Identity-based Encryption

- An important branch of the public key cryptography.
 - The idea was given by Shamir in 1984.
 - The first, well working scheme was created by Boneh and Franklin (2001).

- The public keys are clear identifiers of individuals.
 - Local or global domain.
 - E-mail, phone number, etc.

- The encryptor key and the public key of the decryptor have to be identical. Both of them are handled as bitstrings.
Fuzzy Identity-based Encryption

- The core idea is to handle the public keys as sets of attributes.

- A certain amount of overlap required between the encryptor key and the public key of the decryptor.

- It is faster to encrypt to a group of people this way than encrypting to everyone individually.

- Slower setup, extract and decrypt algorithms.
Identity-based Encryption with wildcards

- The encryptor key is a pattern.
 - *@cs.*.edu

- In the system it is treated as a vector.
 - \(P = (P_1, ..., P_l) \in (\{0, 1\}^* \cup \{\ast\})^l \)

- The runtime of the algorithms are depending on the size of the vector.
Attribute-based Encryption

- Expands the idea of the Fuzzy IBE, that the public keys are sets of attributes.
- The novelty in these schemes is building an access-tree to the keys.
 - It allows using AND and OR gates.

KP-ABE
- Ciphertexts are associated with sets of descriptive attributes.
- User keys are associated with policies.

CP-ABE
- Ciphertexts are associated with policies.
- User keys are associated with sets of descriptive attributes.
There are ABE schemes with more feature:

- access structures including negation

 NOT Year:1991-2000
 Year:NOT 1991-2000

- multi-use of attributes

 ((Year:1991-2000 AND Category:jazz)
 OR
 (Year:2001-2010 AND Category:jazz)
 OR
 (Year:2001-2010 AND Artist:The Beatles))
The disadvantage of the ABE schemes

An attribute α is a pair (N_α, L_α), where N_α is the name of the attribute and L_α is the formal language including all possible values of the attribute.

A property $p = (N_p, V_p)$ defines the actual values of an entity regarding to the attribute α, if $N_p = N_\alpha$ and $V_p \subseteq L_\alpha$.

Let Ω be the set of entities and P the set of properties in a given domain. In our protocol PK_α is the public key of an $\alpha \in \Omega$ entity, if $PK_\alpha \subseteq P$ and $\exists ID_\alpha \subseteq PK_\alpha$, where for all $\beta \in \Omega$, $ID_\alpha \setminus ID_\beta \neq \emptyset$. ID_α is the identifier of α.
Formal Language
Identity-based Encryption
An **authorization formula** Υ is a logic formula that contains boolean operators and attribute constraints.

Let $a = (N_a, L_a)$ be an attribute. $\gamma = (N_\gamma, L_\gamma)$ is an **attribute constraint** for a, if $N_\gamma = N_a$ and $L_\gamma \subseteq L_a$, where L_a is the language, which contains the accepted property values.

Example:

("e-mail", .*@company\.com) AND ("job", \{Lead developer, Chief Technology Officer\})
The purpose of the digital signature is to prevent the creation of fake authorization formula.
A new encryption key should be generated for every authorization formula.

The key can be used multiple times with the same formula.
Formal Language
Identity-based Encryption

Diagram:
- Sender
- Receiver
- Private Key Generator
- Setup
- Creates authorization formula
- ExtractIBS
- SignFormula
- GenerateEncryptionKey
- Encrypt
- Send
The \textit{Extract} algorithm includes the signature verification and the evaluation process of the authorization formula.
Formal Language
Identity-based Encryption
FLIBE usage example

{"number of medical qualifying examinations", [1-9][0-9]*}

{"email", ."@med.unideb.hu", ."@medical.mail.hu"}

{"email", ."@Xhospital.hu"}

{"specialization", ."surgeon", ."anesthesiologist", ."director"}

{"department", Department of ."Surgery", Department of ."Internal Medicine"}
FLIBE advantages

- Flexible target definition.
- Option to support future entities (currently not existing or not fitting).
- "Constant" client-side runtime.
- The protocol can be used for digital signatures with minor changes.
FLIBE disadvantages

- The authorization formula is attached to the ciphertext, which means increased cipher size.

- The runtime of the extract method depends on the complexity of the authorization formula.
This work is supported partially by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project is supported by the European Union, co-financed by the European Social Fund.

This work is supported partially by the SETIT (2018-1.2.1-NKP-2018-00004) project.
Thank you for your attention!