Experimental algebraic differential cryptanalysis of SPN

Pavol Zajac¹ Alena Bednáriková

Institute of Computer Science and Mathematics Slovak University of Technology

pavol.zajac@stuba.sk

Central European Conference on Cryptology 2020

Supported by grant VEGA 1/0159/17.

Algebraic cryptanalysis

Algebraic differential cryptanalysis

New representation for algebraic differential cryptanalysis

Experimental results

Algebraic cryptanalysis overview

Algebraic cryptanalysis: compute the secret key k from equation

$$Enc(p, k) = c$$

- 1. Rewrite encryption as a system of equations.
- 2. Solve with a solver NP hard in general.

Our experimental algebraic cryptanalysis

- We focus on a simple cipher model: Substitution Permutation Network (SPN)
- Equations are represented as Boolean predicates in CNF
- Solver: CryptoMiniSAT in SAGE

Algebraic cryptanalysis

Substitution Permutation Network

SPN algebraic model

Unknowns:

- key bits,
- S-box inputs and outputs.

Predicates:

- S-boxes: $P_1(x, y)$ is true, iff y = S(x)
- Linear parts: $P_2(x, y, k)$ is true, iff $x \oplus k = y$
- Linear parts (2): $P_3(x, y)$ is true, iff x = y

S-box predicate

Predicate P_1 is based on the truth table defined by S-box:

(0=false, 1=true)

$$(x_1 \lor x_2 \lor x_3 \lor x_4 \lor y_1 \lor y_2 \lor y_3 \lor y_4) \land (x_1 \lor x_2 \lor x_3 \lor x_4 \lor y_1 \lor y_2 \lor \neg y_3 \lor y_4) \land \dots$$

Multiple P-C pairs

Using multiple P-C pairs:

$$Enc(p_i, k) = c_i$$

Linear growth of system size with number of P-C pairs — slows down solvers.

Differential cryptanalysis

- Large number of P-C pairs: we use statistical properties of the whole set of P-C pairs.
- Differential cryptanalysis:
 - 1. model how differences are spread during encryption,
 - 2. find characteristic with high differential probability p,
 - 3. exploit the characteristic (using the set of P-C pairs).

- Combination of differential and algebraic attacks.
- Basic method:
 - 1. prepare equations for a P-C pair:

$$Enc(p_1, k) = c_1 \wedge Enc(p_2, k) = c_2$$

2. add linear equations corresponding to characteristic with probability p:

$$p_{1,1} \oplus p_{2,1} = \delta_1 \wedge \ldots$$

Try to solve system for each P-C pair: gives solution with probability p.

Our new method

Main idea: Instead of using 2 systems of equations for both P-C pairs, and a set of linear equations, we use modified system for just one P-C pair.

$$Enc'(p_1, k) = c_1$$

Our new method

Main idea: Instead of using 2 systems of equations for both P-C pairs, and a set of linear equations, we use modified system for just one P-C pair.

$$Enc'(p_1,k)=c_1$$

In *Enc'*, we change S-box predicate:

$$P_1'(x, y) = \text{true iff } y = S(x) \land \Delta y = S(x \oplus \Delta x) \oplus S(x)$$

Algebraic cryptanalysis Algebraic differential cryptanalysis New representation

Modified S-box representation

X	Y	$\Delta X = 1011$	$\Delta Y = 0010$	
Λ		X'	<i>Y'</i>	
0000	1110	1011	1100	
0001	0100	1010	0110	
0010	1101	1001	1111	
0011	0001	1000	0011	
0100	0010	1111	0000	
0101	1111	1110	1101	
0110	1011	1101	1001	
0111	1000	1100	1010	
1000	0011	0011	0001	
1001	1010	0010	1000	
1010	0110	0001	0100	
1011	1100	0000	1110	
1100	0101	0111	0111	

Time variation for randomly generated S-boxes

Time variation for number of P-C pairs

Time variation for number of P-C pairs

Experimental results

Time variation for number of P-C pairs

Total time to solve

When taking probability of the success under consideration:

P-C pairs	Algebraic [s]	AlgTruncated Diff. [s]	AlgDif. [s]
2	9.3	0.1	2.5
4	15.6	96.4	1991.0
4*	15.6	1.3	5.1

^{*} Hypothetic situation, if we could identify two sets of P-C pairs with the same probability as one set.

Summary

- We can model P-C pair with expected difference with an equation system with a single P-C pair and modified S-box equations.
- The new representation can speed up algebraic differential cryptanalysis.
- Open question: Is it possible to distinguish between a set with a valid difference and a set with no valid difference?

