+1. Thus we need a transfinite sequence of changes of variables:

f(x) = x + x2�−1 + x2 ϕ1(x)=x+c1x�−→ f1(x) = x + x2�−1 + a1x
2� + h.o.t.

ϕ2(x)=x+c2x�
2

−→ f2(x) = x + x2�−1 + a2x
2�2 + h.o.t. −→ · · · .

Example 6.3 (Formal normal forms in L of formal power series). Let f ∈ R[[x]] be a 
parabolic formal diffeomorphism,

f(x) = x + xk+1 + o(xk+1), k ∈ N.

The standard formal normal form in R[[x]] is equal to:

fs(x) = x + xk+1 + bx2k+1, b ∈ R.

On the other hand, Theorem A gives a normal form f0 of f in the wider class L0 of 
changes of variables. Note that R[[x]] ⊂ L. We prove here that f0 is equal to

f0(x) = x + xk+1. (6.1)

Note that, allowing wider class of logarithmic changes of variables, we remove also the 
residual term x2k+1 from fs.

Let us now prove (6.1). By Theorem A, we have:

f0(x) = x + xk+1 + bx2k+1�, b ∈ R.

By the algorithm in the proof of Theorem A applied to parabolic power series f , we 
show that its residual coefficient b is actually equal to 0. Indeed, in order to eliminate 
all the terms before the residual one, we use in the algorithm non-logarithmic changes 
of variables ϕm,0(x) = x + cxm, c ∈ R, m ∈ {2, 3, . . . , k}. By these changes of variables, 
no logarithmic terms are generated in f . Therefore, f is transformed into:

f(x) = x + xk+1 + bx2k+1 + dx2k+2 + h.o.t., b, d ∈ R. (6.2)

In the next step, we remove the residual term x2k+1 from f . By (3.7), we use a logarithmic 
change of variables ϕk+1,−1(x) = x + cxk+1�−1, c ∈ R. We compute:

ϕ−1
k+1 ◦ f ◦ ϕk+1 = f + cx2k+1 + r(x). (6.3)



948 P. Mardešić et al. / Advances in Mathematics 303 (2016) 888–953
Here, r ∈ L may contain logarithmic terms, but its leading monomial is of order at least 
(2k+2) in x. Choosing c = −b, the term x2k+1 is eliminated from F . Therefore, by (6.2)
and (6.3),

ϕ−1
k+1 ◦ f ◦ ϕk+1 = x + xk+1 + (dx2k+2 + h.o.t.) + r(x).

The terms after xk+1 are of strictly higher order than the residual order (2k + 1, 1), so 
they are eliminated by changes of variables from L0.

7. Appendix

In the proof of Theorem A in Subsection 4.4, Part 2, in order to prove the existence 
of a formal normalizing change of variables ϕ ∈ L0 for f ∈ LH as the composition of a 
transfinite sequence of elementary changes of variables, we index the set of all elementary 
changes of variables used in the normalization by their orders. We describe here explicitly
the set of orders of all elementary changes needed for reduction of f to a formal normal 
form f0. In addition, this description allows us to prove easily that, if f ∈ LH

D (that is, 
if f is of finite type), then ϕ is also of finite type.

In Subsection 7.1, we give the main lemma of the appendix. It explains how the 
support of a transseries behaves under the action of an elementary change of variables. 
In Subsection 7.2, we use this lemma to control the orders of the normalizing elementary 
changes of variables. Finally, we discuss the finite type cases in Subsection 7.3.

We analyze only the case when f is parabolic. The analysis for other two cases can be 
done similarly and we omit it.

7.1. The action of an elementary change of variables on the support

Consider f ∈ LH parabolic, f (x) = x + axα�p + h.o.t., (α, p) � (1, 0). Let S =
S (f − id), (α, p) = min (S), and S = S \ {(α, p)}. Recall that we denote by 〈A〉 the 
additive semigroup generated by a subset A of R≥0 × Z. We introduce the set

R =
〈
S − (α, p + 1)

〉
+ N∗ (α− 1, p) + {1} × N∗,

where N∗ means N \ {0}. It follows from Neumann’s Lemma that R is well-ordered. 
Moreover, it is easily seen that all elements of S − (α, p + 1) are bigger than or equal to 
(0, 0).

Notice that S ⊆ R (this remark will allow us to initiate a transfinite induction in the 
next subsection). Indeed, if (α1, p1) ∈ S, we write:

(α1, p1) = (α1 − α, p1 − p− 1) + (α, p + 1)

= (α1 − α, p1 − p− 1) + (α− 1, p) + (1, 1) ∈ R.

We now prove the main lemma of the appendix.
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Lemma 7.1. Consider a parabolic series f (x) = x + axα�p + a1x
γ1�r1 + · · · ∈ LH such 

that all exponents (γi, ri) belong to R. Let ϕ (x) = x + cxβ�m, (β, m) � (1, 0), be such 
that

(β,m) = (γ1 − α + 1, r1 − p) or (γ1 − α + 1, r1 − p− 1) . (7.1)

Then S
(
ϕ−1 ◦ f ◦ ϕ− id − axα�p

)
is contained in R.

Remark 7.2. The change of variables ϕ(x) = x +cxβ�m with (β, m) as in (7.1) eliminates 
the term a1x

γ1�r1 from f . The exponent (β,m) is given by the homological equation (4.5), 
as the proof of Theorem A. Notice that we denote the elementary change of variables 
here by ϕ instead of ϕβ,m for easier reading of the forthcoming computations.

Proof of Lemma 7.1. We proceed in several steps: we have to control the supports S (ϕ), 
S
(
ϕ−1), then S

(
ϕ−1 ◦ f

)
, and finally of S

(
ϕ−1 ◦ f ◦ ϕ

)
, for f and ϕ as in Lemma 7.1.

1. Control of the support S (ϕ). Assume (β,m) = (γ1 − α + 1, r1 − p) or (γ1 − α+ 1,
r1 − p − 1). We claim that

(β,m) ∈ R1 :=
〈
S − (α, p + 1)

〉
+ N0 (α− 1, p) + {0} × N0.

Notice that R1 is well-ordered.
We observe that, if (β,m) = (γ1, r1)− (α, p + 1)+(1, 0), then, for all k ∈ N0, (β,m)+

(−1, k) ∈ R1. In the same way, if (β,m) = (γ1, r1) − (α, p) + (1, 0), then

(β,m) + (−1, k) = (γ1, r1) − (α, p + 1) + (0, k + 1) ∈ R1.

In particular, we have that (β, m) ∈ R1 and (β − 1, m) ∈ R1.
From now on, we suppose that (β,m) = (γ1, r1) − (α, p + 1) + (1, 0).
2. Control of the support S

(
ϕ−1). For this purpose, we consider the isomorphism Φ

associated to the change of variables ϕ. It holds that Φ.id = ϕ. We analyze ϕ−1 using 
the inverse operator: ϕ−1 = Φ−1.id. Since ϕ (x) = x + cxβ�m, we have:

Φ (h) (x) = h
(
ϕ(x)

)
= h

(
x + cxβ�m

)
= h (x) +

∞∑
i=1

cih
(i)(x)xiβ�im, h ∈ L.

Hence, Φ = Id+ 
∑∞

i=1 cix
iβ�im di

dxi = Id+P . It is easily seen that P is a small operator, 
so that Φ−1 is well-defined by the convergent series Φ−1 =

∑∞
k=0 (−1)k P k and ϕ−1 (x) =

x +
∑∞

k=1 (−1)k P k (x).
We claim that:

S
(
ϕ−1 (x) − x

)
⊆ N∗ (β − 1,m) + {1} × N.

Indeed, P (x) = c1x
β�m, and we can write (β,m) = (β − 1,m) + {1} × N. Inductively, 

a consecutive action of P leads to a series in terms:
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xiβ�im
di

dxi

(
xk(β−1)+1�km+j

)
, i ≥ 0, k ≥ 1, j ∈ N.

Hence, the elements of their support can be written

(iβ + k (β − 1) + 1 − i, im + km + j + s)

= ((i + k) (β − 1) + 1, (i + k)m + j + s)

= (i + k) (β − 1,m) + (1, j + s) ∈ N∗ (β − 1,m) + {1} × N,

which proves the claim. Since we have proven above that (β−1, m) ∈ R1, it follows that

S(ϕ−1 − id) ⊆ R1.

3. Control of the support S
(
ϕ−1 ◦ f

)
. Let us write f (x) = x + ε (x), ord(ε) � (1, 0), 

and ϕ−1 (x) = x +
∑

bμsx
μ�s. Then

ϕ−1 (f (x)) = ϕ−1 (x + ε (x)) = ϕ−1 (x) +
∞∑
k=1

1
k!
(
ϕ−1)(k) (x) εk

= ϕ−1 (x) + ε (x) +
(∑

bμsx
μ�s

)′
ε (x) +

∞∑
k=2

1
k!

(∑
bμsx

μ�s
)(k)

ε (x)k .

We already know that S (ε) ⊆ R. Let us study the exponents of the series (xμ�s)(k)
ε (x)k. 

They are of the form:

(μ− k, s + ν) +
( (

γi1 , ri1
)

+ · · · + (γik , rik)
)

= (μ, s) + (γi1 − 1, ri1) + · · · + (γik − 1, rik) + (0, ν)

= (μ, s) + (γi1 − α, ri1 − p− 1) + · · · + (γik − α, rik − p− 1)

+ k (α− 1, p) + (0, ν + k) ,

where ν ∈ N, k ≥ 1 and (γi1 , ri1) , . . . , (γik , rik) ∈ S(ε) ⊆ R. Each pair (γij − α,

rij − p − 1) belongs to R1. Recall from the previous step that S(ϕ−1 − id) ⊆ R1. Hence, 
these exponents can be written as

(μ̄, s̄) + k (α− 1, p) + (1, ν + k) ,

where (μ̄, s̄) ∈ R1. So they belong to R. Hence, we can write ϕ−1 (f (x)) = x + g (x), 
with S (g) ⊆ R.

4. Control of the support S
(
ϕ−1 ◦ f ◦ ϕ

)
. We have

ϕ−1 (f (ϕ (x))) = x + g (ϕ (x)) = x + g
(
x + cxβ�m

)
,
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where S(g) ⊆ R from the previous step. The elements of the support of ϕ−1 ◦ f ◦ ϕ can 
be written

(τ, l) =
(
μ + k(β + 1), s + km + j

)
= (μ, s) + k (β − 1,m) + (0, j) , (μ, s) ∈ S(g) ⊆ R, k ≥ 0, j ∈ N.

Since we have shown above that (β − 1,m) ∈ R1, so is (τ, l) ∈ R. �
7.2. The control of the orders of the normalizing elementary changes of variables

Let (ϕβ,m) be a transfinite sequence of elementary changes of variables used to nor-
malize f . Let (ψβ,m) denote their partial compositions and ϕ the limit of these partial 
compositions (hence ϕ is the change of variables which normalizes f). We prove first 
that the supports of (fβ,m − id), fβ,m := ψ−1

β,m ◦ f ◦ ψβ,m, are all contained in the set R
of the previous subsection. This is based on a straightforward transfinite induction:

i) We have already noticed that S (f − id) is contained in R.
ii) The non-limit case follows directly by Lemma 7.1: if the support of f is contained 

in R, so is the support of ϕ−1
β,m ◦ f ◦ ϕβ,m.

iii) The limit case comes from the obvious classical fact in Hahn fields: Consider a 
transfinite sequence (gμ)μ<θ of elements of a Hahn field, which admits a limit g and 
whose supports are contained in a common well-ordered set W . Then S (g) ⊆ W .

By Lemma 7.1 and Remark 7.2, the supports of all elementary changes, S(ϕβ,m− id), are 
contained in R1. By an easy computation in the non-limit case and using the classical 
result mentioned under (iii) above in the limit case, we conclude that S(ψβ,m−id), S(ϕ −
id) ⊆ R1.

7.3. Finite type cases

The goal of this subsection is to show that if a parabolic series f is in addition of finite 
type, then so is the normalizing change of variables ϕ built in the proof of Theorem A
in Section 4.4. We keep all the notations as above.

Assume that f is of finite type. We prove that in this case the sets R and R1, as well 
as the support of the composition S(ϕ), are of finite type. These claims follow from the 
following easy result:

Lemma 7.3. Consider a subset A of finite type of R>0 × Z. Let (α, p) ∈ R>0 × Z and 
A := {(β,m) ∈ A : (β,m) � (α, p)}. Then the set A− (α, p) is also of finite type.

Proof. Suppose A is contained in the sub-semigroup G of R≥0 × Z generated by the 
elements (α1, p1) , . . . , (αk, pk) of R>0×Z. For each i = 1, . . . , k, denote by Ni the smallest 
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positive integer such that Ni (αi, pi) � (α, p). Consider an element (γ, r) ∈ A ⊆ G, 
(γ, r) � (α, p). Then (γ, r) =

∑k
i=1 ni (αi, pi), ni ∈ N0. There exist only finitely many

elements (γ, r) ∈ A such that the respective ni-s satisfy ni < Ni, for all i = 1, . . . , k. On 
the other hand, if one of the ni’s, say n1, is greater than or equal to N1, we write

(γ, r) − (α, p) = (n1 −N1) (α1, p1) + n2 (α2, p2) + · · ·
+ nk (αk, pk) + N1 (α1, p1) − (α, p).

This shows that A− (α, p) is contained in the sub-semigroup of R≥0 × Z finitely gener-
ated by the elements (α1, p1) , . . . , (αk, pk), Ni(αi, pi) − (α, p), i = 1, . . . , k (note that 
Ni(αi, pi) − (α, p) � (0, 0)), and the elements (γ, r) − (α, p), for the finitely many
(γ, r) � (α, p) for which the respective ni-s satisfy ni < Ni, for all i = 1, . . . , k. �

If f is of the finite type, we apply Lemma 7.3 to the set S − (α, p + 1) from the 
previous section. It follows that the sets R and R1 are also of the finite type. Since, by 
Sections 7.1 and 7.2, we have that S(ϕ − id) ∈ R1 and S(f0 − id) ∈ R, we deduce that 
ϕ and f0 are of the finite type.
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