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For a nonautonomous dynamics defined by a sequence of linear operators, we obtain a
complete characterization of the notion of a uniform exponential dichotomy in terms of
the existence of appropriate Lyapunov sequences. In sharp contrast to previous results,
we consider the case of noninvertible dynamics, thus requiring only the invertibility of
operators along the unstable direction. Furthermore, we deal with operators acting on an
arbitrary Hilbert space. As a nontrivial application of our work, we study the persistence
of uniform exponential behavior under small linear and nonlinear perturbations.
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1. Introduction

The notion of an exponential dichotomy, essentially introduced by Perron in [23],
plays an important role in a large part of the theory of dynamical systems, such as,
for example, in invariant manifold theory. We note that the theory of exponential
dichotomies and its applications are very much developed. We refer to the books
[10, 14, 15, 25] for details and further references.

Due to the importance of the notion of uniform exponential dichotomy, it is
of considerable interest to have any type of the characterization of this notion
and this is actually the main theme of our paper. More precisely, for a discrete
nonautonomous dynamics obtained from a sequence of linear operators acting on a
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D. Dragičević & C. Preda

Hilbert space, we give a complete characterization of the notion of uniform expo-
nential dichotomy in terms of the existence of appropriate Lyapunov sequences.
The main novelty of our work, besides the fact that our results are not restricted to
a finite-dimensional case, is that we also don’t require the invertibility of operators.
We emphasize that cocycles obtained for example from discretization of the evo-
lution family associated to a linear delay equation will in general be noninvertible
and defined on an infinite-dimensional space. We then use this characterization to
study the persistence of uniform exponential behavior under small linear and non-
linear perturbations. More precisely, we give a short proof of a well-known result
that the notion of uniform exponential dichotomy persists under sufficiently small
linear perturbations. We also obtain similar results for nonlinear perturbations.

The use of Lyapunov functions in the study of the stability of trajectories in the
theories of differential equations and dynamical systems goes back to the seminal
work of Lyapunov [20]. Early contributions to the theory are described in books
by LaSalle and Lefschetz [17], Hahn [13] and Bhatia and Szegö [9]. The connec-
tion between exponential dichotomies and Lyapunov functions was first studied
by Maizel [21]. His results were further developed by Coppel in [10, 11]. The first
results in the discrete time setting are due to Papaschinopoulos [22]. More recently,
Barreira and Valls wrote several important papers in which they have obtained
characterization of nonuniform exponential dichotomies in terms of Lyapunov func-
tions both for continuous and discrete time (see [6–8, 4]). We note that the notion
of nonuniform dichotomy is weaker and requires less then the notion of uniform
exponential dichotomy. However, we emphasize that all the above mentioned works
consider only invertible and finite-dimensional dynamics and that to the best of
our understanding the methods in those papers cannot be extended to the setting
studied in the present paper. This forces us to use completely different arguments
that rely heavily on the characterizations of hyperbolic operators on Hilbert spaces
presented in [12] and the relationship between dichotomies and the so-called admis-
sibility property (see Theorem 2.1).

Finally, we briefly mention the related results in the theory of smooth dynamical
systems. Lewowicz characterized Anosov systems in terms of the existence of Lya-
punov functions both for discrete and continuous time (see [18, 19]). Those results
have been extended to nonuniformly hyperbolic systems by Katok and Burns [16].
We emphasize that the results of Katok and Burns were also inspired by the work
of Wojtkowski in [26] who pointed out that to establish nonvanishing of (some)
Lyapunov exponents it is often sufficient to have an invariant family of cones (see
also [5]). For more recent results we refer to [1–3].

2. Preliminaries

In this section, we introduce some notation that will be used throughout this paper.
Furthermore, we recall the notion of a uniform exponential dichotomy and its char-
acterization in terms of the so-called admissibility property.

1650033-2



2nd Reading

March 29, 2016 16:6 WSPC/S0129-167X 133-IJM 1650033

Lyapunov theorems for exponential dichotomies in Hilbert spaces

2.1. Notation and terminology

Let X be a Hilbert space with the scalar product 〈·, ·〉. The associated norm will be
denoted by ‖ · ‖. For two bounded self-adjoint operators A and B on X , we write
A ≤ B if 〈Ax, x〉 ≤ 〈Bx, x〉, for all x ∈ X . Set

l2 =

{
x = (xn)n∈Z ⊂ X :

∞∑
n=−∞

‖xn‖2 < +∞
}

.

We note that l2 is also a Hilbert space with respect to the scalar product

〈x,y〉 =
∑
n∈Z

〈xn, yn〉, for x = (xn)n∈Z, y = (yn)n∈Z ∈ l2.

Finally, we recall that a bounded operator acting on a Banach space is hyperbolic
if its spectrum is disjoint with unit circle S1 = {λ ∈ C : |λ| = 1}.

2.2. Exponential dichotomy

Let (Am)m∈Z be a sequence of bounded linear operators on X . The associated
cocycle is defined by

A(m, n) =

{
Am−1 · · ·An if m > n,

Id if m = n.

We say that the sequence (Am)m∈Z admits a uniform exponential dichotomy if:

(1) There exist projections Pm : X → X for each m ∈ Z satisfying

AmPm = Pm+1Am for m ∈ Z (2.1)

such that each map Am|KerPm : KerPm → KerPm+1 is invertible;
(2) There exist constants λ, K > 0 such that for each x ∈ X and m ·n ∈ Z we have

‖A(m, n)Pn‖ ≤ Ke−λ(m−n) for m ≥ n (2.2)

and

‖A(m, n)(I − Pn)‖ ≤ Ke−λ(n−m) for m ≤ n, (2.3)

where

A(m, n) = (A(n, m)|KerPm)−1 : KerPn → KerPm

for m < n.

We also recall the following classical result (see [15] for example) that characterizes
exponential dichotomies in terms of the so-called admissibility property.

Theorem 2.1. Let (Am)m∈Z be a sequence of bounded operators on X. The fol-
lowing statements are equivalent :

(1) The sequence (Am)m∈Z admits a uniform exponential dichotomy;
(2) for each y = (yn)n∈Z ∈ l2 there exists a unique x = (xn)n∈Z ∈ l2 such that

xn+1 − Anxn = yn+1, for each n ∈ Z.
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3. Main Results

In this section, we obtain a complete characterization of uniform exponential
dichotomies in terms of the existence of a suitably chosen sequence (Sm)m of
bounded, self-adjoint and invertible operators. We note that the sequence of maps
(Hm)m, where

Hm(x) = 〈Smx, x〉, x ∈ X, m ∈ Z

is sometimes in the literature called a Lyapunov sequence (see [7]). We now state
our first result.

Theorem 3.1. Assume that the sequence (Am)m∈Z of bounded linear operators in
X admits a uniform exponential dichotomy and that there exists C > 0 such that

‖Am‖ ≤ C, for m ∈ Z. (3.1)

Then, there exist a sequence (Sm)m∈Z of bounded, self-adjoint and invertible oper-
ators on X and D, δ > 0 such that :

(1)

‖Sm‖ ≤ D and ‖S−1
m ‖ ≤ D, for all m ∈ Z; (3.2)

(2)

A∗
mSm+1Am − Sm ≤ −δI and AmS−1

m A∗
m − S−1

m+1 ≤ −δI. (3.3)

Proof. We will divide proof into several parts. We begin by constructing operators
Sm. This construction is essentially taken from [6, 22] but we include it for the
sake of completeness. Since the sequence (Am)m∈Z admits a uniform exponential
dichotomy, there exists projections Pm, m ∈ Z satisfying (2.1) and constants λ, K >

0 such that (2.2) and (2.3) hold. Choose an arbitrary ρ ∈ (0, λ) and set

Sm =
∑
k≥m

(A(k, m)Pm)∗A(k, m)Pme2(λ−ρ)(k−m)

−
∑
k<m

(A(k, m)(I − Pm))∗A(k, m)(I − Pm)e2(λ−ρ)(m−k).

It follows from (2.2) and (2.3) that

|〈Smx, x〉| ≤
∑
k≥m

‖A(k, m)Pmx‖2e2(λ−ρ)(k−m)

+
∑
k<m

‖A(k, m)(I − Pm)x‖2e2(λ−ρ)(m−k)

≤
∑
k≥m

K2e−2λ(k−m)e2(λ−ρ)(k−m)‖x‖2

+
∑
k<m

K2e−2λ(m−k)e2(λ−ρ)(m−k)‖x‖2
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= K2

( ∑
k≥m

e−2ρ(k−m) +
∑
k<m

e−2ρ(m−k)
)
‖x‖2

= D‖x‖2

for each m ∈ Z, where

D = K2

( ∑
k≥m

e−2ρ(k−m) +
∑
k<m

e−2ρ(m−k)
)

< +∞.

Obviously, Sm is self-adjoint and thus

‖Sm‖ = sup
‖x‖=1

|〈Smx, x〉| ≤ D, for all m ∈ Z.

Hence, we have obtained the first inequality in (3.2).
Furthermore, by (2.1) we have that

A∗
mSm+1Am = A∗

m

∑
k≥m+1

(A(k, m + 1)Pm+1)∗A(k, m + 1)Pm+1e
2(λ−ρ)(k−m−1)Am

−A∗
m

∑
k<m+1

(A(k, m + 1)(I − Pm+1))∗A(k, m + 1)

× (I − Pm+1)e2(λ−ρ)(m+1−k)Am

=
∑

k≥m+1

(A(k, m + 1)Pm+1Am)∗A(k, m + 1)Pm+1Ame2(λ−ρ)(k−m−1)

−
∑

k<m+1

(A(k, m + 1)(I − Pm+1)Am)∗A(k, m + 1)

× (I − Pm+1)Ame2(λ−ρ)(m+1−k)

=
∑

k≥m+1

(A(k, m + 1)AmPm)∗A(k, m + 1)AmPme2(λ−ρ)(k−m−1)

−
∑

k<m+1

(A(k, m + 1)Am(I − Pm))∗A(k, m + 1)Am(I − Pm)

× e2(λ−ρ)(m+1−k)

=
∑

k≥m+1

(A(k, m)Pm)∗A(k, m)Pme2(λ−ρ)(k−m−1)

−
∑

k<m+1

(A(k, m)(I − Pm))∗A(k, m)(I − Pm)e2(λ−ρ)(m+1−k)

= e−2(λ−ρ)
∑

k≥m+1

(A(k, m)Pm)∗A(k, m)Pme2(λ−ρ)(k−m)

− e2(λ−ρ)
∑

k<m+1

(A(k, m)(I − Pm))∗A(k, m)(I − Pm)e2(λ−ρ)(m−k)
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= e−2(λ−ρ)
∑
k≥m

(A(k, m)Pm)∗A(k, m)Pme2(λ−ρ)(k−m)

− e−2(λ−ρ)P ∗
mPm − e2(λ−ρ)

∑
k<m

(A(k, m)(I − Pm))∗A(k, m)

× (I − Pm)e2(λ−ρ)(m−k) − e2(λ−ρ)(I − Pm)∗(I − Pm).

Therefore,

A∗
mSm+1Am − Sm = (e−2(λ−ρ) − 1)

∑
k≥m

(A(k, m)Pm)∗A(k, m)Pme2(λ−ρ)(k−m)

+ (1 − e2(λ−ρ))
∑
k<m

(A(k, m)(I − Pm))∗A(k, m)(I − Pm)

× e2(λ−ρ)(m−k) − e−2(λ−ρ)P ∗
mPm − e2(λ−ρ)(I −Pm)∗(I −Pm).

Since e−2(λ−ρ) − 1 < 0 and 1 − e2(λ−ρ) < 0, we obtain that

A∗
mSm+1Am − Sm ≤ −e−2(λ−ρ)P ∗

mPm − e2(λ−ρ)(I − Pm)∗(I − Pm)

≤ −e−2(λ−ρ)(P ∗
mPm + (I − Pm)∗(I − Pm)).

Furthermore, we have

2〈(P ∗
mPm + (I − Pm)∗(I − Pm))x, x〉
= 2‖Pmx‖2 + 2‖(I − Pm)x‖2

≥ ‖Pmx‖2 + 2‖Pmx‖‖(I − Pm)x‖ + ‖(I − Pm)x‖2

= (‖Pmx‖ + ‖(I − Pm)x‖)2

≥ ‖x‖2

for each x ∈ X which implies that

−e−2(λ−ρ)(P ∗
mPm + (I − Pm)∗(I − Pm)) ≤ −1

2
e−2(λ−ρ)I.

Consequently,

A∗
mSm+1Am − Sm ≤ −1

2
e−2(λ−ρ)I, for all m ∈ Z

and we conclude that the first statement in (3.3) holds with δ = 1
2e−2(λ−ρ) > 0.

We now define the operator T : l2 → l2 by

(Tx)n = An−1xn−1, for x = (xn)n∈Z ∈ l2.

It follows readily from (3.1) that T is well defined and bounded linear operator. In
the following two auxiliary results we establish some properties of operator T .
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Lemma 3.1. T ∗ : l2 → l2 is given by

(T ∗x)n = A∗
nxn+1, for all n ∈ Z and x = (xn)n∈Z ∈ l2.

Proof of the lemma. We define an operator S : l2 → l2 by

(Sx)n = A∗
nxn+1, for all n ∈ Z and x = (xn)n∈Z ∈ l2.

Then, for every x = (xn)n∈Z and y = (yn)n∈Z ∈ l2 we have that

〈Sx,y〉 =
∑
n∈Z

〈(Sx)n, yn〉 =
∑
n∈Z

〈A∗
nxn+1, yn〉

=
∑
n∈Z

〈xn+1, Anyn〉 =
∑
n∈Z

〈xn+1, (Ty)n+1〉 = 〈x, Ty〉

which yields that S = T ∗.

Lemma 3.2. T is hyperbolic operator.

Proof of the lemma. Take λ ∈ C such that |λ| = 1. Since the sequence (Am)m∈Z

admits a uniform exponential dichotomy, we have that the sequence ( 1
λAm)m∈Z

also admits a uniform exponential dichotomy. Thus, it follows from Theorem 2.1
that the operator

x = (xn)n∈Z 
→
(

xn − 1
λ

An−1xn−1

)
n∈Z

is an invertible linear operator on l2. Hence, the operator

x = (xn)n∈Z 
→ (λxn − An−1xn−1)n∈Z

is also an invertible on l2 and therefore λ �∈ σ(T ). We conclude that σ(T ) ∩ S1 = ∅
and thus T is hyperbolic.

We now define W : l2 → l2 by

(Wx)n = Snxn, n ∈ Z, x = (xn)n∈Z ∈ l2.

Since ‖Sm‖ ≤ D for all m ∈ Z, we have that W is well-defined and bounded linear
operator. Furthermore, since A∗

mSm+1Am − Sm ≤ −δI for each m ∈ Z, it follows
from Lemma 3.1 that T ∗WT − W ≤ −δI. Then, Theorem 7.1′ from [12] implies
that W is invertible. The final ingredient of the proof is the following lemma.

Lemma 3.3. Sm is invertible for all m ∈ Z and m 
→ ‖S−1
m ‖ is a bounded function.

Proof of lemma. We divide the proof into several parts. We first prove that
operators Sm are injective. Assume that Smv = 0 form some v ∈ X . Define x =
(xn)n∈Z ∈ l2 by xm = v and xn = 0 for all n �= m. Then, Wx = 0 and thus the
invertibility of W implies that x = 0. Hence, v = 0.
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Now we establish surjectivity of operators Sm. Take v ∈ X and define y =
(yn)n∈Z ∈ l2 by ym = v and yn = 0 for all n �= m. Since W is invertible, there
exists x ∈ l2 such that Wx = y. Thus, (Wx)m = ym, whence Smxm = ym = v and
Sm is surjective.

Moreover, using the notation from the previous step, we have that S−1
m v =

(W−1y)m, thus

‖S−1
m v‖ = ‖(W−1y)m‖ ≤ ‖W−1y‖ ≤ ‖W−1‖ · ‖y‖ = ‖W−1‖ · ‖v‖.

Hence, ‖S−1
m ‖ ≤ ‖W−1‖ for all m ∈ Z and the proof of the lemma is complete.

By Lemma 3.3, we conclude that the second inequality in (3.2) holds. Fur-
thermore, it follows from [12, Theorem 7.3] that there exists δ′ > 0 such that
TW−1T ∗ − W−1 ≤ −δ′I and therefore we have that

AmS−1
m A∗

m − S−1
m+1 ≤ −δ′I, for all m ∈ Z

and the proof of (3.3) and of the theorem is completed.
We now establish the converse result. Due to the power of deep results we use,

the proof is surprisingly easy.

Theorem 3.2. Assume that (Am)m∈Z is the sequence of bounded linear operators
with the property that there exists C > 0 such that (3.1) holds. Furthermore, sup-
pose that there exists a sequence (Sm)m∈Z of bounded, self-adjoint and invertible
operators on X and constants D, δ > 0 satisfying (3.2) and (3.3). Then, (Am)m∈Z

admits a uniform exponential dichotomy.

Proof. Let T and W be defined as in the proof of Theorem 3.1. We note that W

is invertible. Furthermore, it follows from (3.3) that there exists δ > 0 such that
T ∗WT − W ≤ −δI and TW−1T ∗ − W−1 ≤ −δI. By [12, Theorem 7.3] we have
that T is hyperbolic. In particular, 1 �∈ σ(T ) and thus the operator

x = (xn)n∈Z 
→ (xn − An−1xn−1)n∈Z

is invertible on l2. It follows from Theorem 2.1 that (Am)m∈Z admits a uniform
exponential dichotomy.

We end this section with the comparison of our results with the former work
relating Lyapunov functions and exponential dichotomies. In [22] it is proved that
under the condition (3.1), the sequence (Am)m∈Z of invertible linear operators act-
ing on Rd admits a uniform exponential dichotomy if and only if there exist two
bounded sequences (Hm)m∈Z and (Gm)m∈Z of self-adjoint operators on Rd such
that:

A∗
mHm+1Am − Hm ≤ −δI, (3.4)

A−1
m Gm+1(A∗

m)−1 − Gm ≤ −δI (3.5)

for some δ > 0. When compared with our work, we note that the condition (3.4) is
the same as (3.2). On the other hand, (3.5) is different from (3.3) and it involves
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inverses of operators An which in our setting may not exist. Moreover, the existence
of two sequences of self-adjoint operators is required in contrast while we require
the existence of a single sequence of self-adjoint operators. More recently, Barreira
and Valls [6] proved that the sequence (Am)m∈Z of invertible linear operators acting
on Rd admits a uniform exponential dichotomy if and only if there exist a bounded
sequence (Sm)m∈Z of invertible and self-adjoint operators satisfying (3.2) and

Hm+1(Amx) − Hm(x) ≤ −δ|Hm(x)| (3.6)

for some δ > 0, where Hm(x) = 〈Smx, x〉. Thus, instead of (3.3) they require (3.6).
We emphasize that the results in [22, 6] deal only with invertible operators acting
on a finite-dimensional space and that to the best of our understanding those meth-
ods cannot be extended to our setting. Consequently, our methods are completely
different from theirs.

4. Robustness of Exponential Dichotomies

In this section, we use the results obtained in the previous section to establish in a
simple manner the stability of uniform exponential dichotomies under sufficiently
small linear perturbations.

Theorem 4.1. Let (Am)m∈Z and (Bm)m∈Z be sequences of bounded linear opera-
tors on X such that :

(1) The sequence (Am)m∈Z admits a uniform exponential dichotomy and there
exists C > 0 such that (3.1) holds;

(2) there exists ρ > 0 such that

‖Am − Bm‖ ≤ ρ, for m ∈ Z. (4.1)

If ρ is sufficiently small, then the sequence (Bm)m∈Z admits a uniform exponential
dichotomy.

Proof. We first note that it follows from (3.1) and (4.1) that ‖Bm‖ ≤ C + ρ for
all m ∈ Z. By Theorem 3.1, there exists a sequence (Sm)m of bounded, self-adjoint
and invertible operators and constants D, δ > 0 such that (3.2) and (3.3) hold.
Furthermore, we have

〈Sm+1Bmx, Bmx〉 − 〈Smx, x〉
= 〈Sm+1(Bm − Am)x, (Bm − Am)x〉 + 〈Sm+1Amx, (Bm − Am)x〉

+ 〈Sm+1(Bm − Am)x, Amx〉 + 〈Sm+1Amx, Amx〉 − 〈Smx, x〉 (4.2)

for each x ∈ X and m ∈ Z. On the other hand, it follows from (3.2) and (4.1) that

〈Sm+1(Bm − Am)x, (Bm − Am)x〉 ≤ ‖Sm+1(Bm − Am)x‖ · ‖(Bm − Am)x‖
≤ Dρ2〈x, x〉.

1650033-9
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Similarly, by (3.1), (3.2) and (4.1), we have

〈Sm+1Amx, (Bm − Am)x〉 ≤ DCρ〈x, x〉 and

〈Sm+1(Bm − Am)x, Amx〉 ≤ DCρ〈x, x〉.
Thus, it follows from (3.3) and (4.2) that

〈Sm+1Bmx, Bmx〉 − 〈Smx, x〉 ≤ (Dρ2 + 2DCρ − δ)〈x, x〉
for each m ∈ Z and x ∈ X . Setting r = −Dρ2 − 2DCρ + δ, we note that for ρ

sufficiently small, we have that r > 0 and

B∗
mSm+1Bm − Sm ≤ −rI, for m ∈ Z.

Similarly, one can show that

BmS−1
m B∗

m − S−1
m+1 ≤ −rI, for m ∈ Z.

By Theorem 3.2, the sequence (Bm)m∈Z admits a uniform exponential dichotomy.

The version of Theorem 4.1 was first established in [15] for dichotomies on an
arbitrary Banach space with the proof based on Theorem 2.1. For further references
regarding the robustness problem we refer to [6, 24].

5. Nonlinear Perturbations and Lyapunov Sequences

We consider the nonlinear dynamics

xm+1 = Amxm + fm(xm), (5.1)

where fm : X → X , m ∈ Z are continuous functions. We are going to show that
if the linear part of the Eq. (5.1) admits an exponential dichotomy and if the
nonlinear perturbation is sufficiently small that then each solution of (5.1) has
the property that the associated sequence obtained by projecting the solution on
the stable subspace of our dichotomy is uniformly exponentially stable. The precise
statement is given below. Our arguments rely on the use of Lyapunov sequences.

Theorem 5.1. Assume that the sequence (Am)m∈Z admits a uniform exponential
dichotomy with projections Pm and that the sequence (fm)m∈Z satisfies :

(1) There exists ρ > 0 such that

‖fm(x)‖ ≤ ρ‖x‖, for m ∈ Z and x ∈ X ; (5.2)

(2)

Pm+1fm(x) = fm(Pmx), for m ∈ Z and x ∈ X. (5.3)

1650033-10
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Then for sufficiently small ρ, there exists L > 0 and η ∈ (0, 1) such that

‖Pnxn‖ ≤ Lηn−m‖Pmxm‖ (5.4)

for m ≥ n and every solution (xm)m∈Z of (5.1).

Proof. Consider operators Sm, m ∈ Z given by Theorem 3.1. We define a sequence
of functions Hm, m ∈ Z by

Hm(x) = 〈Smx, x〉, x ∈ X.

Furthermore, let um = Pmxm, m ∈ Z. In the proof of Theorem 3.1, we have showed
that

A∗
mSm+1Am = e−2(λ−ρ)

∑
k≥m

(A(k, m)Pm)∗A(k, m)Pme2(λ−ρ)(k−m)

− e−2(λ−ρ)(Pm)∗Pm − e2(λ−ρ)
∑
k<m

(A(k, m)(I − Pm))∗A(k, m)

× (I − Pm)e2(λ−ρ)(m−k) − e2(λ−ρ)(I − Pm)∗(I − Pm).

In particular, this implies that

A∗
mSm+1Am ≤ e−2(λ−ρ)Sm, for every m ∈ Z. (5.5)

Using (5.3), we have

Hm+1(um+1) = 〈Sm+1um+1, um+1〉
= 〈Sm+1Pm+1xm+1, Pm+1xm+1〉
= 〈Sm+1Pm+1(Amxm + fm(xm)), Pm+1(Amxm + fm(xm)〉
= 〈Sm+1(Amum + fm(um)), Amum + fm(um)〉
= 〈A∗

mSm+1Amum, um〉 + 〈Sm+1Amum, fm(um)〉
+ 〈Sm+1fm(um), Amum〉 + 〈Sm+1fm(um), fm(um)〉.

By (3.1), (3.2), (5.2) and (5.5),

Hm+1(um+1) ≤ e−2(λ−ρ)Hm(um) + 2‖Sm+1‖ · ‖Amum‖ · ‖fm(um)‖
+ ‖Sm+1‖ · ‖fm(um)‖2

≤ e−2(λ−ρ)Hm(um) + 2DCρ‖um‖2 + Dρ2‖um‖2.

Noting that Hn(z) ≥ ‖z‖2 for z ∈ Im Pn and that un ∈ Im Pn, we conclude that

Hm+1(um+1) ≤ η2Hm(um), (5.6)

where

η2 = e−2(λ−ρ) + 2DCρ + Dρ2.
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By choosing ρ sufficiently small, we can achive that η ∈ (0, 1). Iterating (5.6), we
obtain that

Hn(un) ≤ η2(n−m)Hm(um), for n ≥ m.

Since ‖un‖2 ≤ Hn(un) and Hm(um) ≤ D‖um‖2, we conclude that (5.4) holds with
L =

√
D.
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[5] L. Barreira, D. Dragičević and C. Valls, Positive top Lyapunov exponent via invariant
cones: Single trajectories, J. Math. Anal. Appl. 423 (2015) 480–496.

[6] L. Barreira and C. Valls, Robustness of discrete dynamics via Lyapunov sequences,
Comm. Math. Phys. 290 (2009) 219–238.

[7] L. Barreira and C. Valls, Lyapunov sequences for exponential dichotomies, J. Diff.
Eqs. 246 (2009) 183–215.

[8] L. Barreira and C. Valls, Quadratic Lyapunov functions and nonuniform exponential
dichotomies, J. Diff. Eqs. 246 (2009) 1235–1263.
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