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Abstract. We study the fractal oscillatory of a class of smooth real functions near infinity
by connecting their oscillatory and phase dimensions, defined as the box dimension of their
graphs and of the corresponding phase spirals, respectively. In particular, we introduce
wavy spirals, which exhibit non-monotone radial convergence to the origin.
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1. Introduction11

fractal analysis of differential equations since emerged in the last decades as an12

important tool in better understanding the behavior of their oscillatory solutions.13

The main focus of fractal analysis in dynamics is on fractal dimension theory. Its14

goal is to determine complexity of invariant sets and measures using fractal dimen-15

sions. The fractal dimension has been successfully used in studying, for instance,16

the logistic map, the Smale horseshoe, Lorenz and Hénon attractors, Julia and Man-17

delbrot sets, spiral trajectories, infinite-dimensional dynamical systems and even in18

the probability theory; see [26].19

In this paper we are focused on studying the connection between the fractal di-20

mension of graphs of oscillatory solutions and the fractal dimension of the associated21

phase portraits. In particular, we use the box dimension, which we exploit instead of22

the Hausdorff dimension. Due to the countable stability of the Hausdorff dimension,23

its value is trivial on all smooth nonrectifiable curves, while the box dimension is24

nontrivial, that is, larger than 1. From the point of view of fractal analysis of trajec-25

tories and graphs of solutions of differential equations, most interesting are solutions26

having phase plots and graphs of an infinite length. The Hausdorff dimension, unlike27

the box dimension, is not suitable to classify these solutions.28

Our work was initially inspired by Tricot [20], where the box dimension of graphs29

of a simple spiral (r = φ−α, α ∈ (0, 1), in polar coordinates) and of an (α, β)-chirp30

(f(t) = tα cos t−β , α > 0, β > 0) has been computed near the origin. Since then,31

these results have been generalized to some more general spiral trajectories of dynam-32

ical systems and to chirp-like functions. Fractal properties of spiral trajectories of33
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dynamical systems in the phase plane have been studied by Žubrinić and Županović;1

see [23, 24, 25]. An interesting behavior of the box dimension of spiral trajectories2

has been discovered and related to the bifurcation of a system, in particular to the3

Hopf bifurcation. On the other hand, the chirp-like behavior of solutions of different4

types of second-order linear differential equations is also of interest. The Euler type,5

half linear and Bessel equations have been studied by Pašić, Tanaka and Wong; see6

[13, 14, 21]. More specifically, this work has been motivated by Pašić, Žubrinić and7

Županović [15], containing the first results connecting fractal properties of chirps8

and spirals, with applications to Liénard and Bessel equations.9

All of this encouraged us to study and analyze the connection between chirp-like10

functions and the corresponding spiral trajectories in the phase plane and vice versa.11

There are two possible ways of looking at solutions: using the graph of a solution, or12

using the phase plot of the solution, and the latter was first theoretically developed13

by Poincaré. Our main results are obtained in Theorems 4 and 7. An application14

to the Bessel equation can be found in [8].15

A specific type of a spiral associated to the oscillatory solutions of Bessel equa-16

tions emerged in our study of phase portraits, converging to the origin in a non-17

monotone way as a function of φ. We call it the wavy spiral ; see Definition 10. It18

also appears in the study of the curves obtained via the parametrization of the oscil-19

latory integrals studied in Arnol′d, Gusĕın-Zade and Varchenko, [1, Part II]. These20

curves can exhibit even more complex behavior, having self-intersections. The os-21

cillatory integrals from [1] are naturally related to generalized Fresnel integrals, and22

fractal properties of the associated spirals studied in [7].23

Techniques of fractal analysis have also been successfully applied to the study24

of bifurcations (see, e.g., Horvat Dmitrović [5], Li and Wu [22], Mardešić, Resman25

and Županović [9], Resman [17]), as well as to the case of the Hopf bifurcation at26

infinity (see Radunović, Žubrinić and Županović [16]), and to the infinite-dimensional27

dynamical systems related to a class of Schrödinger equations (see Milǐsić, Žubrinić28

and Županović [10]).29

2. Definitions and notation30

Given a bounded subset A of RN , we define the ε-neighborhood of A by Aε :=31

{y ∈ RN : d(y,A) < ε}, where d(y,A) denotes the Euclidean distance from y32

to A. The lower s-dimensional Minkowski content of A, where s ≥ 0, is defined33

by Ms
∗(A) := lim infε→0

|Aε|
εN−s , and analogously the upper s-dimensional Minkowski34

content M∗s(A). If both of these quantities coincide, the common value is called the35

s-dimensional Minkowski content of A, and denoted by Ms(A). Now we introduce36

the lower and upper box dimensions of A by dimBA := inf{s ≥ 0 : Ms
∗(A) = 0},37

and dimBA := inf{s ≥ 0 : M∗s(A) = 0}, respectively. If these two values coincide,38

we call it simply the box dimension of A, and denote it by dimB A.39

Definition 1 (The Minkowski nondegeneracy). If 0 < Md
∗(A) ≤ M∗d(A) < ∞40

for some d, then we say that A is Minkowski nondegenerate. In this case obviously41

d = dimB A.42
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More details on these definitions can be found in Falconer [3] and Tricot [20].1

Some generalizations are given in [9].2

Definition 2 (The oscillatory function near ∞ and 0). Let x : [t0,∞) → R, where3

t0 > 0, be a continuous function. We say that the function x is oscillatory near4

t = ∞ if there exists a sequence tk → ∞, such that x(tk) = 0 and the functions5

x|(tk,tk+1) alternately change a sign for k ∈ N.6

Analogously, let u : (0, t0] → R, where t0 > 0, be a continuous function. We say7

that the function u is oscillatory near the origin if there exists a sequence sk such8

that sk ↘ 0 as k → ∞, u(sk) = 0 and the restrictions u|(sk+1,sk) alternately change9

a sign for k ∈ N.10

Definition 3 (The d-dimensional fractal oscillatory function (see Pašić [11])). Sup-11

pose that v : I → R, where I = (0, 1], is an oscillatory function near the origin and12

d ∈ [1, 2). We say that v is the d-dimensional fractal oscillatory function near the13

origin if dimB G(v) = d and 0 < Md
∗(G(v)) ≤ M∗d(G(v)) < ∞, where G(v) denotes14

the graph of v.15

Assume that the function x : [t0,∞) → R is oscillatory near t = ∞. Let us16

define X : (0, 1/t0] → R, by X(τ) = x(1/τ). It is clear that the function X = X(τ)17

is oscillatory near the origin. We measure the rate of oscillatority of x = x(t) near18

t = ∞ by the rate of oscillatority of X(τ) near τ = 0.19

Definition 4 (The oscillatory dimension). The oscillatory dimension dimosc(x)20

(near t = ∞) is defined as the box dimension of the graph of the function X = X(τ)21

near τ = 0, dimosc(x) = dimB G(X), provided the box dimension exists.22

Definition 5 (The spiral). By a (positively oriented) spiral we mean the graph of23

a function r = f(φ), for φ ≥ φ1 > 0, in polar coordinates, where:24

f : [φ1,∞) → (0,∞), f(φ) → 0 as φ → ∞,25

and f is radially decreasing (i.e., for any fixed φ ≥ φ1 the function N ∋ k 7→26

f(φ+ 2kπ) is decreasing).27

This definition appears in [23]. By a negatively oriented spiral we mean the28

graph of a function r = g(φ), for φ ≤ φ′
1 < 0, in polar coordinates, such that the29

curve defined as the graph of r = g(−φ), φ ≥ |φ′
1| > 0, given in polar coordinates,30

satisfies the conditions of Definition 5. It is easy to see that the spiral defined by a31

function g(φ) is a mirror image of the spiral defined by g(−φ), with respect to the32

x-axis. Both types of spirals will be called the spiral, in short. We also say that33

the graph of a function r = f(φ), for φ ≥ φ1 > 0, defined in polar coordinates, is34

a spiral near the origin if there exists φ2 ≥ φ1, such that the graph of the function35

r = f(φ), for φ ≥ φ2, viewed in polar coordinates, is the spiral.36

Assume now that a function x is of class C1. We say that the function x is phase37

oscillatory if the set Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)} in the plane is a spiral converging38

to the origin.39

Definition 6 (The phase dimension). The phase dimension dimph(x) of a function40

x : [t0,∞) → R of class C1 is defined as the box dimension of the corresponding41

planar curve Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)}.42
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The oscillatory and phase dimensions are fractal dimensions, introduced in the1

study of chirp-like solutions of second order ODEs; see [15].2

For any two real functions f(t) and g(t) of a real variable we write f(t) ≃ g(t)3

as t → 0 (resp., as t → ∞) if there exist two positive constants C and D such4

that C f(t) ≤ g(t) ≤ Df(t) for all t sufficiently close to t = 0 (resp., for all t5

sufficiently large). For a function F : U → V , with U, V ⊂ R2, V = F (U), we write6

|F (x1)−F (x2)| ≃ |x1 −x2| if F is a bi-Lipschitz mapping, i.e., both F and F−1 are7

Lipschitz functions.8

Definition 7 (The k-similarity). Let k be a fixed positive integer and let f and g9

be two functions of class Ck. For any nonzero integer j ≤ k, we say that f (j)(t) ∼10

g(j)(t) as t → 0 (resp., as t → ∞) if f (j)(t)/g(j)(t) → 1 as t → 0 (resp., as t → ∞).11

If for all j = 0, 1, ..., k we have that f (j)(t) ∼ g(j)(t) as t → 0 (resp., as t → ∞),12

then we write that f(t) ∼k g(t) as t → 0 (resp., as t → ∞).13

Analogously, if k is a fixed positive integer, for any two given functions f and g14

of class Ck we write that f(t) ≃k g(t) as t → 0 (resp., as t → ∞), if f (j)(t) ≃ g(j)(t)15

as t → 0 (resp., as t → ∞) for all j = 0, 1, ..., k.16

We write f(t) = O(g(t)) as t → 0 (as t → ∞) if there exists a positive constant17

C such that |f(t)| ≤ C|g(t)| for all t sufficiently close to t = 0. (for all t sufficiently18

large). Similarly, we write f(t) = o(g(t)) as t → ∞ if for every positive constant ε19

it holds |f(t)| ≤ ε|g(t)| for all t sufficiently large.20

Definition 8 (The (α, β)-chirp-like function). A function of the following form,21

y = P (x) sin(Q(x)) or y = P (x) cos(Q(x)), where P (x) ≃ xα, Q(x) ≃1 x−β as22

x → 0, with α > 0 and β > 0, is called the (α, β)-chirp-like function near x = 0. A23

special case is the (α, β)-chirp, defined by P (x) = xα and Q(x) = xβ.24

3. Spirals generated by chirps25

We study spirals generated by chirps in the sense of Theorem 4; see Definitions 526

and 8. To prove Theorem 4 about the box dimension of a spiral generated by a chirp27

we need a new version of [23, Theorem 5]. Let us first recall [23, Theorem 5], cited28

here in a more condensed form, suitable for our purposes. The following theorem29

extends a result about the box dimension of a spiral due to Dupain, Mendès France30

and Tricot; see [2, 20].31

Theorem 1 (Theorem 5 from [23]). Let f : [φ1,∞) → (0,∞) be a decreasing32

function of class C2, such that f(φ) → 0 as φ → ∞. Let α ∈ (0, 1). Assume that33

there exist positive constants m, m, M1, M2 and M3 such that for all φ ≥ φ1 > 0,34

mφ−α ≤ f(φ) ≤ mφ−α, M1φ
−α−1 ≤ |f ′(φ)| ≤ M2φ

−α−1, |f ′′(φ)| ≤ M3φ
−α.35

Let Γ be the graph of r = f(φ) in polar coordinates. Then dimB Γ = 2/(1 + α).36

Now we provide an adapted version of Theorem 1.37

Theorem 2 (The dimension of a piecewise smooth nonincreasing spiral). Let f :38

[φ1,∞) → (0,∞) be a nonincreasing and radially decreasing function, as well as a39
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continuous and piecewise continuously differentiable function. We assume that the1

number of smooth pieces of f in [φ1, φ1] is finite, for any φ1 > φ1. Assume that2

there exist positive constants α, m, m, a and M such that for all φ ≥ φ1,3

mφ−α ≤ f(φ) ≤ mφ−α, aφ−α−1 ≤ f(φ)− f(φ+ 2π),4

and for all φ where f(φ) is differentiable, |f ′(φ)| ≤ Mφ−α−1. Let Γ be the graph of5

r = f(φ) in polar coordinates. If α ∈ (0, 1) then dimB Γ = 2/(1 + α).6

Remark 1. Notice the difference between the assumptions of Theorems 1 and 2. In7

Theorem 1, the function f is decreasing and of class C2. By careful examination8

of the proof of [23, Theorem 5], one can see that f being decreasing is used only in9

the sense of nonincreasing, that is, not strictly decreasing, hence in Theorem 1 we10

can assume that f is nonincreasing. The additional smoothness of f and additional11

conditions regarding constants M1 and M3 in Theorem 1 are used only in the cal-12

culation of the Minkowski content in [23, Theorem 5] which we exclude from our13

Theorem 2. Further reduction in smoothness of f from a continuously differentiable14

to the piecewise continuously differentiable function can be found in Lemma 1.15

For the proof of Theorems 2 and 4 below, we need the following lemma, which16

is a generalization of [23, Lemma 1] dealing with smooth spirals.17

Lemma 1 (The excision property for piecewise smooth curves). Let Γ be the image18

of a continuous and piecewise continuously differentiable function h : [φ1,∞) → R2
19

(piecewise in the sense of Theorem 2). Assume that dimBΓ > 1, Γ1 := h((φ1,∞)),20

for some fixed φ1 > φ1, and h([φ1, φ1])
∩
Γ1 = ∅. Then dimBΓ1 = dimBΓ and21

dimBΓ1 = dimBΓ.22

Proof. The proof is analogous to the proof of [23, Lemma 1], but with the follow-23

ing difference. Here, the curve Γ2 := Γ\Γ1 = h([φ1, φ1]) is rectifiable due to the24

piecewise rectifiability of h and due to the finite number of pieces in the segment25

(φ1, φ1]. The function h is piecewise rectifiable due to its piecewise smoothness and26

continuity. Also, by careful examination of the proof of [23, Lemma 1], it follows27

that we can substitute the injectivity assumption on h with the weaker condition28

that h([φ1, φ1])
∩
Γ1 = ∅. (For more details, see [23, Lemma 1].)29

Proof of Theorem 2. The proof is analogous to the proof of [23, Theorem 5], but30

using the new Lemma 1.31

Theorem 3 deals with a spiral Γ′ described by r = f(φ), where f(φ) → 0 as32

φ → ∞ in a nonmonotonous way; see Definitions 9 and 10 below. Such a property33

of Γ′ is called the spiral waviness and it is defined below.34

Definition 9 (The wavy function). Let r : [t0,∞) → (0,∞) be a C1 function.
Assume that r′(t0) ≤ 0. We say that r = r(t) is the wavy function if the sequence
(tn) defined inductively by

t2k+1 = inf{t : t > t2k, r
′(t) > 0}, t2k+2 = inf{t : t > t2k+1, r(t) = r(t2k+1)}, k ∈ N0,
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Figure 1: The function r(t) for p(t) = t−1/2, with t0 = 0.6; see Lemma 3. This is a wavy function;
see Definition 9, with local minima at t2k+1, k = 0, 1, . . .

is well-defined, and satisfies the waviness conditions:1

(i) The sequence (tn) is increasing and tn → ∞ as n → ∞.

(ii) There exists ε > 0, such that for all k ∈ N0 we have t2k+1−t2k ≥ ε.

(iii) For all k sufficiently large it holds osc
t∈[t2k+1,t2k+2]

r(t) = o
(
t−α−1
2k+1

)
,

α ∈ (0, 1),

(1)2

where osc
t∈I

r(t) := max
t∈I

r(t)−min
t∈I

r(t).3

Notice that mint∈[t2k+1,t2k+2] r(t) = r(t2k+1). Condition (i) means that the prop-4

erty of waviness of r = r(t) is global on the whole domain. Condition (ii) is connected5

to an assumption of Lemma 3. Condition (iii) is a condition on a decay rate on the6

sequence of oscillations of r on Ik = [t2k+1, t2k+2], for k sufficiently large. Also,7

observe that the condition r′(t0) ≤ 0 assures that t1 is well-defined; see Figure 1.8

Definition 10 (The wavy spiral). Let a spiral Γ′ be given in polar coordinates by9

r = f(φ), where f is a given function. If there exists an increasing or decreasing10

function of class C1, φ = φ(t), such that r(t) = f(φ(t)) is the wavy function, then11

we say Γ′ is the wavy spiral.12

For an example of a spiral Γ′, see Figure 2. Now, using Theorem 2 and Lemma 113

we prove the following Theorem 3.14

Theorem 3 (The box dimension of a wavy spiral). Let t0 > 0 and assume r :15

[t0,∞) → (0,∞) is a wavy function. Assume that φ : [t0,∞) → [φ0,∞) is an16

increasing function of class C1 such that φ(t0) = φ0 > 0 and there exists φ̄0 ∈ R17

such that18

|(φ(t)− φ̄0)− (t− t0)| → 0 as t → ∞. (2)19
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Figure 2: The spiral Γ′ for p(t) = t−1/2, with t0 = 0.6; see Lemma 3, is a wavy spiral; see
Definition 10. Highlighted points correspond to parameters tk, k = 1, 2, . . .

Let f : [φ0,∞) → (0,∞) be defined by f(φ(t)) = r(t). Assume that Γ′ is a spiral1

defined in polar coordinates by r = f(φ), satisfying Definition 5. Let α ∈ (0, 1) be2

the same value as in (1)(iii) for the wavy function r, and assume ε′ is such that3

0 < ε′ < ε, where ε is defined by (1)(ii) for the wavy function r. Assume that there4

exist positive constants m, m, a′ and M such that for all φ ≥ φ0,5

mφ−α ≤ f(φ) ≤ mφ−α, (3)6

7

|f ′(φ)| ≤ Mφ−α−1, (4)8

and for all △φ, such that θ ≤ △φ ≤ 2π + θ, there holds9

a′φ−α−1 ≤ f(φ)− f(φ+△φ), (5)10

where θ := min {ε′, π}. Then Γ′ is the wavy spiral and dimB Γ′ = 2/(1 + α).11

The proof of Theorem 3 is given in [8]. Now, Theorem 3 enables us to calculate12

the box dimension of the spiral generated by a chirp, which is one of the main results13

of this paper.14

Theorem 4 (The chirp–spiral comparison). Let α > 0. Assume that X : (0, 1/τ0] →15

R, τ0 > 0, X(τ) = P (τ) sin 1/τ , where P (τ) is a positive function such that P (τ) ∼316

τα as τ → 0. Define x(t) := X(1/t) and a continuous function φ(t) by tanφ(t) =17

ẋ(t)
x(t) .18

(i) If α ∈ (0, 1), then the planar curve Γ := {(x(t), ẋ(t)) ∈ R : t ∈ [τ0,∞)}19

generated by X is a wavy spiral r = f(φ), φ ∈ (−∞,−ϕ0] near the origin. We20

have f(φ) ≃ |φ|−α as φ → −∞, and dimph(x) := dimB Γ = 2/(1 + α).21
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(ii) If α > 1, then the planar curve Γ := {(x(t), ẋ(t)) ∈ R : t ∈ [τ0,∞)} is a1

rectifiable wavy spiral near the origin.2

The proof of Theorem 4 consists of checking the conditions of Theorem 3. The3

following lemmas make this verification easy.4

Lemma 2. Let α > 0 and assume that P (τ), τ ∈ (0, 1/t0], t0 > 0, is such that5

P (τ) ∼3 τα as τ → 0. Then p(t) := P ( 1t ) ∼3 t−α as t → ∞ and vice versa.6

Furthermore, we have:7

lim
t→∞

p′(t)

p(t)
= 0, lim

t→∞

p′′(t)

p(t)
= 0, (6)8

9

− p(t)

p′(t)
∼ t

α
, −2p′(t)

p′′(t)
∼ 2t

α+ 1
as t → ∞, (7)10

11

sup
t∈[t0,∞)

(
− p(t)

p′(t)

)′

< ∞, sup
t∈[t0,∞)

(
−2p′(t)

p′′(t)

)′

< ∞. (8)12

The claims of Lemma 2 follow directly from the assumptions.13

Lemma 3. Let α ∈ (0, 1) and

r(t) = p(t)

√
1 +

[p′(t)]2

[p(t)]2
[sin t]2 +

p′(t)

p(t)
sin 2t, t ∈ [t0,∞), t0 > 0,

where p(t) ∼1 t−α as t → ∞.14

Let C ∈ R and assume that t(φ) = φ+ C + O(φ−1) as φ → ∞. Let △φ > 1 be15

fixed. Then there exists a constant k > 0, independent of φ and △φ, such that for16

all φ sufficiently large it holds r(t(φ))− r(t(φ+△φ)) ≥ kφ−α−1(1 +O(φ−1)).17

The proof of Lemma 3 easily follows using Lemma 2, and will be omitted.18

Proof of Theorem 4. (i) Step 1. (The box dimension is invariant with respect to19

mirroring of a spiral.) We will prove the equivalent claim, that the planar curve20

Γ′ = {(x(t),−ẋ(t)) : t ∈ [τ0,∞)} is a wavy spiral defined by r = f(φ), φ ∈ [ϕ0,∞),21

near the origin, satisfying f(φ) ≃ φ−α, in polar coordinates, near the origin, and22

dimB Γ′ = 2
1+α . It is easy to see that the curve Γ is a mirror image of the curve23

Γ′, with respect to the x-axis and hence Γ is the wavy spiral. Reflecting with24

respect to the x-axis in the plane is an isometric map. As the isometric map is25

bi-Lipschitz and therefore it preserves the box dimension (see [3, p. 44]), we see that26

dimB Γ = dimB Γ′ = 2
1+α .27

Step 2. (Checking condition (3).) From x(t) = p(t) sin t and ẋ(t) = p′(t) sin t +28

p(t) cos t, where p(t) := P (1/t), we compute29

tanφ(t) = − ẋ(t)

x(t)
= −p′(t)

p(t)
− 1

tan t
. (9)30

By differentiating (9) we obtain31

dφ

dt
(t) = [cosφ(t)]2

[
[p′(t)]2 − p(t)p′′(t)

[p(t)]2
+

1

[sin t]2

]
. (10)32
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Using (9) again, we have1

[cosφ(t)]2 =
1

1 + [tanφ(t)]2
=

[p(t) sin t]2

[p(t)]2 + [p′(t) sin t]2 + 2p(t)p′(t) sin t cos t
. (11)2

Substituting into (10) and using (6) we get3

lim
t→∞

dφ

dt
(t) = 1. (12)4

From (12), it follows that φ ≃ t as t → ∞ and5

[r(t)]2 = [x(t)]2 + [−ẋ(t)]2 = [p(t)]2 + [p′(t) sin t]2 + p(t)p′(t) sin 2t (13)6

implies that7

f(φ(t)) = r(t) ≃ t−α ≃ φ−α as t → ∞. (14)8

Notice that from (13) it follows that the function r(t) is of class C2 and by substi-9

tuting (11) into (10), taking (13) into account, we see that the function φ(t) is of10

class C1.11

Step 3. (Checking condition (4).) On the other hand, differentiating (13) we12

obtain that13

dr

dt
(t) =

[
2p(t)p′(t)[cos t]2+

2[p′(t)]2 + p(t)p′′(t)

2
sin 2t+p′(t)p′′(t)[sin t]2

] 1

r(t)
. (15)14

Also, from (15) we have15

dr

dt
(t) =

2p(t)p′(t)

r(t)
[cos t]2 +O(t−α−2) as t → ∞. (16)16

Since dr
dt (t) = f ′(φ) · dφ

dt (t) and since by (12) we have dφ
dt (t) ≃ 1 as t → ∞, there17

exists C0 > 0 and C1 > C0 such that |f ′(φ)| ≤ C0t
−α−1 ≤ C1φ

−α−1 as φ → ∞.18

Step 4. (Checking condition (2).) Using (9) and [8, Lemma 7], we obtain19

tanφ(t) = −(cot t+ O(t−1)) = − cot(t+ O(t−1)) = tan(t+ π
2 + O(t−1)) as t → ∞.20

Since the function φ(t) is continuous by the definition and O(t−1) < π for t suffi-21

ciently large, then there exists k ∈ Z such that φ(t) = (t+ π
2+kπ)+O(t−1) as t → ∞.22

From the definition of φ(t) we conclude that we may take without loss of generality23

k = 0. Finally, we get24

φ(t) =
(
t+

π

2

)
+O(t−1) as t → ∞. (17)25

Step 5. (Checking condition (5).) From (12) it follows that there exists τ1 ≥ τ026

such that dφ
dt (t) > 0 for all t ≥ τ1. Hence, the function φ(t) is increasing for all27

t sufficiently large. As the function φ(t) is continuous, we conclude that for all φ28

sufficiently large there exists the inverse function t = t(φ) of the function φ = φ(t)29

and t(φ) =
(
φ− π

2

)
+ O(φ−1) as φ → ∞. Define the value ϕ1 := φ(τ1) and notice30

that we can take τ1 sufficiently large such that ϕ1 ≥ ϕ0.31
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From (13), we obtain r(t) = p(t)
√
1 + [p′(t)]2

[p(t)]2 [sin t]
2 + p′(t)

p(t) sin 2t. By Lemma 31

we conclude that for fixed △φ > 1 we have2

f(φ)− f(φ+△φ) = r(t(φ))− r(t(φ+△φ)) ≥ k1φ
−α−1, (18)3

provided that φ is sufficiently large. Moreover, by careful examination of the proof4

of Lemma 3, we conclude that equation (18) holds uniformly for every △φ from a5

bounded interval whose lower bound is greater than 1, also provided φ is sufficiently6

large. (We note that we will have to require that θ from Theorem 3 is larger than 1.)7

Step 6. (Γ′ is a spiral near the origin.) Now we can prove that Γ′ is a spiral8

near the origin, that is, f(φ) satisfies Definition 5 near the origin. First, from (14) it9

follows that f(φ) → 0 as φ → ∞. Second, from (18) it follows that f(φ) is radially10

decreasing for all φ sufficiently large, that is, there exists ϕ2 ≥ ϕ1 such that f |[ϕ2,∞)11

is radially decreasing.12

Step 7. (The box dimension is invariant with respect to taking τ0 and ϕ0 suf-13

ficiently large.) First, we define τ2 to be such that φ(τ2) = ϕ2. Notice that τ2 is14

well-defined and τ2 ≥ τ1. As p(t) > 0, from (13) and the definition of x(t) and ẋ(t),15

it follows that r(t) > 0, that is, r(t) is a strictly positive function. This means that16

there exists a constant m1 > 0 such that r(t) > m1 for all t ∈ [τ0, τ2]. Observe that17

ϕ2 ≥ ϕ1 ≥ ϕ0. From (14) it follows that r(t) → 0 as t → ∞, so there exists τ3 ≥ τ218

such that r(t) < m1 for all t ∈ [τ3,∞). We define ϕ3 := φ(τ3). Notice that we could19

increase τ3 and ϕ3 to accommodate all requirements, in different parts of the proof,20

on t or φ being sufficiently large. Now, using the upper and lower bounds on r(t),21

we conclude that Γ′|[τ0,τ2]
∩
Γ′|(τ3,∞) = ∅. As f |[ϕ2,∞) is radially decreasing and22

φ′(t) > 0 for all t ∈ [τ2,∞), it follows that Γ′|(τ2,∞) does not have self intersections,23

so that Γ′|[τ2,τ3]
∩

Γ′|(τ3,∞) = ∅.24

Finally, we conclude that Γ′|[τ0,τ3]
∩
Γ′|(τ3,∞) = ∅. Now, we can apply Lemma 125

to the curve Γ′. Using Lemma 1 we see that we can assume without loss of generality26

that τ0 and ϕ0 appearing in the assumptions of the theorem, are sufficiently large.27

Informally, we can always remove any rectifiable part from the beginning of Γ′,28

without changing the box dimension of Γ′.29

Step 8. (Checking waviness conditions (1).) By factoring (15), we get30

dr

dt
(t) =

(
1 +

p′(t)

p(t)
tan t

)(
1 +

p′′(t)

2p′(t)
tan t

)
2p(t)p′(t)

r(t)
[cos t]2, (19)31

for every t ̸= π
2 + kπ, k ∈ Z (cos t ̸= 0). By Lemma 6 and Remark 6 (see below) and32

using (7) and (8), there exists k0 ∈ N0 such that the equations tan t = − p(t)
p′(t) and33

tan t = − 2p′(t)
p′′(t) , have unique solutions t̂2k and t2k−1, respectively, in the intervals34

((k+ k0)π− π, (k+ k0)π− π
2 ), for each k ∈ N0, since − p(t)

p′(t) ∼
t
α and − 2p′(t)

p′′(t) ∼ 2t
α+135

as t → ∞. Moreover, by taking k0 to be sufficiently large, from (7) and using36

inequalities 1 < 2/(α + 1) < 1/α, we see that t̂2k and t2k−1 even lie in the smaller37

intervals38

((k + k0)π − π

2
− π

3
, (k + k0)π − π

2
), (20)39
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for each k ∈ N0. (The statement is true for interval of any length provided the upper1

bound is (k + k0)π − π
2 . We choose the value π/3, because it is convenient later in2

the proof.)3

Because of 1
α ̸= 2

α+1 we see that − p(t)
p′(t) ̸= − 2p′(t)

p′′(t) for t sufficiently large, so4

t̂2k ̸= t2k−1 for k0 sufficiently large. We can take without loss of generality that5

t2k−1 < t̂2k. Hence, t̂2k − t2k−1 < π/3 for every k ∈ N, provided k0 is sufficiently6

large. It is easy to see from (19) that dr
dt (t) > 0, for all t ∈ (t2k−1, t̂2k). As dφ

dt (t) > 07

for all t sufficiently large, from dr
dt (t) = f ′(φ) · dφ

dt (t) it follows that f
′(φ) > 0 on the8

set
∪∞

k=1(φ2k−1, φ̂2k), where φ2k−1 := φ(t2k−1) and φ̂2k := φ(t̂2k). This implies that9

the function f(φ) is increasing for some φ, so we cannot apply Theorem 2 directly.10

Notice that if t ∈
∪∞

k=0(t2k−1, t̂2k), then r′(t) > 0 and if t ∈
∪∞

k=0(t̂2k, t2k+1), then11

r′(t) < 0.12

We would like to prove that for every k ∈ N0 there exists a unique t2k ∈13

(t̂2k, t2k+1) such that r(t2k) = r(t2k−1) and t2k − t2k−1 < π/3 (where we will take k014

from (20) to be sufficiently large). As r(t̂2k) > r(t2k−1), and as the function r(t) is15

a continuous and strictly decreasing function on the interval (t̂2k, t2k+1), it follows16

that, if such t2k exists, then it is necessary unique, so we only need to prove the17

existence.18

For every k ∈ N0 we take t̄2k := t2k−1 + π/3. Observe that t̄2k ∈ (t̂2k, t2k+1),19

because from (20) follows that t2k+1 − t2k−1 > 2π/3 and t̂2k − t2k−1 < π/3. Define20

φ̄2k := φ(t̄2k) and take φ2k−1 as defined before. Using (17), we can take t or21

equivalently k0 sufficiently large, such that (π/3+ 1)/2 ≤ φ̄2k −φ2k−1 ≤ 2 for every22

k ∈ N0. (The exact value of the upper bound is not important. We just take a value23

larger than π/3. For the lower bound, it is only important that it is between 1 and24

π/3, so we take the mean value between these two.)25

Now, using Lemma 3, analogously as in Step 5, we compute26

r(t2k−1)− r(t̄2k) = r(t(φ2k−1))− r(t(φ̄2k))27

= r(t(φ2k−1))− r(t(φ2k−1 + (φ̄2k − φ2k−1))) ≥ C2φ
−α−1
2k−1 > 0,28

for some C2 > 0, provided φ or equivalently k0 is sufficiently large. From this it29

follows r(t̄2k) < r(t2k−1), and as the function r(t) is of class C1, strictly decreasing30

on the interval (t̂2k, t̄2k) and r(t̂2k) > r(t2k−1), we see that there exist t2k ∈ (t̂2k, t̄2k)31

such that r(t2k) = r(t2k−1) and obviously t2k − t2k−1 < π/3. Using t2k+1 − t2k−1 >32

2π/3, it follows that t2k+1 − t2k > 2π/3− π/3 = π/3. We established that for every33

k ∈ N0 we have t2k+1 > t2k > t2k−1. Notice that r′(t0) ≤ 0 and that the sequence34

(tn)n∈N0
, is the same as the sequence from Definition 9, introduced for the function35

r(t).36

As t2k+1 − t2k−1 > 2π/3 for every k ∈ N0, we conclude that tn → ∞ as n → ∞,37

which means that the sequence (tn) satisfies condition (1)(i). As t2k+1 − t2k > π/338

for every k ∈ N0, by taking ε = π/3, we see that the sequence (tn) satisfies condition39
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(1)(ii). Using (16), we conclude that there exist C3, C4 ∈ R, C4 > C3 > 0, such that1

osc
t∈[t2k+1,t2k+2]

r(t) = r(t̂2k+2)− r(t2k+1) =

t̂2k+2∫
t2k+1

r′(t) dt2

≤ 1

3
sup

t∈[t2k+1,t̂2k+2]

r′(t) ≤ C3t
−α−2
2k+1 ≤ C4t̂

−α−2
2k+2 ,3

for every k ∈ N0, which means that the sequence (tn) satisfies condition (1)(iii).4

Finally, we conclude that the sequence (tn) satisfies waviness conditions (1), so that5

r(t) is a wavy function and Γ′ is a wavy spiral near the origin.6

Step 9. (The final conclusion.) From the previous steps, we see directly that7

all assumptions of Theorem 3 are fulfilled. We take ε′ = (π/3 + 1)/2 < ε and8

θ = min{ε′, π} = (π/3+1)/2. Using Theorem 3, we obtain that dimB Γ′ = 2/(1+α).9

10

(ii) To prove that Γ is a wavy spiral near the origin, notice that Steps 1–8 also11

hold for α > 1. To prove the rectifiability for α > 1, from (14), (12) and (16) we have12

that there exist positive constants C5, M1 and C6 such that for every t ∈ [t0,∞) it13

holds r(t) ≤ C5t
−α, φ′(t) ≤ M1, |r′(t)| ≤ C6t

−α−1. Therefore14

l(Γ) = l(Γ′) =

∫ ∞

t0

√
(r(t)φ′(t))2 + (r′(t))2 dt15

≤
∫ ∞

t0

√
M2

1C
2
5 t

−2α + C2
6 t

−2α−2 dt ≤ M2(t0)

∫ ∞

t0

|t|−α dt < ∞.16

17

4. Chirps generated by spirals18

Now we state a result which can be regarded as a sort of a converse of Theorem 4,19

where we obtain the box dimension of a chirp from the corresponding spiral. We20

begin with a theorem concerning the box dimension of the graph of a generalized21

(α, β)-chirp.22

Theorem 5 (The box dimension and Minkowski content of the graph of a general-23

ized (α, β)-chirp). Let y(x) = p(x)S(q(x)), where x ∈ I = (0, c] and c > 0. Let the24

functions p(x), q(x) and S(t) satisfy the following assumptions:25

p ∈ C(Ī) ∩ C1(I), q ∈ C1(I), S ∈ C1(R). (21)26

The function S(t) is assumed to be a 2T -periodic real function defined on R such27

that28 {
S(a) = S(a+ T ) = 0 for some a ∈ R,

S(t) ̸= 0 for all t ∈ (a, a+ T ) ∪ (a+ T, a+ 2T ),
(22)29

where T is a positive real number and S(t) alternately changes a sign on intervals30

(a+ (k − 1)T, a+ kT ), for k ∈ N. Without loss of generality, we take a = 0. Let us31
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suppose that 0 < α ≤ β and:1

p(x) ≃1 xα as x → 0, q(x) ≃1 x−β as x → 0. (23)2

Then, y(x) is d-dimensional fractal oscillatory near the origin, where d = 2 −3

(α+ 1)/(β + 1). Moreover, dimB(G(y)) = d and G(y) is Minkowski nondegenerate.4

Theorem 5 is an improved version of [6, Theorems 5 and 6]. Now we do not need5

any assumptions on the curvature function of y(x) = p(x)S(q(x)), as it was needed6

in [6]. Before proving Theorem 5, we shall cite a new criterion for fractal oscillations7

of a bounded continuous function and after that we continue with two propositions8

dealing with the properties of functions p, q and S.9

Theorem 6 (Theorem 2.1. from [13]). Let y ∈ C1((0, T ]) be a bounded function10

on (0, T ]. Let s ∈ [1, 2) be a real number and let (an) be a decreasing sequence of11

consecutive zeros of y(x) in (0, T ] such that an → 0 when n → ∞ and let there exist12

constants c1, c2, ε0 such that for all ε ∈ (0, ε0) we have:13

c1ε
2−s ≤

∑
n≥k(ε)

max
x∈[an+1,an]

|y(x)|(an − an+1), (24)14

15

ak(ε) sup
x∈(0,ak(ε)]

|y(x)|+ ε

∫ a1

ak(ε)

|y′(x)|dx ≤ c2ε
2−s, (25)16

where k(ε) is an index function on (0, ε0] such that

|an − an+1| ≤ ε for all n ≥ k(ε) and ε ∈ (0, ε0).

Then y(x) is fractal oscillatory near x = 0 with dimB G(y) = s.17

We remark that the claim of Theorem 6 is true if we substitute a1, appearing in18

(25), by ak0 , where k0 is a fixed positive integer.19

Proposition 1. Assume that the functions p(x) and q(x) satisfy conditions (21),20

(23). Then there exist δ0 > 0 and positive constants C1and C2 such that:21

C1x
α ≤ p(x) ≤ C2x

α, C1x
α−1 ≤ p′(x) ≤ C2x

α−1, (26)22

C1x
−β ≤ q(x) ≤ C2x

−β , C1x
−β−1 ≤ −q′(x) ≤ C2x

−β−1, (27)23
24

for all x ∈ (0, δ0]. Furthermore, there exists the inverse function q−1 of the function25

q defined on [m0,∞), where m0 = q(δ0), and it holds:26

q−1(t) ≃1 t−1/β as t → ∞, (28)27

C1t
− 1

β−1(t− s) ≤ q−1(s)− q−1(t) ≤ C2s
− 1

β−1(t− s), m0 ≤ s < t. (29)28
29

Proof. Inequalities (26) and (27) follow directly from (23) by the definition. The30

function q|(0,δ0] is a positive and decreasing function, and its inverse function is31

defined on [m0,∞). Relation (28) follows from (27), applying the well known formula32

for a derivative of the inverse function. Then, exploiting the mean value theorem33

and (28), we get (29).34
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Proposition 2. For any function S(t) satisfying (22), and for any function q(x)1

with properties (21) and (23), we have:2

(i) S(kT ) = 0, k ∈ N.3

(ii) Let ak = q−1(kT ) and sk = q−1(t0+kT ), k ∈ N, where t0 ∈ (0, T ) is arbitrary.4

Then there exist k0 ∈ N and c0 > 0 such that ak ∈ (0, δ0], y(ak) = 0, sk ∈5

(ak+1, ak) for all k ≥ k0, ak ↘ 0 as k → ∞, ak ≃ k−1/β as k → ∞, and6

max
x∈[ak+1,ak]

|y(x)| ≥ c0(k + 1)−α/β for all k ≥ k0, c0 > 0. (30)7

(iii) There exist ε0 > 0 and a function k : (0, ε0) → N such that8

1

T

(
ε

TC2

)− β
β+1

≤ k(ε) ≤ 2

T

(
ε

TC2

)− β
β+1

. (31)9

In particular, C1T ((k + 1)T )−
1
β−1 ≤ ak − ak+1 ≤ ε, for all k ≥ k(ε) and10

ε ∈ (0, ε0).11

Proof. The claim in (i) is evident. To prove (ii), it suffices to take k0 ∈ N such12

that k0T ≥ m0. We shall prove inequality (30) only, because the other properties13

are easy consequences of Proposition 1. From (23) we obtain that p(x) is a positive14

and increasing function near x = 0, and we have15

max
x∈[ak+1,ak]

|y(x)| ≥ p(sk)|S(q(sk))| ≥ cp(ak+1) ≥ c1(ak+1)
α ≥ c0(k + 1)−

α
β ,16

for all k ≥ k0, where c = min{|S(t0)|, |S(t0 + T )|}, c1 = cC1 and c0 = cC2
1 are17

positive constants. Now we prove (iii). Let ε > 0 and let k(ε) ∈ N be such that18

k(ε) ≥ 1

T

(
ε

TC2

)− β
β+1

= cε−
β

β+1 , c = T−1(TC2)
β

β+1 .19

Let ε′0 be such that for all 0 < ε ≤ ε′0 it holds k(ε)T ≥ m0 = q(δ0). Further, for all20

ε < c
β+1
β we have 2cε−

β
β+1 − cε−

β
β+1 > 1. So, there exists k(ε) ∈ N such that21

1 < cε−
β

β+1 ≤ k(ε) ≤ 2cε−
β

β+1 , for all ε < c
β+1
β .22

Let us take ε0 = min{ε′0, c
β+1
β }. Then, we can find k(ε) ∈ N such that23

cε−
β

β+1 ≤ k(ε) ≤ 2cε−
β

β+1 , k(ε)T ≥ m0 for all ε ∈ (0, ε0).24

Using (29), then for all k ≥ k(ε) and ε ∈ (0, ε0) it holds25

C1T ((k + 1)T )−
1
β−1 ≤ ak − ak+1 ≤ ε.26

27
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Proof of Theorem 5. First we check inequality (24). By Proposition 2 we have1

∑
k≥k(ε)

max
x∈[ak+1,ak]

|y(x)|(ak−ak+1) ≥ c
∞∑

k=k(ε)+1

(k+1)−
α+β+1

β = c
∞∑

k=k(ε)

k−
α+β+1

β = ca,2

where the series a =
∑∞

k=k(ε) k
−α+β+1

β is convergent, because of α+β+1
β > 1. Then,3

using the inequality ( 1
k(ε) )

α+β+1
β −1 < 1, the integral test for convergence and (31),4

we obtain that5 ∑
k≥k(ε)

max
x∈[ak+1,ak]

|y(x)|(ak−ak+1) ≥ ca ≥ c1(
1

k(ε)
)

α+β+1
β −1 ≥ c1ε

α+1
β+1 = c1ε

2−(2−α+1
β+1 ),6

for all ε ∈ (0, ε0). By [13, Lemma 2.1.], this implies that 0 < Md
∗(G(y)) and7

dimBG(y) ≥ d, where G(y) is the graph of the function y and d = 2−(α+1)/(β+1).8

Now we check inequality (25). From (23) it follows that9

|y′(x)| = |p′(x)S(q(x)) + p(x)q′(x)S′(q(x))| ≤ cxα−β−1,10

which holds near x = 0, where c = max{maxx∈[0,2T ] |S(t)|,maxx∈[0,2T ] |S′(t)|}. By11

Proposition 2 we have that12

ak(ε) sup
x∈(0,ak(ε)]

|y(x)|+ ε

∫ ak0

ak(ε)

|y′(x)|dx ≤ cε
α+1
β+1 + ε[aα−β

k0
+ aα−β

k(ε) ] ≤ c2ε
α+1
β+1 ,13

for all ε ∈ (0, ε0). By [13, Lemma 2.2.] it follows that M∗d(G(y)) < ∞ and14

dimBG(y) ≤ d = 2 − (α + 1)/(β + 1). Finally, combining the obtained results,15

we conclude that the graph G(y) is Minkowski nondegenerate, and dimB G(y) =16

2− (α+ 1)/(β + 1) = d.17

Now we can state a spiral-chirp comparison result.18

Theorem 7 (The spiral-chirp comparison). Let α ∈ (0, 1). Assume that x :19

[t0,∞) → R, where t0 > 0, is a function of class C2, such that the planar curve20

Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)} is a spiral r = f(φ), φ ∈ (φ0,∞), φ0 > 0, in polar21

coordinates, near the origin, where22

f(φ) ≃1 φ−α, as φ → ∞.23

Let φ = φ(t) be a function of class C1 defined by tanφ(t) = ẋ(t)
x(t) , such that φ̇(t) ≃ 1,24

as t → ∞. Define X(τ) = x(1/τ). Then, X = X(τ) is an (α, 1)-chirp-like function,25

and26

dimosc(x) := dimB G(X) = (3− α)/2,27

where G(X) is the graph of the function X. Furthermore, G(X) is Minkowski non-28

degenerate.29
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Proof. Let us write the function X(τ) in the form X(τ) = p(τ) cos q(τ), with τ ∈1

(0, 1
t0
], where p(τ) = f(φ( 1τ )), q(τ) = φ( 1τ ).2

The function p(τ) is increasing near τ = 0 since 1
τ is decreasing, φ(t) is increasing3

and f(φ) is decreasing near φ = ∞. Furthermore, p ∈ C([0, 1/t0]) since p(0) =4

limτ→0 f(φ(1/τ)) = 0, by noting that φ̇ ≃ 1 implies φ(t) → ∞ as t → ∞. Now,5

the claim follows from Theorem 5. We only have to check that its assumptions are6

satisfied with S(q) = cos q and β = 1. The functions φ, p and q have the following7

properties: φ(t) ≃ t as t → ∞, that is, φ( 1τ ) ≃ 1
τ as τ → 0, and p(τ) ≃1 τα as8

τ → 0, q(τ) ≃1
1
τ as τ → 0, q−1(t) ≃ 1

t as t → ∞. The function q is decreasing near9

the origin, thus q−1 exists for t sufficiently large. We see that all the conditions of10

Theorem 5 are fulfilled.11

Remark 2. Theorem 7 is a new version of [15, Theorem 4]. If we compare The-12

orems 4 and 7 in terms of their conditions, then we see that Theorem 7 requires13

derivatives of lower order than Theorem 4. Phase-plane analysis already provides14

the information about the first derivative.15

The following result shows that rectifiable spirals generate rectifiable chirp-like16

functions.17

Theorem 8 (Rectifiability of a chirp generated by a rectifiable spiral). Let α > 1.18

Assume that x : [t0,∞) → R, with t0 > 0, is a function of class C2 such that the19

planar curve Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)} is a rectifiable spiral r = f(φ), with20

φ ∈ (φ0,∞), φ0 > 0, in polar coordinates, near the origin, where21

f(φ) ≃1 φ−α, as φ → ∞, |f ′′(φ)| ≤ Cφ−α−2 and φ̇(t) ≃ 1 as t → ∞.22

Let φ = φ(t) be a function of class C1 defined by tanφ(t) = ẋ(t)
x(t) , such that φ̇(t) ≃ 1,23

as t → ∞. Define X(τ) = x(1/τ).24

Then X = X(τ) is an (α, 1)-chirp-like rectifiable function near the origin.25

In order to prove the theorem we shall use the following two lemmas.26

Lemma 4. Let F,G ∈ C1(I), where I is an open interval in R, and assume that27

inf F ′ > supG′. Then, the equation F (z) = G(z) has at most one solution.28

Proof. Suppose that there are two different solutions z1 and z2. Then applying the29

mean-value theorem to F (z1) − F (z2) = G(z1) − G(z2), we obtain that there exist30

z̃1 and z̃2 such that F ′(z̃1) = G′(z̃2). Therefore, inf F ′ ≤ supG′. This contradicts31

the condition inf F ′ > supG′.32

Lemma 5. Let F ∈ C1(0,∞) be such that F (z) ∼ az as z → ∞ for some a < 0.33

Assume that inf F ′ > −∞. Then, there exists a nonnegative integer k0 such that34

for each k ≥ k0 the equation cot z = F (z) possesses the unique solution in Jk =35

(kπ, (k + 1)π).36

Proof. Since F (z) is continuous and F (z) ∼ az as z → ∞, and cot z restricted to Jk37

is a continuous function onto R, it follows that the equation cot z = F (z) possesses38

at least one solution zk on each interval Jk. We have to show that the solution is39

unique on each Jk for all k sufficiently large.40
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Since m = inf F ′ > −∞, there exists s0 ∈ (π/2, π) sufficiently close to π such1

that cot′(s0) = −(sin s0)
−2 < m. The condition F (z) ∼ az implies that, given any2

fixed b ∈ (a, 0), there exists M = M(b) > 0 such that F (z) < bz for all z ≥ M . Let3

us fix any such b.4

Let k0 be a nonnegative integer such that b(k0π) < cot s0. It suffices to take5

k0 > (bπ)−1 cot s0. Taking k0 even larger, we can achieve that k0π ≥ M . Hence, for6

z ≥ k0π we have F (z) < bz. In particular,7

F (z) < bz ≤ b(k0π) < cot s0.8

Since for z ≥ k0π we have F (z) < cot s0, while cot z ≥ cot s0 for each z ∈ Jk \ Ik,9

where Ik = (kπ + s0, (k + 1)π), then all the solutions of equation F (z) = cot z for10

z ≥ k0π are contained in ∪k≥k0Ik.11

Let us define G(z) = cot z, and consider the equation F (z) = G(z) on Ik for any12

k ≥ k0. We have13

sup
Ik

G′ = cot′(k0π + s0) = −(sin s0)
−2 < inf

(0,∞)
F ′ ≤ inf

Ik
F ′.14

The unique solvability of F (z) = G(z) on Ik then follows from Lemma 4. The15

equation is uniquely solvable on Jk as well, since there are no solutions in Jk \Ik.16

Remark 3. The condition F (z) ∼ az as z → ∞ in Lemma 5 can be weakened. It17

suffices to assume that F (z) < bz for some b < 0 and for all z sufficiently large.18

Remark 4. The condition inf F ′ > −∞ in Lemma 5 cannot be dropped. To see19

this, we construct a function y = F (z) by means of a sequence of lines y = bnz,20

where a < bn < 0 and bn → a as n → ∞. We first construct a continuous function21

F0 such that on J ′
k = (kπ, (k + 1)π],22

F0(z) =

 bkz, for z ∈ (kπ, zk],
cot z, for z ∈ (zk, vk],
bk+1z, for z ∈ (vk, (k + 1)π],

23

where zk and vk are the respective solutions of the equations cot z = bkz and24

cot bk+1v = bk+1v in Jk. The function F0 is of class C1 everywhere in (0,∞)25

except at the points zk and vk. We can perform its smoothing in sufficiently small26

neighborhoods of these points, in order to get a function F ∈ C1(0,∞). It is clear27

that F (z) ∼ az as z → ∞ and inf F ′ = −∞. But F (z) = cot z possesses infinitely28

many solutions on each interval Ik.29

Remark 5. Assume that F (z) = f(z)/f ′(z), where f ∈ C2(0,∞). (a) The condition30

inf F ′ > −∞ is equivalent to f(z)f ′′(z) ≤ C[f ′(z)]2, where C is a positive constant.31

(b) The condition F (z) < bz for z sufficiently large, where b is a negative constant32

(see Remark 3), is satisfied if for all z sufficiently large we have f(z) ≥ az−α and33

f ′(z) ≥ a1z
−α−1, where a > 0 and a1 < 0 are constants. It suffices to take b ∈34

(a/a1, 0).35

A variation of Lemma 5 is the following lemma.36
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Lemma 6. Let F ∈ C1(0,∞) be such that F (z) ∼ az as z → ∞ for some a > 0.1

Assume that supF ′ < ∞. Then there exists a nonnegative integer k0 such that2

for each k ≥ k0 the equation tan z = F (z) possesses the unique solution in Jk =3

((k − 1/2)π, (k + 1/2)π).4

Remark 6. The condition F (z) ∼ az as z → ∞ for a > 0 in Lemma 6 can be5

weakened by assuming that F (z) > az for some a > 0 and for all z sufficiently large.6

If F (z) has the form F (z) = f(z)
f ′(z) , where f ∈ C2(0,∞), the condition supF ′ < ∞7

is equivalent to f(z)f ′′(z) ≥ C[f ′(z)]2, where C is a positive constant. Also, in8

that case, the condition F (z) > az for z sufficiently large is satisfied if for all z9

sufficiently large we have f(z) ≥ a1z
−α and f ′(z) ≤ a2z

−α−1, where a1 and a2 are10

positive constants. It suffices to take a ∈ (0, a1

a2
).11

Proof of Theorem 8. We can write the functionX(τ) in the formX(τ) = p(τ) cos q(τ),12

where p(τ) = f(φ(1/τ)) ≃ τα, p′(τ) ≃ τα−1, q(τ) = φ(1/τ) ≃ τ−1, q′(τ) ≃ −τ−2
13

as τ → 0. It follows that X is an (α, 1)-chirp-like function. Using the assumptions14

of the theorem, for the function F (t) := pq′

p′ (q
−1(t)) = f(t)

f ′(t) we have that F (t) ≃ −t15

as t → ∞, and f(t)f ′′(t)
[f ′(t)]2 < C, for t sufficiently large, C > 0. Then there exists16

k0 ∈ N such that the equation cot q(t) = F (q(t)) = p(τ)q′(τ)
p′(τ) has the unique solu-17

tion sk ∈ (ak+1, ak) where ak+1 = q−1((2k + 1)π2 and ak = q−1((2k − 1)π2 ) for all18

k ≥ k0; see Lemma 5 and Remark 3. These solutions are just the points of local19

extrema of X(τ) on (ak+1, ak), k ≥ k0. The sequence (ak)k≥1 of zero-points of X20

on (0, 1/t0] is decreasing. Hence the sequence (sk) of consecutive points of local ex-21

trema of X is also decreasing. We have that ak = q−1((2k− 1)π2 ) ≃ k−1 as k → ∞.22

So the same is true also for sk, i.e., sk ≃ k−1 as k → ∞, and we also have that23

|X(sk)| ≤ p(sk) ≤ Csαk ≤ C1k
−α. This implies that24

∞∑
k=k0

|X(sk)| ≤ C1

∞∑
k=k0

k−α < ∞ (32)25

for α > 1. The length of the graph G(X) is defined by26

length(G(X)) := sup
m∑
i=1

∥(ti, X(ti))− (ti−1, X(ti−1))∥2,27

where the supremum is taken over all partitions 0 = t0 < t1 < . . . < tm = 1/t028

of the interval [0, 1/t0] and where ∥.∥2 denotes the Euclidean norm in R2. Using29

[12, Lemma 3.1.], it follows that length(G(X)) ≤ 2
∑

k |X(sk)| + 1/t0. Then X is30

rectifiable due to (32).31

5. Concluding remarks32

1. Chirps and spirals. In Section 3 of this article, we considered the spirals33

generated by chirps, while the chirps generated by spirals are studied in Section 4.34

Using the box dimension we establish a connection between oscillatority of the graph35
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of a function and oscillatority of the corresponding curve in the phase plane. The1

main results are contained in Theorems 4 and 7. Theorem 4 could be applied to2

solutions of the Bessel equation of order ν, as well as to some of its generalizations;3

see [8]. Applications of Theorem 7 include the study of a weak focus of planar4

autonomous systems, that is, the case when the singularity has pure imaginary5

eigenvalues. This type of singularities generates spiral trajectories of power type,6

i.e., r = φ−α, where α ∈ (0, 1); see [23].7

2. Limit cycles born from foci. The relationship between chirps and spirals8

is important in the study of limit cycles. The standard qualitative approach to9

nonlinear differential equations includes the study of the corresponding systems.10

Through phase plane oscillatority we obtain information of the oscillatority of the11

graph of a solution. The number of the limit cycles that can be generated by a12

weak focus is directly related to the box dimension of any trajectory of the system;13

see [23, 25]. It has been proven for a weak focus that the nontrivial jump of the14

value of the box dimension of a spiral trajectory, from 1 to 4/3, corresponds to the15

classic Hopf bifurcation; see [23]. The degenerate Hopf bifurcation or Hopf-Takens16

bifurcation can reach an even larger box dimension of a trajectory, which is related17

to the multiplicity of the focus. The result was obtained using the Takens normal18

form (see [19]) and the Poincaré map of the weak focus.19

We find it interesting to examine the connection between the phase dimension20

of Bessel functions, which is equal to 4/3, and the maximal number of limit cycles21

that can be generated by a small perturbation of the Bessel equation. By analogy22

with the Hopf bifurcation, we expect this number to be equal to 1.23

The Poincaré map corresponding to a weak focus is known to be analytic, while24

the Poincaré map near a general nilpotent or degenerate focus is not analytic, and25

the logarithmic terms show up in the asymptotic expansion; see Roussarie [18]. In26

that case, the Poincaré map has different asymptotics, showing the characteristic27

directions by the method of blow-up; see Han and Romanovski [4]. The nilpotent28

focus has two different asymptotics, so that we can relate that focus with two chirps29

with different asymptotics. The degenerate focus appears in a generalized Bessel30

equation for ν ̸= 0; see [8].31

3. Oscillatory integrals. Nonrectifiable spirals can be generated using oscilla-32

tory integrals, viewed as complex functions of the real variable, like in the case of the33

Fresnel integral and the clothoid. The corresponding two chirps are graphs of the34

real and imaginary parts of the oscillatory integral. The box dimension of the image35

of an oscillatory integral and the box dimension of the corresponding chirps are re-36

lated to the asymptotics of the integral, which is essentially connected to the type of37

the singular point of the phase function of the integral; see Arnold [1]. All of these38

notions are strongly related to the Newton diagrams, the resolution of singularities,39

the notion of the multiplicity of a singularity and the classification of singularities40

through the normal forms. Also, the study of bifurcations of the parametric families41

and the caustic surfaces could be a very interesting direction for further study by42

this approach.43
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Boston, MA, 1988.7

[2] Y.Dupain, M.Mendès France, and C.Tricot, Dimensions des spirales, Bull.8

Soc. Math. France 111(1983), 193–201.9

[3] K.Falconer, Fractal geometry, Mathematical foundations and applications, John10

Wiley & Sons Ltd., Chichester, 1990.11

[4] M.Han, V.G.Romanovski, Limit cycle bifurcations from a nilpotent focus or cen-12

ter of planar systems, Abstr. Appl. Anal. 2012(2012), Article ID 720830, 28 pages.13
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[26] V. Županović, D. Žubrinić, Fractal dimensions in dynamics, in: Encyclopedia11

of Mathematical Physics, Volume 2, (J.-P. Françoise, G.Naber and S.Tsou, Eds.),12

Elsevier, Oxford, 2006, 394–402.13


