ENCRYPTION SCHEME BASED ON THE EXTENSION OF AUTOMORPHISM GROUP OF THE HERMITIAN FUNCTION FIELD

PROF. GENNADY KHALIMOV, AS.PROF YEVGEN KOTUKH, AS.PROF SVITLANA KHALIMOVA

CECC 2020 ZAGREB

Outline

- **1. Era of Post-Quantum Primitives**
- 2. MST idea/MST3 present results
- 3. Proposed solution
- 4. Key Generation
- 5. Encryption
- 6. Decryption
- 7. Security Analysis
- 8. Conclusion

Era of Post-Quantum Approaches

Name	Туре	Basis	Private key, bit	Public key, bit	Cipher text/signat	ure
Lepton	Encryption	Code	80	4128	5557	
3Bears	Encryption, KEM	Code	40	1584	1697	Try to satisfy: Encryption. KED and DES
qTESLA	Signature	Code	4128	6432	5920	
Classic McElliece	Encryption	Code	13908	1047319	22	
LEDAcrypt	Encryption, KEM	Code	40	18016	9008	To have less computation complexity and
Dilithium	Signature	Code	3856	760	3366	faster realization
FrodoKEM	KEM	Lattice	31272	15632	15768	
RQC	KEM	Lattice	3510	3510	3574	
NTRU	Encryption	Lattice	6230	6734	140	Less sigher / signsty we dote
SIKE	KEM	Isogeny	826	726	766	Less cipner/signature data
Rainbow	Signature	Multivariant Polynom	1319000	871000	118	
LUOV	Signature	Multivariant Polynom	32	39300	4700	
SPHINCS	Signature	Hash	1024	1024	41800	
Picnic	Signature	Other	256	512	209474	
RVB	KEM	Other	334	332		
WalnutDSA	Signature	Other	1040	634	7704	
pqRSA	Encryption, Signature	Other	25769803776	8589934592	8589934592	
RSA	Encryption, Signature, KEM	FF-DLP	3/384	384	384	
Elliptic curves	Encryption, Signature, KEM	DLP	64	128	128	

The MST Cryptosystem

Requirements for cryptosystems	- to use a logarithmic signatures and coverages as a type of factorization of a finite group
on group algebra	- to use a large group with a large non-trivial center
Review	[3] S.S. Magliveras, "A cryptosystem from logarithmic signatures of finite groups", in Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972–975, Elsevier Publishing, Amsterdam, The Netherlands, 1986.
	[4] W. Lempken, S.S. Magliveras, Tran van Trung and W. Wei, "A public key cryptosystem based on non-abelian finite groups", J. of Cryptology, 22 (2009), 62–74.
	[5] S.S.Magliveras, D.R.Stinson, and T.vanTrung, "New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups", Journal of Cryptology, vol. 15, no. 4, pp. 285–297, 2002.
	[6] S.S. Magliveras, P. Svaba, T. Van Trung, and P. Zajac, "On the security of a realization of cryptosystem MST3", Tatra Mountains Mathematical Publications ,vol.41,pp.65–78,2008.
Definition1 (cover (logarithmic	Let $\alpha = [A_1,, A_s]$ be a cover (logarithmic signature) of type $(r_1, r_2,, r_s)$ for G with
signature) mappings)	$A_i = [a_{i,1}, a_{i,2},, a_{i,r_i}]$, where $m = \prod_{i=1}^{s} r_i$. Let $m_1 = 1$ and $m_i = \prod_{j=1}^{i-1} r_j$ for $i = 2,, s$.
	Let τ denote the canonical bijection
	$\tau: \mathbb{Z}_{r_1} \times \mathbb{Z}_{r_2} \times \times \mathbb{Z}_{r_s} \to \mathbb{Z}_m, \tau(j_1, j_2,, j_s) = \sum_{i=1}^s j_i \cdot m_i.$
	Then the surjective (bijection) mapping $\alpha': \mathbb{Z}_m \to G$ induced by is
	$\alpha'(x) = a_{1j_1} \cdot a_{2j_2} \cdots a_{sj_s}$ where $(j_1, j_2,, j_s) = \tau^{-1}(x)$.
	More generally, if $\alpha = [A_1,, A_s]$ is a logarithmic signature (cover) for, then each element
	$g \in G$ can be expressed uniquely (at least one way) as a product of the form
	$g = a_1 \cdot a_2 \cdots a_s$, for $a_i \in A_i$

As lager order than stronger cryptography

Description of MST3 algorithm

Initial setting	Let G be a finite non-abelian group with nontrivial center Z				
Generate	a tame logarithmic signatures $\beta = [B_1, B_2,, B_s] := (b_{ij})$ the class $(r_1, r_2,, r_s)$ for \mathbb{Z}				
	- a random cover $\alpha = [A_1, A_2,, A_s] := (a_{i,j})$ the same class as β				
	- a set of elements $t_0, t_1,, t_s \in G \setminus \mathbb{Z}$;				
Definition	of homomorphism to calculate $f: G \to \mathbb{Z}$;				
Calculate	$\gamma := (h_{ij}) = (t_{i-1}^{-1} f(a_{ij}) b_{ij} t_i) \text{ for } i = 1,, s, j = 1,, r_i.$				
Output: public key	$(\alpha = (a_{ij}), \gamma = (h_{ij}), f)$				
private key	$(\beta = (\mathbf{b}_{ij}), (\mathbf{t}_0,, \mathbf{t}_s))$				
Encryption					
<i>Input</i> the message to be	$x \in \mathbb{Z}_{ Z }$				
encrypted. set a random number	$R\in Z_{ \mathbb{Z} }$				
Calculate	$y_1 = \alpha'(R) \cdot x ,$				
	$y_2 = \gamma(R) = t_0^{-1} f(\alpha'(R)) b'(R) t_s$.				
Transmit	$y = (y_1, y_2)$				
Decryption					
Input the cipher text	$y = (y_1, y_2) ,$				
the private key	$(\beta = (b_{ii}), (t_{0},, t_{c}))$				
the function of the homomorphism	$f: G \to \mathbb{Z} .$				
Calculate	$\beta(R) = y_2 t_s^{-1} f(y_1)^{-1} t_0.$				
Recover	R with $\beta(R)$ using β^{-1}				
Calculate	$x = \alpha'(R)^{-1} \cdot y_1$				

Alpha to be used for Public key, Beta and t – for private

Remark. Message x masked by a logarithmic signature on the arrays $\alpha = (a_{ij}), \gamma = (h_{ij})$ which is calculated for a random number R.

The function of the homomorphism $f: G \to \mathbb{Z}$ moves the group element to the center of the group.

Calculation $\beta(R) = y_2 t_s^{-1} f(y_1)^{-1} t_0$ and the subsequent recovery of R is possible due to the commutativity of the center.

MST3 results for Suzuki groups

Definition Suzuki groups	$S(a,b) = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & a^{\theta} & 1 \end{pmatrix}, \ a,b \in F_q \ , \ q = 2^m \ , \ 3 \le m \in N$
The center	$Z(S(a,b)) = \{S(0,b) b \in F_q\}$
Multiplication operation	$S(a_1, b_1)S(a_2, b_2) = S(a_1 + a_2, b_1 + b_2 + a_1^{\theta}a_2)$
Search of inverse element	$S(a,b)^{-1} = S(a,b+a^{\theta+1})$
Experimental Results	Encryption testing was performed on a computer running Ubuntu 16.04, Intel® Core ™ i7-4702MQ CPU @ 2.20 GHz processor, 12GB of RAM, the results are presented in Table 1.

Suzuki group has a big center and simple group operation

The secrecy of the cryptosystem is defined by the finite field for determining the coordinates of the Suzuki group elements. For 256 bitslike security, the field should be 2 ^256.

Table 1. Expenses for encryption / decryption

	Expenses for	or encryption/	decryption	Expenses for encryption / decryption by					
	in the finite	field 128 bits	s.	RSA algorithm.					
	Breakdown	classes		Bit rate of key parameters, bit					
	64[4]	32[16]	16[256]	512	1024	2048	4096		
Time to generate key data, ms	56	59	169	3,368	8,685	63,65	707,6		
The size of a private key, byte	78830	111726	671918	342	632	1214	2373		
The size of the public key, byte	39761	75217	590609	92	160	292	548		
Encryption time 100 KB, ms	4749	2388	1205	66,98	117,9	243,8	591,8		
Time of decoding 100 KB, ms	2711	1487	888	641,27	2116,4	9853,5	64250,4		

When calculating in the final field 2048 and 4096 bits, the encryption and decryption time of the RSA algorithm is tens of times larger compared to the cryptosystem, but provides significant cost savings for the size of private and public keys.

We are interested in groups with large order; potentially, for a smaller field, we can achieve less computational complexity without reducing security.

The automorphism group of the Hermitian function field

Definition	The Hermitian function field $H F_{q^2}$ generated	I by two elements x, y of $y^q + y = x^{q+1}$	· · · · · · · · · · · · · · · · · · ·	Max order equals q^8				
	The automorphism group of the Hermitian function the projective unitary group $PGU(3E)$ and	$A := Aut(H) = \{\sigma : H \mapsto H \sigma \}$	is isomorphic to	Max order equals q O				
Review	 [1] H.Stichtenoth, "Über die Automorphis Primzahlcharakteristik" I, II, Arch. Math. [2] A. Garcia, H. Stichtenoth, CP.Xing, " 	smengruppe eines algebraischen Funktio 24, pp.524–544 and pp.615–631, 1973. 'On Subfields of the Hermitian Function	nenkörpers von Field", Kluwer	Many automorphism are exist. Automorphism with a group operation for sigma mappings was				
Group $A(P_{n})$	Academic Publishers, Compositio Mathem All automorphisms of $H _{E}$ acting on it as	natica 120: pp.137–170, 2000.		chosen for the cryptosystem				
P_{∞} the unique place in H over the rate of	$\begin{cases} \sigma(x) = ax + b \\ \sigma(y) = a^{q+1}y + ab^{q}x + c, \end{cases} \begin{cases} a \in F_{q^2}^* \coloneqq F_{q^2} \setminus \{0\} \end{cases}$	$b \in F_{q^2}, c^q + c = b^{q+1} $		implementation				
the pole of x .	$ordA(P_{\infty}) = q^{3}(q^{2}-1).$							
Properties the	Group operation $[a_1, b_1, c_1] \cdot [a_2, b_2]$	$,c_{2}] = [a_{1}a_{2}, a_{2}b_{1} + b_{2}, a_{2}^{q+1}c_{1} + a_{2}b_{2}^{q}b_{1} + c_{2}]$	The calc	ulations are greatly simplified to determine				
group structure	The identity is the triple $[1,0,0]$		the gro	group in the field of odd characteristics. The				
	The inverse of $[a,b,c]$ is $[a,b,c]^{-1} = [a^{-1},-b^{-1}]^{-1}$	$-a^{-1}b,a^{-(q+1)}c^q$	three co	ordinate representation of the elements of				
	For the characteristic is odd, we can represent	$A(P_{\infty})$ as follows:	the gro	oup is also simplified. There is no need to				
	$A(P_{\infty})\left\{\left[a,b,\frac{b^{q+1}}{2}+c\right]\middle a\in F_{q^2}^*,b\in F_{q^2} \text{ and } c\right\}$	$e^{q}+c=0$.	solv	e the H equation for the coordinate C.				
Another automorphism	$A_1(P_{\infty}) = \left\{ \sigma \in A(P_{\infty}) \middle \sigma(x) = x + b \right\}$	$\sigma(x) = x + b, \sigma(y) = y + b^q x + c$						
	The factor group $A(P_{\infty})/A_1(P_{\infty})$	$\partial(x) = ax, \partial(y) = a^{q+1}y$						
		$\omega(x) = x / y, \omega(y) = 1 / y$						

The automorphism group $A(P_{\infty})$ has a $ordA(P_{\infty}) = q^{3}(q^{2}-1)$ greater than the order Suzuki group.

A larger group order gives potential an advantage to cryptosystem secrecy and computing over small fields has an advantage in implementation.

Encryption scheme on the extension of automorphism group of the Hermitian function field

<i>Input</i> a large group on the field of odd characteristic	$A(P_{\infty}) = \{S(a,b,c) \mid a \in F_{q^2}^* := F_{q^2} \setminus \{0\}, b \in F_{q^2}, c^q + c = 0\}$
Choose a tame logarithmic signature	$\beta_{(1)} = \left[B_{1(1)},, B_{s(1)} \right] = \left(b_{ij} \right)_{(1)} = S\left(1, b_{ij(1)}, b_{ij(1)}^{q+1} / 2 \right) \text{ of type } \left(r_{1(1)},, r_{s(1)} \right), \ i = \overline{1, s(1)},$
	$j = \overline{1, r_{i(1)}}$, $b_{ij(1)} \in F_{q^2}$.
	$\beta_{(2)} = \left[B_{1(2)}, \dots, B_{s(2)} \right] = \left(b_{ij} \right)_{(2)} = S\left(1, 0, b_{ij(2)} \right) \text{ of type } \left(r_{1(2)}, \dots, r_{s(2)} \right), \ i = \overline{1, s(2)},$
	$j = \overline{1, r_{i(2)}}$, $b_{ij(2)} \in F_q \subset F_{q^2}$.
Select a random cover	$\alpha_{(1)} = \left[A_{1(1)}, \dots, A_{s(1)}\right] = \left(a_{ij}\right)_{(1)} = S\left(a_{ij(1)_1}, a_{ij(1)_2}, \left(a_{ij(1)_2}\right)^{q+1} / 2 + a_{ij(1)_3}\right)$
	of the same type as $\beta_{(1)}$, where $a_{ij} \in A(P_{\infty})$, $a_{ij(1)_1}, a_{ij(1)_2} \in F_{q^2} \setminus \{0\}$.
	$\alpha_{(2)} = \left[A_{1(2)}, \dots, A_{s(2)}\right] = \left(a_{ij}\right)_{(2)} = S\left(a_{ij(2)_1}, a_{ij(2)_2}, \left(a_{ij(2)_2}\right)^{q+1} / 2 + a_{ij(2)_3}\right)$
	of the same type as $\beta_{(2)}$, where $a_{i_j(2)_1}, a_{i_j(2)_2}, a_{i_j(2)_3} \in F_q \setminus \{0\} \subset F_{q^2}$.
Choose $t \to t \in \mathcal{A}(\mathcal{P}) \setminus \mathcal{T}$	$t_{i(k)} = S\left(t_{i(k)_{1}}, t_{i(k)_{2}}, (t_{i(k)_{2}})^{q+1} / 2\right), t_{i(k)_{j}} \in F^{\times}, i = \overline{0, s(k)}, j = \overline{1, 2}, k = \overline{1, 2}.$
$\iota_{0(k)}, \iota_{1(k)},, \iota_{s(k)} \in A(I_{\infty}) \setminus Z$	Let's $t_{s(1)} = t_{0(2)}$.
Construct a homomorphism	$f_1\left(S\left(a_1, a_2, a_2^{q+1} / 2\right)\right) = S\left(1, a_2, a_2^{q+1} / 2\right)$
	$f_2\left(S\left(a_1, a_2, a_2^{q+1} / 2\right)\right) = S\left(1, 0, a_2\right)$
Compute	$\gamma_{(1)} = \left[h_{1(1)}, \dots, h_{s(1)}\right] = \left(h_{ij}\right)_{(1)} = t_{(i-1)(1)}^{-1} f_1\left(\left(a_{ij}\right)_{(1)}\right) \left(b_{ij}\right)_{(1)} t_{i(1)}, i = \overline{1, s(1)}, j = \overline{1, r_{i(1)}}$
	$\gamma_{(2)} = \left[h_{1(2)}, \dots, h_{s(2)}\right] = \left(h_{ij}\right)_{(2)} = t_{(i-1)(2)}^{-1} f_2\left(\left(a_{ij}\right)_{(2)}\right) \left(b_{ij}\right)_{(2)} t_{i(2)}, \ i = \overline{1, s(2)}, \ j = \overline{1, r_{i(2)}}$
Output: public key	$\left[f_1, f_2, (lpha_k, \gamma_k) ight],$
private key	$\left[\beta_{(k)}, (t_{\theta(k)},, t_{s(k)})\right], k = \overline{1, 2}.$

Our proposal for improvement is determined by the fact that in addition to the logarithmic signature in the center of the group, we added another logarithmic signature along the coordinate B.

Thus, we have increased the number of arrays of Beta, noise, Alpha, Gamma, and t accordingly.

Example 1 Construction of a simple logarithmic signature $\beta = [B_1, ..., B_s] = (b_{ij})$

Fix the finite field F_q , $q = 2^{10}$, type $(r_1, ..., r_s) = (2^2, 2^2, 2^3, 2^3)$.

initial installation					adding noise				fusion	$C_1 = (B$	B_1, B_4	$, C_{2}$	$= B_2, $	$C_3 = B_3$					
$\beta(1)=$	B_1	00	00	000	000	$\beta(2)=$	<i>B</i> ₁	00	00	000	000		$\beta(3)=$	C_1	01	00	110	000	
		10	00	000	000			10	00	000	000				<mark>00</mark>	<mark>11</mark>	<mark>010</mark>	<mark>100</mark>	
		01	00	000	000			01	00	000	000				11	00	011	010	
		11	00	000	000			11	00	000	000				10	01	000	110	
	B_2	00	00	000	000		B_2	11	00	000					01	10	101	001	
		00	10	000	000			10	10	000	000				01	10	010	101	
		00	01	000	000			10	01	000	000				00	11	100	011	
		00	11	000	000			01	11	000	000				•	•	-	•	
	B_3	00	00	000	000		B_3	10	10	000	000					•			
		00	00	100	000			01	11	100	000				10	10	010	101	
		00	00	010	000			01	00	010	000				11	11	100	011	
		00	00	110	000			00	10	110	000				00	01	001	111	
		00	00	001	000			11	01	001	000			C_2	11	00	000	000	
		00	00	101	000			10	01	101	000				<mark>10</mark>	<mark>10</mark>	<mark>000</mark>	<mark>000</mark>	
		00	0	011	000			01	11	011	000				10	01	000	000	
		00	00	111	000			00	10	111	000				0	11	000	000	
	B_4	00	00	000	000		B_4	01	00	110	000			C_3	10	10	000	000	
		00	00	000	100			00	11	010	100				01	11	100	000	
		00	00	000	010			11	00	011	010				01	00	010	000	
		00	00	000	110			10	01	000	110				00	10	110	000	
		00	00	000	001			01	10	101	001				11	01	001	000	
		00	00	000	101			01	10	010	101				10	01	101 011	000	
		00	00	000	011			00	11	100	011				01	11	011	000	
	1	00	-00	000	111			11	01	001					00	10	111	000	

R = 673 $R = (R_1, R_2, R_3) = (1, 1, 5)$ $R_1 + R_2 2^5 + R_3 2^7 = 673$

 $\beta(R) = C_1(R_1) + C_2(R_2) + C_3(R_3) = 0011010100 + 1010000000 + 1001101000 = 0000111100$

 $\beta(R')^{-1} = 10|00|010|101 = (R_1', R_2', R_3', R_4') = (0, 1, 5, 1)$

 $\beta(R')^{-1} := \mu\{(0,1,5,1)\} \to (1||0,1,5) = (10000,10,101) \qquad R = (R_1, R_2, R_3) = (1,1,5)$

Example 2 Key Generation

Example 2 Key Generation

Fix the finite field F_q , $q = 3^4$, $g(x) = x^4 + x + 2$, types $(r_{1(1)}, r_{2(1)}) = (3^2, 3^2)$, $(r_{1(2)}, r_{2(2)}) = (3, 3)$.

$eta_{ ext{(k)}}$ =	$= \left[B_{1(k)}, \right]$	B _{2(k)}]=	$S(1, b_{ij(1)}, b_{ij(1)}^{q+1} / 2)$	$\alpha_{(k)} = S$	$\left(a_{ij(\mathbf{k})_{1}},a\right)$	$a_{ij(k)_2}, (a_{ij(k)_2})^{q+1}/2$	$t_{i(k)} = S$	$S(t_{i(k)_1}, t_{i(k)_1})$	$(t_{i(k)_2}, (t_{i(k)_2})^{q+1}/2)$	$\gamma_{(\mathbf{k})} = t_{(i-1)}^{-1}$	$f_{k}($	$\left(a_{ij}\right)_{(\mathbf{k})}\left(b_{ij}\right)_{(\mathbf{k})}t_{i(\mathbf{k})}$
$\beta_{(1)} =$	$B_{1(1)}$	00	00	a0 0 0	$\alpha_{(1)} =$	$A_{1(1)}$	a38 a66 a60	$t_{(1)} =$	t ₀₍₁₎	a27 a28 a0	$\gamma_{(1)} =$	$h_{1(1)}$	a79 a39 a53
		10	00	a0 a0 a40			a8 a17 a50		t ⁻¹ 0(1)	a53 a41 a50			a79 a31 a19
		20	00	<mark>a0 a40 a40</mark>			<mark>a35 a35 a70</mark>						<mark>a79 a78 a46</mark>
		01	00	a0 a1 a50			a39 a44 a0						a79 a43 a70
		11	00	a0 a53 a10			a68 a46 a20						a79 a2 a27
		21	00	a0 a44 a0			a16 a5 a10						a79 a66 a60
		02	00	a0 a41 a50			a48 a51 a70						a79 a64 a63
		12	00	a0 a4 a0			a12 a1 a50						a79 a34 a58
		22	00	a0 a13 a10			a78 a1 a50		$t_{l(1)}$	a26 a71 a30			a79 a5 a4
	$B_{2(1)}$	21	00	a0 a44 a0		$A_{2(1)}$	a28 a36 a0		$t^{-l}_{l(1)}$	a54 a5 a10		$h_{2(1)}$	a62 a71 a28
		12	10	a0 a26 a60			a20 a60 a0						a62 a11 a59
		02	20	a0 a14 a20			a52 a19 a70						a62 a50 a27
		12	01	<mark>a0 a56 a40</mark>			<mark>a9 a55 a30</mark>						<mark>a62 a28 a26</mark>
		01	11	a0 a9 a50			a16 a1 a50						a62 a76 a23
		20	21	a0 a32 a40			a5 a18 a60						a62 a41 a76
		20	02	a0 a39 a30			a79 a28 a0						a62 a76 a69
		11	12	a0 a69 a10			all al a50						a62 a28 a69
		11	22	a0 a30 a20			a43 a67 a70		t ₂₍₁₎	a8 a74 a60			a62 a68 a78
$\beta_{(2)} =$	$B_{1(2)}$	00	00	a0 0 0	$\alpha_{(2)} =$	$A_{1(2)}$	a61 a51 a70	t (2)=	t ⁻¹ 0(2)	a72 a26 a60	γ ₍₂₎ =	$h_{1(2)}$	a31 a48 a68
		10	00	<mark>a0_0 a0</mark>			<mark>a5 a30 a20</mark>						<mark>a31 a48 a61</mark>
		20	00	a0 0 a40			a57 a44 a0		$t_{1(2)}$	a39 a32 a40			a31 a48 a48
	$B_{2(2)}$	00	00	a0 0 0		$A_{2(2)}$	a44 a75 a70		$t^{-1}_{1(2)}$	a41 a33 a50		$h_{2(2)}$	a45 a9 a39
		11	00	a0 0 a53			a21 a40 a40		$t^{-1}_{2(2)}$	a76 a72 a40			a45 a9 a22
		22	00	<mark>a0 0 a13</mark>			<mark>a0 a38 a20</mark>		t ₂₍₂₎	a4 a36 a0			<mark>a45 a9 a36</mark>

An example with constructed arrays for a finite field 3^4.

Two Beta arrays, two noisy alpha, gamma, t.

Encryption scheme on the extension of automorphism group of the Hermitian function field

Encryption		
Input a message $m \in A(P_{\infty})$	$m = S(m_1, m_2, m_3), m_1, m_2 \in F_{a^2}, m_3 \in F_a \subset F_{a^2}$	$m = [a1 \ a2 \ a3]$
the public key.	$\left[f_1, f_2, (\alpha_k, \gamma_k)\right] k = \overline{1, 2}$	$R=(R_1,R_2)=(29,7), R_1=(2,3), R_2=(1,2)$
Compute	$y_1 = \alpha'(R) \cdot m = \alpha_1'(R_1) \cdot \alpha_2'(R_2) \cdot m$	$y_1 = [a50 \ a56 \ a38]$
Compute	$y_2 = \gamma'(R) = \gamma_1'(R_1) \cdot \gamma_2'(R_2) =$	$y_2 = [a57 \ a36 \ a23]$
	$S(*, a_{(1)_{2}}(R_{1}) + \beta_{(1)}(R_{1}) + *, a_{(2)_{2}}(R_{2}) + \beta_{(2)}(R_{2}) + *).$	
Compute	$y_3 = f_1(\alpha_1'(R_1)) = S(1, \alpha_{(1)_2}(R_1), *)$	$y_3 = [a0 \ a65 \ a50]$
Compute	$y_4 = f_2(\alpha_2'(R_2)) = S(1, 0, a_{(2)_2}(R_2))$	$y_4 = [a0 \ 0 \ a9]$
Output:	$(y_1, y_2, y_3, y_4).$	

Two session keys for the encryption to be used (same type as log signatures)

Output will be 2 times bigger if 3rd coordinate will be used

Decryption

Input a ciphertext	(y_1, y_2, y_3, y_4)	$y_1 = [a50 \ a56 \ a38], y_2 = [a57 \ a36 \ a23],$
the private key.	$\left[\beta_{(k)}, \left(t_{\theta(k)},, t_{z(k)}\right)\right] k = \overline{1, 2}$	$y_3 = [a0 \ a65 \ a50], y_4 = [a0 \ 0 \ a9]$
Compute	$D^{(1)}(R_1, R_2) = t_{0(1)} \cdot y_2 t_{s(2)}^{-1} = S(1, a_{(1)_2}(R_1) + \beta_{(1)}(R_1),$	$D^{(1)}(R_1, R_2) =$
	$a_{(2)_{2}}(R_{2}) + \beta_{(2)}(R_{2}) + (a_{(1)_{2}}(R_{1}) + \beta_{(1)}(R_{1}))^{q+1} / 2 + *).$	[a27 a28 a0] [a57 a36 a23] [a76 a72 a40]=[a0 a1 a32]
Compute	$D^{*}(R) = y_{3}^{-1}D^{(1)}(R_{1}, R_{2}) =$	$D^*(R) = [a0 \ a65 \ a50]^{-1}[a0 \ a1 \ a32] =$
	$S(1, \beta_{(1)}(R_1), a_{(2)_2}(R_2) + \beta_{(2)}(R_2) + *).$	[a0 a25 a50] [a0 a1 a32]=[a0 a18 a42]
Restore R ₁	$\beta_{(1)}(R_1)^{-1}$	$R_1:\to a18=0201=\frac{2000}{1201}+\frac{1201}{200}+(2,3)$
Compute	$y_2^{(1)} = \gamma_1'(R_1)^{-1} y_2 = \gamma_2'(R_2) =$	$y_2^{(1)} = (\frac{[a79 \ a78 \ a46}{[a62 \ a28 \ a26]})^{-1}[a57 \ a36 \ a23] =$
	$S(*,*,a_{(2)_2}(R_2) + \beta_{(2)}(R_2) + *).$	[a19 a53 a72] [a57 a36 a23]= [a76 a22 a46]
Compute	$D^{(2)}(R_2) = t_{0(2)} \cdot y_2 t_{z(2)}^{-1} = S(1, 0, a_{(2)_2}(R_2) + \beta_{(2)}(R_2))$	$D^{(2)}(R_2) = [a8 a74 a60] [a76 a22 a46] [a76 a72 a40] = [a0 0 a55]$
Compute	$D^{*}(R) = y_{4}^{-1}D^{(2)}(R_{2}) = S(1, 0, \beta_{(2)}(R_{2}))$	$D^*(R) = [a0 \ 0 \ a9] [a0 \ 0 \ a55] = [a0 \ 0 \ a41]$
Restore R ₂	$\beta_{(2)}(R_2)^{-1}$	$R_2:\to a41=0200=1000+2200\to(1,2)$
Output:	$R = (R_1, R_2)$ $m = \alpha' (R_1, R_2)^{-1} \cdot y_1$	$m = ([a35 a35 a70][a9 a55 a30][a5 a30 a20][a0 a38 a20])^{-1}$ [a50 a56 a38]= [a49 a60 a47]^{-1}[a50 a56 a38]= [a31 a51 a13] [a50 a56 a38]=[a1 a2 a3]

Decryption to be executed in two iterations. Each iteration recovers R session keys.

Security Analysis

Security Analysis

type of attack	attack mechanism	complexity	Possible solution
brute force attack on cipher text	selection $R = (R_1, R_2)$ for $y_1 = \alpha'(R) \cdot m = \alpha_1'(R_1) \cdot \alpha_2'(R_2) \cdot m$	q^3	
brute force attack on	selection $R = (R_1, R_2)$ of $y_2 = \gamma'(R) = \gamma_1'(R_1) \cdot \gamma_2'(R_2)$	q^3	
$\boldsymbol{K} = (K_1, K_2)$	selection R_1 of $y_3 = f_1(\alpha_1'(R_1)) = S(1, \alpha_{(1)_2}(R_1), *)$	q^2	link y_3 and y_4 through
	selection R_2 of $y_4 = f_2(\alpha_2'(R_2)) = S(1, 0, a_{(2)_2}(R_2))$	q	the product and matrix transformation $complexity-q^3$
brute force attack on $(t_{o(k)},,t_{s(k)})$	selection $(t_{\theta(k)},,t_{s(k)})$	$\left(q^2\right)^3$	
attack on the algorithm	Extraction parameters $a_{_{(1)_2}}\left({\it R}_1 ight)$, $a_{_{(2)_2}}\left({\it R}_2 ight)$ of		
	$y_3 = S(1, a_{(1)_2}(R_1), *), y_4 = S(1, 0, a_{(2)_2}(R_2))$		
	does not allow to calculate $ lpha_1'(R_1) \cdot lpha_2'(R_2) $ in		
	$y_1 = \alpha_1'(R_1) \cdot \alpha_2'(R_2) \cdot m$		

Potential security defined by q^3 value. Session keys should be bind by matrix transformation

Conclusions

Pros	- high secrecy ~ q^3 for encryption scheme based on automorphism group of the Hermitian function field over F_q
	- length ciphertext is $3\log q$ for computing in the finite field over F_q
	- the computing (encryption time in particular) in the finite field are smaller compare to the cryptosystem in the Suzuki group - the length of the logarithmic signature array is determined by the finite field over F_{-} and
	significantly less compared to the Suzuki cryptosystem
Cons	- for decrypting, it is necessary to calculate the inverse element three times
	- the large key data size
future	- construction of cryptosystems based on large-order groups
research	

Thank you very much for your attention!

Gennady Khalimov

Yevgen Kotukh

Svetlana Khalimov