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We rigorously show that dissipatively driven Frenkel-Kontorova models with either uniform or

time-periodic driving asymptotically synchronize for a wide range of initial conditions. The main

tool is a new Lyapunov function, as well as a 2D representation of the attractor. We then character-

ize dynamical phase transitions and outline new algorithms for determining them. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928213]

The model of a one-dimensional chain of particles con-

nected by elastic springs in a spatially periodic potential,

known as the Frenkel-Kontorova (FK) model, has been

the paradigm tool for studying spatially modulated struc-

tures in solid state physics and beyond.
8,12

It has been

numerically observed that if a FK chain is dissipatively

driven with either a uniform (DC) or periodic (AC) force,

and with sufficiently strong damping, then the chain often

asymptotically synchronizes. We prove it for a wide range

of initial conditions and FK model parameters, by extend-

ing known techniques of monotone (or order-preserving)

dynamics. Although the model is deterministic, we study it

in the statistical (or ergodic-theoretical) context, with par-

ticular focus on the notion of pinning/depinning (or dynam-

ical Aubry) phase transitions. Our approach in particular

enables applying tools of Hamiltonian dynamics to dissipa-

tive FK dynamics arbitrarily far from the equilibrium,

thus extending reach of the pioneering ideas of Aubry and

Mather.2,23

I. INTRODUCTION

The over-damped dynamics of FK models studied here

(also called gradient dynamics) has been accepted as a good

approximation of physical situations with sufficiently strong

damping.5,12 The actual model and equations of motion are

given in Sec. II. As reported in detail by Floria and Mazo,12

the dynamical (Aubry) phase transition for DC driving is

characterized by the occurrence of uniform asymptotic slid-

ing of the chain. The situation in the AC case is more com-

plex as further discussed in Section II, but asymptotic

synchronization also often occurs. Middleton,27 Baesens

and MacKay3 partially explained this as a consequence of

order-preserving (or monotonicity) of the dynamics. This

means that if two chain configurations u ¼ ðuiÞi2Z; v
¼ ðviÞi2Z are ordered, e.g., u � v (where � holds in each

coordinate), then this ordering persists with dynamic evolu-

tion of configurations.

We show in Section V that synchronized solutions are

globally attracting in the depinned phase of the dynamics and

locally attracting in the pinned phase, for any initial configura-

tion of bounded width. We thus extend already known rigor-

ous results for spatially periodic configurations and DC

setting. To do that, we propose a focus on asymptotic behavior

different from the traditional. As known, for example, in the

Partial Differential Equations (PDE) setting,29 understanding

the attractor of systems on infinite domains (that means all the

asymptotics of all the initial conditions) is very difficult even

for the simplest systems, as the attractor is typically infinite

dimensional. Here, we focus instead on asymptotics observ-

able with non-zero (i.e., strictly positive) space-time probabil-

ity or more precisely observable for positive density of spatial

translates and time evolutions. We call the set of such configu-

rations the space-time attractor and define it in Section III.

We then observe in Section IV that the space-time

attractor of our model is two-dimensional. This enables us to

describe it in some detail. For example, we show that in the

depinned phase, the attractor consists entirely of synchron-

ized solutions.

Our analysis naturally leads to the ergodic-theoretical set-

ting and to the study of invariant probability measures (invari-

ant with respect to both the time evolution and spatial

translations). This enables rigorous characterizations of dy-

namical Aubry phase transitions. Physically, the pinned phase

has been understood as the phase where parts of the physical

space are asymptotically “off-bounds,” while in the depinned

phase the chain can slide over the entire space. This is related

to analyticity/non-analyticity of dynamical hull functions and

various other model features. We give a precise definition of

this understanding and show that this is equivalent to statisti-

cal definitions of dynamical phases, related to uniqueness/

non-uniqueness of space-time invariant measures.

Finally, we discuss applications of tools from Hamiltonian

dynamics to dissipative FK dynamics. Aubry and Mather2,23

successfully applied these ideas for the description of equilibria

of the FK model (i.e., without driving), which can be charac-

terized as orbits of a symplectic map (an area-preserving twist

diffeomorphism20). We show that the space-time attractor arbi-

trarily far from equilibrium can be characterized in a similar

way. As an example of an application of this, we then outline

how the Converse Kolmogorov-Arnold-Moser (KAM) theory

can be used to determine dynamical phase transitions.

We give rigorous mathematical proofs to all the state-

ments in the paper. For easier reading, most of the proofs

have been moved to the Appendix at the end of the paper. A

detailed (and quite technical) proof of the main tool, the
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Theorem 7, has already been reported in Ref. 35 (we outline

the core of the argument here). The results on stability of

synchronization and characterization of phase transitions, as

well as applications, are new.

II. SETTING AND NUMERICAL BACKGROUND

A. The model

Consider a set of particles in one dimension, denote

position of each by a real number uj and the configuration of

the entire chain as u ¼ ðujÞj2Z. The energy of the generalized

FK model can be formally defined as

H ¼
X
j2Z

ðWðujþ1 � ujÞ � VðujÞÞ: (1)

Here, V(u) is a periodic on-site potential (i.e., Vðuþ 1Þ
¼ VðuÞ) and W(p) is a generalized elastic coupling, by which

we mean a strictly convex function (i.e., such that W00 � d > 0

for some d > 0). The standard FK model is defined by partic-

ular functions

VðuÞ ¼ �k cosð2puÞ=ð2pÞ2;

WðpÞ ¼ ðp� lÞ2=2;

where k, l are real constants.

We focus here on the dissipative, overdamped (also

called gradient) dynamics, given by the equations

d

dt
uj tð Þ ¼ � @

@uj
H uð Þ þ f tð Þ;

d

dt
uj tð Þ ¼ W0 ujþ1 � ujð Þ �W0 uj � uj�1ð Þ þ V0ðujÞ þ f ðtÞ:

(2)

The driving force f(t) can be constant, in which case

we consider DC dynamics of the FK model. Alternatively,

f can be time-periodic (AC dynamics). As we can reparame-

trize the time, we can in the AC case assume that f ðtþ 1Þ
¼ f ðtÞ.

We summarize the standing assumptions on the model (2):

(A): W is C2, strictly convex, such that W00 � d > 0; V is

1-periodic; in the AC case, W;V; f are real analytic.

B. Ground states and synchronization

We first briefly recall the structure of the ground states

of the chain (1), independently described by Aubry and

Mather.2,23 First note that all the equilibria of (1), that is the

configurations u ¼ ðujÞj2Z that solve (2) with f ðtÞ ¼ @ujðtÞ=
@t ¼ 0, can be interpreted as orbits of a 2-dimensional map.

The Aubry-Mather theory focuses on ground states (as a sub-

set of equilibria) defined as follows. As the total energy H of

the infinite chain is typically infinite, the ground states are

defined as configurations for which the energy of any finite

subsegment of the chain ðum; umþ1; :::; unÞ is minimal if we

fix positions of end particles um; un and allow all others to

arbitrarily vary. Importantly, each ground state has a well

defined mean spacing

qðuÞ ¼ lim
n�m!1

ðun � umÞ=ðn� mÞ:

Furthermore, one can find a ground state for any rational

(commensurate configurations) or irrational (incommensu-
rate configurations) qðuÞ (Ref. 6, Theorems 3.16 and 3.17),

and thus the structure of ground states is quite rich.

Important tools when studying ground states, as well as

driven dynamics, are based on considering ordering and

intersection of configurations. We first recall the Definition

of spatial translations Sm;n of configurations (defined for any

integers m, n)

Sm;nuj ¼ uj�m þ n:

If Tt, t � 0 is the time evolution of (2), which means

TtuðsÞ ¼ uðtþ sÞ, then by Definition Sm;n and Tt commute.

We say, that two configurations u and v intersect if their

graphs (as functions j 7! uj) intersect; more precisely if for

some j, ðvjþ1 � ujþ1Þðvj � ujÞ � 0 (but u, v not equal).

The operators T and S enable us to precisely define

synchronized solutions of (2). We consider a solution u(t)
synchronized if the trajectory of each particle is time-

periodic (where we identify u and uþ n for integer n) and

the trajectory of each particle coincides (up to a shift in

phase). We introduce an equivalent definition of a synchron-

ized solution in terms of intersection of configurations,

which will be very useful in the following.

Definition 1. We say, that a solution u(t) of (2) is
synchronized, if for any integers m, n, s, and any t 2 R, u(t)
and Sm;nuðtþ sÞ do not intersect.

(In the definition, we implicitly assume that u(t) exists

for all times t 2 R.) An immediate consequence is that all

the spatial and temporal translates of a synchronized solution

can be represented as a one parameter family of configura-

tions. If we identify u and uþ n for all integers n (as we will

often do in the following), S, T translates of a synchronized

solution can be parametrized by a subset of a circle.

Elementary results of the theory of one-dimensional dynami-

cal systems (the Denjoy theory, Ref. 20, Section 12) then

imply that they typically (i.e., for irrational q) either cover

the entire circle or its Cantor subset.

Ground states are important examples of synchronized

solutions, as shown by the Aubry-Mather theory (Ref. 6,

Theorem 3.13). Note that for ground states, Tt is constant,

and thus synchronization is equivalent to non-intersection of

spatial translates.

In general, it is rigorously known that synchronized sol-

utions exist. This has been (partially very recently) proved

by Baesens and MacKay,3 and Qin18,30,31 in the DC case and

by Qin32 in the AC case.

Theorem 2. Assuming (A), there exists a synchronized
solution u(t) of (2) for any (AC or DC) forcing f(t) and any
(rational or irrational) mean spacing q 2 R.

C. Numerical observations

Numerical simulations12,26 showed that synchronization

often asymptotically appears when forcing f(t) is switched on

(numerically an infinite chain is approximated with a long

083108-2 Sini�sa Slijepčević Chaos 25, 083108 (2015)
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finite one with periodic boundary conditions). In the DC

case, it was seen that for any initial condition, the dynamics

is attracted either to an equilibrium or to a synchronized so-

lution, then called uniformly sliding solution. The uniformly

sliding solution is defined as uðtÞ ¼ ðujðtÞÞ

ujðtÞ ¼ hðjqþ vtÞ;

where h : R! R is the dynamical hull function (also called

profile, or modulation function), h strictly increasing, contin-

uous, satisfying hðtþ 1Þ ¼ hðtÞ þ 1. The sliding speed v is

then an asymptotic average speed, as for any j, the speed

duj=dt averaged over one period ½T; T þ 1=v� converges to v
as T !1. The sliding speed v depends (continuously) only

on the forcing f and the mean spacing q.

For a given mean spacing q, we can define the depinning
force Fd as the infimum of all the values of forces for which

the sliding speed is not zero. The model at the critical value

Fd undergoes a depinning transition (also called dynamical

Aubry transition), which can model several physical situa-

tions:12 interface dynamics in porous media, charge-density

wave transport, resistive transition in type II superconduc-

tors, etc.

As an example, we consider the driven standard FK

model given by the equations

duj tð Þ
dt
¼ ujþ1 � 2uj þ uj�1 þ

k

2p
sin 2pujð Þ þ f tð Þ;

f ðtÞ ¼ FDC þ FAC sinð2p�0tÞ;

with parameters k;FDC;FAC; �0.

A typical dependence of vðqÞ on FDC in the DC case

(FAC¼ 0), and in the AC case for a fixed FAC; �0, in both

cases for fixed mean spacing q ¼ 245=397 (approximating

the golden mean) is in Figure 1.

In the AC case, the asymptotic speed vðqÞ is also well

defined, and it depends on FDC (the average of the force f(t)
over one period) and the mean spacing q. The dependency

vðqÞ on FDC is, however, not smooth up to a certain critical

value of FDC and exhibits so called Shapiro steps, visible in

Figure 1. The dynamical Aubry transition in the AC case is

the critical value of FDC for which the dependency of vðqÞ
on FDC becomes smooth. Also, it was seen that as long as

the asymptotic speed is not zero, the solution typically

asymptotically synchronizes.

Beyond that, understanding of the dynamical Aubry

transition and asymptotics in the AC case in the literature is

fairly limited.12,13,18,32 One of the main results of the paper

is to establish a rigorous definition of two dynamical phases

(pinned vs. depinned), which holds in both the AC and DC

case, and to show that the asymptotic behaviour in the AC

case is analogous to the DC case.

III. MATHEMATICAL BACKGROUND

A. Asymptotics of a solution

In this paper, we consider configurations of bounded
width, by which we mean configurations u for which there

exists mean spacing qðuÞ and a real number such that for

some constant K> 0 and all integers m, n

jum � un � ðm� nÞqðuÞj � K: (3)

(with some technical care as done in Ref. 35 but beyond the

scope of this paper, all the results also hold on more general

space of configurations of bounded spacing, that is satisfying

supm2Zjumþ1 � umj <1). Denoted by ~X is the space of all

the configurations of bounded width and with ~X q its sub-

space of configurations with the mean spacing q. For exam-

ple, as by the standard result of Aubry-Mather theory, all the

ground states satisfy (3) with K¼ 1 (Ref. 6, Corollary 3.16),

they are in ~X . By the same argument, the synchronized con-

figurations also satisfy (3) with K¼ 1 and are in ~X .

Standard results of existence of Ordinary Differential

Equations (ODE) on Banach spaces imply that (1) generates

a smooth semiflow on ~X , with ~X q being invariant sets.3,5,35

When considering asymptotics, we consider pointwise con-

vergence of configurations (i.e., the product topology on ~X ),

rather than uniform convergence.

The usual notions of dynamical systems theory make

sense only for relatively compact trajectories. Fortunately, this

holds for initial conditions in ~X q if we identify u and uþ n
for all integer n. We denote X ; Xq to be the quotient sets with

respect to that relation and omit the subscript n in Sm;n. Now,

each Xq is compact and invariant for both spatial translations

FIG. 1. The v=FDC dependency for a DC- (above) and AC- (below) driven

standard FK chain, for mean spacing q ¼ 245=397 and different values of

FDC; k. In the AC case, FAC¼ 0.2, �0 ¼ 0:2.
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Sm and the time evolution Tt, t � 0 (invariance follows from

the order preserving property, Ref. 35, Section IV).

The usual notion of x-limit set considers all the limit

points of a trajectory as time goes to infinity. Here, we con-

sider a typically smaller set of physically the most relevant

asymptotic trajectories, which are asymptotically observed

with non-zero probability with respect to time and spatial

windows. A precise definition follows:

Definition 3. The weak x-limit set of u, denoted by ~xðuÞ,
is the smallest closed set such that for any (arbitrarily small)
open neighborhood U of ~xðuÞ, the ratio of m, n, 0 � m
� N;�N � n � N for which TmSnu 2 U, converges to 1 as
N !1.

An equivalent definition of ~xðuÞ is given in Lemma 14

in the Appendix. It is easy to show that ~xðuÞ is a well-

defined, closed set and a subset of xðuÞ.35 Unlike the x-limit

set, ~x is not necessarily connected. An interpretation of ~x is

that, if we choose randomly a (sufficiently large) time, and a

random, arbitrarily large, spatial window of an infinite chain,

we will with asymptotic probability 1 observe a configura-

tion in ~xðuÞ. We propose the definition of a (space-time)

attractor for a spatially extended (i.e., on an infinite domain)

system like (2) to be the set A, which is the closure of the

union of all weak x-limit sets

A ¼ Cl
[
u2X

~xðuÞ
� �

:

(Note that in Ref. 35, we have chosen an equivalent defini-

tion of the attractor, here given as a characterization in

Proposition 4 below.)

Our definition of A results in a typically smaller set than

attractor as standardly defined.29 We think our definition is

physically relevant. One can say that the standard attractor

incorporates all the asymptotics of the dynamics, while our set

A captures asymptotics with non-zero space-time positive

probability. Furthermore, if, for example, a system like (2) is

space-time chaotic in the sense of Bunimovich and Sinai,9 one

can show that the space-time chaos is then contained inA.36

B. Invariant measures and dynamical phase
transitions

In addition to considering evolution of individual con-

figurations with respect to (1), we find useful considering si-

multaneous evolution of a family of initial configurations

and finding average properties of this evolution. We make it

precise by considering evolution of probability measures,

and more specifically probability measures invariant for the

spatial shift.

We can write S ¼ S1; T ¼ T1 (the time-one map for (2)).

Note that there exists a huge number of S-invariant probability

measures on the state space X . For example, we can embed in

X in many ways the standard Bernoulli probability measure

on the space of bi-infinite sequences of {0, 1}. More gener-

ally, an S-invariant probability measure is any (shift-invariant)

random process, which constructs a configuration in X .

Given any S-invariant measure l, we can consider its

evolution lðtÞ with respect to (1) by considering evolution of

each configuration (mathematically, lðtÞ is the pulled mea-

sure lðtÞ ¼ T�t lð0Þ). A T-invariant measure is a measure that

is also invariant with respect to the evolution (2). The impor-

tance of S, T-invariant measures on X is in the following fact:

Proposition 4. The attractor A coincides with the union
of supports of all S, T-invariant measures on X . Furthermore,
for any q 2 R; Aq ¼ A \ Xq is not empty.

(We postpone the proof of this as most the other claims

to the Appendix.) Thus, the study of the attractor A is equiv-

alent to understanding the structure of S, T-invariant

measures.

We can now extend the Definition 1 of synchronized

configurations and solutions to measures. We say that a

synchronized measure is a S, T-invariant probability measure

such that no two configurations in its support intersect.

Clearly by definition, a synchronized measure is supported

on synchronized trajectories. Denote by Sq � Aq the union

of supports of all the synchronized measures on Xq. We will

see in Section IV that Sq is not empty.

One typically distinguishes two dynamical phases of (2),

depending on whether transport is possible. In the depinned

phase, asymptotically each particle can slide over the entire

R, while in the pinned phase, some of the regions are off-

limit as the force is too weak as compared to the potential V
and the related Peierls-Nabarro barrier.12 We propose a rig-

orous way to define pinned vs. depinned phase, which works

both in the DC and AC case, by using the language of meas-

ures, in the spirit of Mather.24

Let p0 : X ! S
1

be the projection of a configuration u
to u0 (it projects onto the circle S

1 ¼ R=Z, as we identify u
and uþ n for integer n).

Definition 5. We say that (2) is in the depinned phase for
a given mean spacing q 2 R, if there exists a synchronized
measure l with the mean spacing q such that p0ðsuppðlÞÞ is
onto (i.e., the entire S

1); otherwise, it is in the pinned phase.
Here, suppðlÞ denotes the support of l. Note that, as we

consider S-invariant measures, this definition is independent

of the projected coordinate. For a given one-parameter fam-

ily of FK-chains or forces f(t), the dynamical Aubry transi-

tion for a given q 2 R is the value of the parameter in which

the pinned/depinned phase changes.

Equivalence of the definition of depinned/pinned phases

as above to analyticity (respectively, non-analyticity) of the

dynamical hull functions, as well as to the dependence of the

average speed on average driving force as described in

Subsection II C, was essentially shown by Qin.31,32

Analogously to thermodynamics, one can expect that

the difference in phases of (2) is whether there is a unique

(ergodic) S, T-invariant measure with a chosen mean spacing

or not. We will see later that this is indeed a characterization

if q is irrational (also for rational q with additional technical

restrictions): the S, T-invariant measure is unique in and

strictly in the depinned phase.

C. Dynamics of intersections of solutions

The key feature of the dynamics (2), that it is order-

preserving, was used by Middleton, Baesens, and MacKay,3,5,27

in proving results on asymptotics of (mostly) finite chains with
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DC dynamics. We will here use a generalization of that concept

related to counting intersections of two solutions. We have

already introduced the notion of intersection of two configura-

tions. It is important to distinguish transversal and non-

transversal intersections, as in Figure 2 (see Ref. 35 for a

precise classification).

A stronger version of the order-preserving rule is that, if

u(0) and v(0) are two chain configurations with at most finite

number of intersections, then the following is known and can

be proved by considering linearization of (2) (Ref. 35,

Sections III and IV):

(I1): The number of intersections of u(t) and v(t) is a

non-increasing function of t,
(I2): If u(t) and v(t) intersect non-transversally at t0, then

the number of intersections strictly drops at t ¼ t0.

These ideas originate from 1D parabolic PDEs, where

they have been extensively used to describe their asymp-

totics.1,11,19 They are, however, not directly applicable to the

dynamics (2) (or also to PDE’s on unbounded domains), as

two arbitrary configurations u and v (with the same mean

spacing) typically intersect infinitely many times. We resolve

this by considering an average number of intersections with

respect to a probability measure on the state space X .

Precisely, let z0 2 f0; 1g be the function that assigns 1 if u, v
intersect in the interval ½0; 1Þ, otherwise it is 0. If l is any

S-invariant probability measure on X , we define the average

number of self-intersections of l as

ZðlÞ ¼
X
n2Z

ð
z0ðuþ n; vÞdlðuÞdlðvÞ: (4)

The meaning of (4) is the following: the expressionÐ
z0ðu; vÞdlðuÞdlðvÞ is the probability that two randomly

chosen configurations u and v intersect in the interval ½0; 1Þ
(i.e., that u – v has a “zero” in that interval). As l is invariant

for the spatial shift S, this is also the probability of finding an

intersection in any interval ½m;mþ 1Þ. We have a sum over

n in the definition of ZðlÞ to make sure it is well defined on

the quotient space X , as we identify configurations u and

uþ n. It is easy to check ZðlÞ is always finite.35 One can

now show that ZðlÞ has properties mimicking (I1) and (I2),

without any restrictions to chosen configurations and meas-

ures. A rigorous proof of the following is in Ref. 35; we

sketch the argument in the Appendix.

Theorem 6. If l is an S-invariant probability measure
with evolution lðtÞ with respect to (2), then

(M1): The function t 7! ZðlðtÞÞ is non-increasing;

(M2): If for some t0, there are u and v in the support of
lðt0Þ with a non-transversal intersection, then t 7! ZðlðtÞÞ is
strictly decreasing at t0 (i.e., Zðlðt0 þ eÞÞ < Zðlðt0 � eÞÞ for
any e > 0).

The property (M1) means that Z is a Lyapunov function

on the space of S-invariant measures. As for synchronized

measures, Z reaches its minimum zero (see the comment

after Theorem 7 below), these measures are expected to be

Lyapunov stable. We deduce implications of this to asymp-

totics of individual trajectories in Section V.

IV. 2D REPRESENTATION OF THE ATTRACTOR

We now show that the attractor A of the dynamics (2)

can be represented as a 2-dimensional map, which will be

important for both qualitative and quantitative description of

the dynamics. This fact has been extensively studied in the

case f¼ 0, as noted in Section II. It is somewhat unexpected

that this principle extends for arbitrary DC and AC forcing.

We define the projection p : A ! S
1 �R with

pðuÞ ¼ ðu0; u1 � u0Þ:

Theorem 7. Any two configurations u; v 2 A cannot
intersect non-transversally. Furthermore, p is injective.

This follows directly from Theorem 6 (details in the

Appendix). A direct consequence is that synchronized meas-

ures are characterized as S, T-invariant measures l for which

ZðlÞ ¼ 0. Here is why it holds: if ZðlÞ ¼ 0, then by continu-

ity the only possible intersections in the support of l are

non-transversal, which is impossible.

Projection p enables us now to visualize and analyze A
in 2D, as done in Figure 3, plotting images of the projected

spatial shift map g ¼ p 	 S 	 p�1 in the same color. As we

identified orbits u and uþ n for integer n, the map g is well

defined on the cylinder S
1 �R and can be understood as a dy-

namical analogue of an area-preserving twist map on the cylin-

der, which describes the attractor in the case with no force.

We will see that the approximately level circles

(“rainbows” in Figure 3) correspond to depinned synchronized

trajectories, with the average coordinate p corresponding to

the mean spacing q. We call them KAM-circles (borrowing

terminology from the Hamiltonian dynamics) and define them

as homotopically non-trivial (i.e., not compressible to a fixed

point) invariant circles of the function g on S
1 �R. Analysis

of the pinned/depinned phase transition will rely on the 2D

representation as in Figure 3 and will use the following:

Theorem 8. Given any mean spacing q 2 R, the set Sq

is not empty. In the depinned phase, Aq ¼ Sq and it projects
to a KAM-circle.

The converse of the last statement in Theorem 8 also

holds. Given a map g and a point x ¼ pðuÞ 2 S
1 �R, one

can recover the mean spacing of u by calculating the rotation
number of x with respect to g, defined as the average of the

first coordinate of g-iterates of x. By adapting the proof of

Theorem 8 given in the Appendix, one can also show that if

(2) is the pinned phase for a given q, then g does not have a

KAM-circle with that rotation number. We omit the proof.

An implication is that the structure of synchronized

orbits, when projected to the cylinder, is analogous to the
FIG. 2. Examples of transversal and non-transversal intersections of

configurations.
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

212.249.11.140 On: Wed, 19 Aug 2015 13:35:47



structure of ground states when projected to the cylinder.

Thus, we can use tools from Hamiltonian dynamics as out-

lined in Section V.

We now come back to the definition of the pinned vs.

depinned phase and its characterization.

Corollary 9. If q is irrational and (2) in the depinned
phase, then there is a unique ergodic S, T-invariant measure
with the mean spacing q.

The converse of Corollary 9 also holds and can be

shown by adapting the construction of Mather’s connecting

orbits of area-preserving twist maps25,33 and related invariant

measures. This would result with a rich family of ergodic S,

T-invariant measures with the same (pinned) rotation num-

ber; we omit details of the construction.

Finally, the following fact regarding intersection of

depinned synchronized configurations will be the key in

applications.

Corollary 10. If (2) is in the depinned phase for q 2 R,
given any u 2 Aq, no configuration in A can intersect u
more than once.

We close the section with a couple of additional com-

ments on Figure 3, which shows many typical structures

seen in phase portraits of area-preserving twist maps, such

as the standard map (e.g., KAM tori, periodic orbits,

islands, chaos, etc.).22 This was until now understood only

in the no-forcing case (Section II B). We explained exis-

tence of KAM tori and Cantori by Theorem 8. Existence of

chaos and elliptic islands could likely (at least for small

forces) be explained by a perturbation argument using

hyperbolicity or KAM-theory tools. On the other hand, the

map g is not always an area-preserving twist map in the

classical sense, as numerics shows that the attractor does

not project to the entire S
1 �R (gaps are white areas in

Figure 3). Our view is nevertheless that topological and an-

alytical similarities between the phase portrait in Figure 3

and area-preserving twist maps could be further explored,

as outlined in Section VI.

V. SYNCHRONIZED ORBITS ARE ATTRACTING

Attractiveness and global stability (in the sense of defi-

nitions in Section III, i.e., ignoring probability/density 0

times and space windows) of synchronized orbits in the

depinned phase is now straightforward.

Corollary 11. Assume (2) is in the depinned phase for a
given q 2 R. Then, for any u 2 Xq; ~xðuÞ consists of
(depinned) synchronized orbits, i.e., ~xðuÞ � Sq.

Proof. By definition, ~xðuÞ � Aq, and by Theorem 8,

Aq ¼ Sq. �

In the pinned phase, one cannot expect such general

results. For example, even in the stationary case f(t)¼ 0, the

structure of the pinned part of A is quite complex (it is analo-

gous to understand Birkhoff regions of instability of area-

preserving twist maps, whose complexity is still not fully

understood). We can, however, describe a relatively rich

family of configurations in the basin of attraction of Sq:

ground states of FK model with defects (discommensura-
tions), that is with missing or squeezed in extra particles

within the ground state structure.8,12 The following abstract

definition generalizes this notion: we say that a configuration

u has k defects, if k is the maximal number of intersections

of u and Sm;nu over all integers m, n.

Theorem 12. In the DC case, if u 2 Xq has finitely
many defects, then ~xðuÞ � Sq.

The proof of that in the Appendix could be also

extended to hold in the AC case and for configurations with

zero defect density. We intend to provide details on that

separately.

VI. CONCLUSION

A. Numerical determination of dynamical phase
transitions

As an example of an application of tools from

Hamiltonian dynamics enabled by our 2d representation of

FIG. 3. 2D representations of the

attractor of a DC-driven standard FK

chain with k¼ 1.0. The DC force (left

to right): F¼ 0, 0.001, 0.005, 0.05.

The same color corresponds to the

same configuration (i.e., the same orbit

with respect to g acting on S1 �R)

and its time evolution.
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the attractor, we consider tools known as Converse KAM.

These algorithms focus on break-up of KAM-circles and

more generally KAM tori. They have been developed in the

context of area-preserving twist maps: by MacKay and

Percival21 (based on earlier works of Mather, Herman and

others); Boyland and Hall,7 and Greene.17 The first two are

based on a simple characterization: KAM-circles are

“barriers for transport,” which, expressed in terms of inter-

sections of configurations, states that no configuration (asso-

ciated to an orbit) can intersect a KAM-configuration more

than once. As this is by Corollary 10 indeed a property of

depinned synchronized configurations, the Converse KAM

algorithms should be applicable.

For example, the Boyland-Hall algorithm can be applied

to determine the dynamical phase transition in the DC phase

as follows. Assume u is a stationary periodic configuration

of (1) of the type (p, q); that means TtðuÞ ¼ u for all t and

ukþq ¼ uk þ p for all k. We define its rotation band rðuÞ
¼ ðr�ðuÞ; rþðuÞÞ, where

r� uð Þ ¼ min
j;k¼1;:::;q

dujþk � uje
k

;

rþ uð Þ ¼ max
j;k¼1;:::;q

bujþk � ujc
k

:

Here, dxe is the smallest integer larger than x and bxc is the

largest integer smaller than x. Let R be the union of all the

rotation bands for all the stationary periodic configurations.

The algorithm is based on the following Theorem:

Theorem 13. The system (2) with DC driving is in the
pinned phase for a given mean spacing q 2 R, if and only if
q 2 R.

The proof is a relatively straightforward application of

Corollary 10 and techniques from Ref. 7, and is omitted. As

we can numerically find stationary periodic configurations

(by finding extremal points of a “tilted” energy functional H
restricted to the periodic configurations) and calculate their

rotation bands, the phase diagram can be calculated with ar-

bitrary precision.

B. Perspectives

One can question whether the results on infinite chains

are only of theoretical interest, as all systems in nature are fi-

nite. We argue that analyzing such extended dynamical sys-

tems is the right tool to obtain bounds (for example on

relaxation times) independent of the system size. For exam-

ple, in Ref. 16, we used that approach to find bounds on

relaxation times of the viscous fluid turbulence independent

of the reservoir size, and in Refs. 14 and 15, to many other

systems. Our results imply that for FK models, there exist

bounds on convergence times to synchronized solutions in-

dependent of the chain size. It is an important next step to

find them.

The description of the dynamics of driven FK models

here is not complete, as we described only the “non-zero

space-time probability” asymptotics. A complete asymp-

totics description is most likely a combination of the 2D, typ-

ically synchronized, dynamics we described, and coarsening

as described by Eckmann and Rougemont10 for a similar sys-

tem. That means that different parts of the chain converge to

different dynamical ground states, and then they either diffu-

sively or in a sequence of discrete coarsening “jumps” coa-

lesce on larger and larger space and time scales. A more

precise description of this dynamics would be nice.

The results here apply also to more general 1D chains

whose energy is given by a function Vðuj; ujþ1Þ satisfying

the twist condition @xyVðx; yÞ � �d < 0, as long as the inter-

action is only between the nearest neighbours. For longer

range interactions, even if the dynamics is cooperative (i.e.,

the off-diagonal elements of the linearized equation are posi-

tive), the intersection-counting tools do not apply.35 The

approach is, however, applicable to the ratchet dynamics of

FK chains (no driving; but either the site potential or the

interaction potential change periodically in time), where

exact results are scarce.13 Furthermore, it applies also to the

second order dynamics as long as damping is strong enough4

and to analogous continuous space systems.36

Finally, we propose focusing on the attractor as defined

here, or equivalently on description of the space-time invari-

ant measures, when studying any extended dynamical system

(by that we mean lattice systems of infinitely many ODE;34

or PDE on unbounded domains14,15). This should result with,

for example, better understanding of existence and frequency

of occurrence of the space-time chaos, as our understanding

of that phenomenon is quite limited.9,28

ACKNOWLEDGMENTS

This work has been partially supported by the Croatian

Science Foundation, the project IP-2014-09-2285.

APPENDIX: PROOFS OF THEOREMS

In all the proofs, we use the fact that Xq ¼ ~X q= 
 is

compact in the (always implicitly assumed) induced product

topology, which follows from the Tychonoff theorem. Here,
~X ; ~X q are the sets of configurations of bounded width as

defined in Section III A, 
 is the relation of equivalence,

u 
 uþ n for any integer n. As in most of the paper, we

abuse the notation and denote by u both configurations in X
and their representatives in ~X . All the measures are Borel

probability measures on Xq or X . By the Alaoglu theorem,

the set of probability measures on Xq is compact in the

weak* topology. We always assume without loss of general-

ity that an (T- or S-invariant) measure on X is actually sup-

ported on Xq for some q 2 R. We can do that by the ergodic

decomposition theorem,20 as Xq is S- and T-invariant. All

the proofs are done by considering the invariance with

respect to the time-one map T ¼ T1. They could be easily

adjusted to the DC case with invariance being considered

with respect to the semiflow Tt, t � 0.

Prior to the proof of Proposition 4, we introduce charac-

terization of ~x-limit sets. Denote by 1V the characteristic

function of a set V.

Lemma 14. A configuration v 2 ~xðuÞ if only if for each
open neighbourhood V of v, there exists d > 0 and a
sequence Nk !1 such that
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1

Nk þ 1ð Þ 2Nk þ 1ð Þ
XNk

n¼0

XNk

m¼�Nk

1V TnSmuð Þ � d:

Proof. Straightforward, by contradiction. �

Proof of Proposition 4. We first show that each v 2 ~xðuÞ
is in the support of some S; T-invariant measure. Choose

an open neighborhood V of v 2 ~xðuÞ and find d > 0 and a

sequence Nk !1 as in Lemma 14. Let lk be a sequence of

measures on Xq defined as

lk ¼
1

Nk þ 1ð Þ 2Nk þ 1ð Þ
XNk

n¼0

XNk

m¼�Nk

dTnSmu;

where du is the Dirac measure supported on u. It is easy to

check that the limit � of each convergent subsequence of lk

(which exists due to compactness) is an S, T-invariant mea-

sure on Xq.

Now choose a sequence of decreasing open neighbor-

hoods Vn of a fixed v 2 ~xðuÞ such that \n2NVn ¼ fvg and

construct a sequence of associated S, T-invariant measures

�n as above. Then, v is in the support of the S, T-invariant

measure
P

n2Nð1=2nÞ�n.

The converse follows from the fact that the union of

supports of all the S, T-invariant measures is closed (Ref. 36,

Lemma 2.1) and a standard ergodic-theoretical argument

based on the Birkhoff ergodic theorem and the ergodic

decomposition theorem. As logically not required for the

results that follow, we omit the details.

The set Aq is not empty, as Xq is compact, S, T -invari-

ant, thus it supports an S, T-invariant measure (Ref. 35,

Lemma 7.2). �

Outline of Proof of Theorem 6. A detailed proof is

given in Ref. 35, Propositions 5 and 6; we outline the key

argument. Consider the function

ZðlðtÞÞ ¼
X
n2Z

ð
z0ðuðtÞ; vðtÞ þ nÞdlðuð0ÞÞdlðvð0ÞÞ;

counting intersections of u and v with respect to the time

evolution of a measure l. An intersection of u(t) and v(t) can

be represented by a continuous curve cðtÞ, which is defined

as the point where the graph of i 7! uiðtÞ � viðtÞ crosses the

x-axis. As by property (I1), the function z0ðuðtÞ; vðtÞ þ nÞ is

non-increasing (except in the cases when cðtÞ crosses the

boundaries of ½0; 1�, which can be shown to by S-invariance

of l cancel out), zðlðtÞÞ is non-increasing. Similarly, a conti-

nuity argument and (I2) imply (M2). �

Proof of Theorem 7. By Proposition 4, we can assume

u and v are in the support of some S, T-invariant measure l
(if not the same measure, we take their convex combination

l ¼ l1=2þ l2=2 and obtain again an S, T-invariant mea-

sure). If u and v intersect non-transversally, by Theorem 6,

ZðlðtÞÞ is strictly decreasing at t¼ 0. But, l is T-invariant,

thus ZðlðtÞÞ must be constant, which is a contradiction.

Now, if pðuÞ ¼ pðvÞ for some u; v 2 A, by definition they

intersect non-transversally, which is impossible. �

Prior to the proof of Theorem 8, we need an intermedi-

ate result. Assume (2) is in the depinned phase for some

q 2 R. Denote by S�q the support of the synchronized mea-

sure l from Definition 5.

Lemma 15. If u 2 S�q, depinned, then no configuration
in A can intersect u more than once.

Proof. By definition, p0 : S�q ! S
1

is bijective (injective

due to synchronization; onto as in the depinned phase).

Thus, its lift ~S�q (i.e., not considered on a quotient space) is

an image of a continuous curve c : R! ~A; cð0Þ ¼ u,

increasing in each coordinate. Assume some v 2 ~A intersects

u twice, say between j; jþ 1 and k; k þ 1. Without loss of

generality, let vj � uj; vjþ1 > ujþ1; :::; vk�1 > uk�1; vk � uk;
vkþ1 < ukþ1. Let s> 0 be the largest s such that cðsÞ and v
intersect between j; :::; k þ 1. By continuity of c, cðsÞ and v
intersect non-transversally, which is in contradiction to

Theorem 7. �

Proof of Theorem 8. Let q 2 R. We first show that Sq

is not empty. Choose a synchronized orbit u in Xq (which

exists by Theorem 2). Let B be the smallest, closed,

S; T-invariant set containing u. As (3) holds with K¼ 1, we

see that B � Xq. Thus, B is compact. By definition and con-

tinuity, if two configurations in B intersect, they must inter-

sect non-transversally. Compactness of B implies that there

exists an S, T-invariant measure l supported on B. As B con-

tains no transversal intersections, l by Theorem 7 contains

no intersections at all. It is then by definition synchronized,

thus Sq is not empty.

To show that Aq ¼ Sq, it suffices to show that Aq ¼ S�q.

Here, S�q ¼ suppðlÞ, l are as defined prior to Lemma 15.

Choose any v 2 Aq. By Proposition 4, v is in the support of

an S, T-invariant measure f. By definition of l, we can find u
in the support of l such that u0 ¼ v0. If u 6¼ v, by Lemma 10,

u and v intersect exactly once. Now, l� f is a probability

measure on Aq �A, invariant for S� S. If U and V are small

enough neighborhoods of u and v in Aq such that any two

configurations in U and V also intersect at site 0, by Poincar�e
recurrence applied to S� S on U�V, we can find u0 2
U; v0 2 V such that u0; v0 intersect infinitely many times. As

by (3), there exists K such that for all j 2 Z; juj � vjj � K
(as they have the same mean spacing), we can find their rep-

resentatives in ~Aq, which intersect infinitely many times,

which is in contradiction to Lemma 15.

Now, as Aq ¼ Sq ¼ S�q, by definition of the depinned

phase and S�q, it must project to a KAM-circle. �

Proof of Corollary 9. Uniqueness of the S, T-invariant

measure for irrational q follows from the Denjoy theory (in

that case, there is a unique S-invariant measure, Ref. 20,

Section 12.7). �

Proof of Corollary 10. In the proof of Theorem 8

above, we showed that in the depinned phase, Aq ¼ S�q.

Thus, the claim follows from Lemma 15. �

In the proof of Theorem 12, we will require the follow-

ing, which was proved in Ref. 35, Theorem 1.4.

Theorem 16. In the DC case, the attractor A consists of
equilibria and depinned synchronized trajectories.

Here, equilibria are configurations u for which

@u=@t ¼ 0.

Proof of Theorem 12. If u has at most k defects, u and

any translate Sm;nu intersect at most k times. By continuity,

as ~xðuÞ � xðuÞ and as trajectories in ~xðuÞ by Theorem 7

cannot intersect non-transversally, for any v 2 ~xðuÞ, v and

Sn;mv intersect at most k times. By Theorem 16, v is either
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depinned synchronized (so the proof is done) or an equilib-

rium. If v is an equilibrium, it is in the support of an S-

invariant measure l supported on the closure (in Xq) of

Snv; n 2 Z, thus supported on equilibria. As the number of

self-intersections of two configurations in the support is finite

and bounded by k, one can (e.g., by the Birkhoff ergodic the-

orem) easily show that ZðlÞ ¼ 0. Thus, all v in the support

of l must be synchronized.�
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