A Review of Encryption Schemes Used in Modern Ransomware¹ CECC 2020

Peter Švec Roderik Ploszek

Institute of Computer Science and Mathematics Slovak University of Technology

24-26 June 2020

 $^{^{1}}$ This research was sponsored by Slovak Republic under grant VEGA 1/0159/17.

Contents

- 1. Introduction to ransomware
- 2. Analysis process
- 3. Encryption schemes
- 4. Symmetric ciphers
- 5. Asymmetric ciphers
- 6. Key generation
- 7. Cryptography implementation
- 8. Custom ciphers
- 9. Common Mistakes: Then & Now
- 10. Quantum ransomware: The future
- 11. Conclusion

- special type of malware that encrypts personal user data
- > after encryption is finished, the malware provides instructions how to pay a ransom
- ransomware was reported as a top threat in 2019 IOCTA

Analysis process

Objective

Analyse modern ransomware and compare the findings with the previous generation. Findings can be used to understand current trends in ransomware and improve detection.

Steps

- 1. download a sample from malware archives, check known hash value
- 2. dynamic analysis run the sample and analyse impact on the system
- 3. static analysis use disassembler/decompiler to analyse inner workings of ransomware

Encryption schemes

- 1. Shipped public key to encrypt random symmetric keys, generated for each file to be encrypted.
- 2. Generated public and private key pair on the victim side. Private key is sent back to the attacker. Public key is used to encrypt random symmetric keys, generated for each file to be encrypted.
- 3. Shipped public key to encrypt global symmetric key, used for victim data encryption.
- 4. Three-tier trust model, where shipped public key A is used for encrypting private key B. Public key B is used for symmetric keys encryption, generated for each file.

Encryption scheme 1

This scheme is used by Ryuk, Dharma, LockBit...

A attacker V victim K key Enc(msg, K) encrypt msg with K EXE_{K} executable with embedded key K Gen(K) generate key K f_i file from system, $i \in N$. where N is total number of files

Encryption scheme 2

A attacker V victim K key Enc(msg, K) encrypt msg with K EXE_{k} executable with embedded kev K Gen(K) generate key K f_i file from system, $i \in N$, where N is total number of files

This scheme is used by GandCrab...

Symmetric ciphers in older ransomware

Ransomware name	Algorithm	Mode	IV
OpenToYou	RC4	_	
Amnesia	AES-128	CBC	
Globe V3	AES-256	ECB	—
Xmas	Custom cipher	—	
LeChiffre	BlowFish	—	—
Petya	Salsa20	—	—

Craciun, Mogage, Simion: Trends in Design of Ransomware Viruses (2019)

Symmetric ciphers in today's ransomware

Ransomware name	Algorithm	Mode	IV	
Ryuk	AES-256	CBC	Zero	
Dharma	AES-128	CBC	Random	
LockBit	AES-128	CBC	Random	
SamSam	AES-128	CBC	Random	
GandCrab	Salsa20, RC4		_	
Lilocked	ARIA-128			
Clop	Custom cipher			

Asymmetric ciphers in older ransomware

Ransomware name	Algorithm
Petya	ECC
GpCode	RSA-660
CTB-Locker	ECC
Shade	RSA-3072
CryptoMix	RSA-2048
Cerber	RSA-2048

Subedi, Budhathoki, Dasgupta: Forensic Analysis of Ransomware Families using Static and Dynamic Analysis (2018)

Asymmetric ciphers in today's ransomware

Ransomware name	Algorithm
Ryuk	RSA-2048
LockBit	RSA-2048
SamSam	RSA-2048
GandCrab	RSA-2048
Dharma	RSA-1024
Clop	RSA-1024

Key generation in older ransomware

Ransomware name	Key
Petya	secp192k1
OpenToYou	hardcoded
Amnesia	C rand() function
Xorist	C rand() function
Xmas	C rand() function
LeChiffre	hardcoded

Craciun, Mogage, Simion: Trends in Design of Ransomware Viruses (2019)

Key generation in today's ransomware

Ransomware name Symmetric key		Asymmetric key		
Ryuk	CryptGenKey	hardcoded		
Dharma	get_random_NZ	hardcoded		
LockBit	CryptGenRandom	hardcoded		
SamSam	$\verb+RNGCryptoServiceProvider$	argument		
GandCrab	${\tt CryptGenRandom}$	CryptGenKey		
Clop	CryptGenKey	hardcoded		

Cryptography implementation in today's ransomware

Ransomware name	Implementation
Ryuk	Windows CryptoAPI
Dharma	axTLS embedded SSL
LockBit	Windows CryptoAPI + AES-NI instruction set + Optimized
	Rijndael
SamSam	.NET System.Security.Cryptography
GandCrab	Windows CryptoAPI
Clop	Widnows CryptoAPI

Cipher state is a permutation of 256 bytes (0–256):

0	1	2	3	4]	250	251	252	253	254	255
---	---	---	---	---	---	-----	-----	-----	-----	-----	-----

Initial state is determined by a random 117 byte key.

For every byte of the input file, two cipher state bytes are exchanged and used to determine cipher state byte that is xored with the input byte.

Common Mistakes: Then & Now

Then

Previously, ransomware authors used rand() function to generate keys, CBC mode using zero initialization vector, ECB mode or custom ciphers.

Now

Nowadays, ransomware creators are more careful and depend mostly on correct cryptography implementations.

As quantum computers are improving, we can expect the need to move away from standard asymmetric algorithms such as RSA. Ransomware authors will certainly follow this trend.

Conclusion

Future plans

- Acquire and analyze more samples.
- ▶ Use gained information in detection systems (e.g. based on ontology)

Discussion

peter.svec1@stuba.sk
roderik.ploszek@stuba.sk