An algorithm for optimal joint expansion with odd digits

Clemens Heuberger and Dunja Pucher

University of Klagenfurt

(Joint) Digit Expansions

$$\begin{array}{c}
 13 = (1101)_2 \\
 \hline
 (13)_2 \\
 \hline
 \end{array}
 = \begin{pmatrix}
 1101 \\
 0101
\end{pmatrix}_{2}$$

- dimension (d = 1, d = 2)
- radix or basis (r = 2)
- digit set (*D* = {0,1})
- length $(\ell = 4)$
- (joint) Hamming weight (w = 3)

Cryptography over elliptic curves

⇒ double and add method

Double and add method & digit expansions

Calculate 13P:

$$13 = (1101)_2$$

$$13P = 2(2(2(P) + P) + 0) + P$$

Calculate 13P + 5Q with Strauss' Algorithm (P + Q):

$$\begin{pmatrix} 13 \\ 5 \end{pmatrix} = \begin{pmatrix} 1101 \\ 0101 \end{pmatrix}_2$$

$$13P + 5Q = 2(2(2(P) + P + Q) + 0) + P + Q$$

doublings \sim length of the expansion # additions \sim (joint) Hamming weight of the expansion

Low-weight digit expansions

- increase number of zero columns
- introduce negative digits ⇒ redundant number systems

Algorithms for minimal weight joint expansions

- $D = \{0, \pm 1\}$
 - Joint Sparse Form (JSF): Solinas, 2001, d = 2
 - Generalization of JSF: Proos, 2003, $d \ge 2$
 - Simple JSF: Grabner, Heuberger, Prodinger, 2004, $d \ge 2$
- other digit sets with odd digits
 - approximation algorithms
 - precomputed minimal average weights

Algorithm for d=2 and $D=\{0,\pm 1,\pm 3\}$

Data: $N = (m, n)^T$, $m, n \in \mathbb{Z}$, $D = \{0, \pm 1, \pm 3\}$ **Result:** $A_{s-1} \dots A_1 A_0$, a minimal weight joint expansion $s \leftarrow 0$ **while** $N \neq 0$ **do** $\begin{array}{c} \text{select digits from } D \text{ to form } A_s, \text{ the least significant column} \\ \text{of a representation of } N \\ N \leftarrow \frac{1}{2}(N - A_s) \\ s \leftarrow s + 1 \\ \text{end} \end{array}$

Output

Shape Condition for pairs of integers

$$\begin{pmatrix} 73\\47 \end{pmatrix} = \begin{pmatrix} 33001\\3000\overline{1} \end{pmatrix}_2$$

- of any three consecutive columns at least one is a zero column
- a column with two odd digits is followed by a zero column
- a property regarding adjacent odd digits

Digit set
$$D = \{0, \pm 1, \pm 3\}$$

- an even integer \Rightarrow select digit d = 0
- an odd integer \Rightarrow select a digit $d \in \{\pm 1, \pm 3\}$

Example: integer 27

$$d = 3 \Rightarrow 27 - 3 = 24 \equiv 0 \pmod{8}$$

 $d = 1 \Rightarrow 27 - 1 = 26 \equiv 2 \pmod{8}$
 $d = -1 \Rightarrow 27 + 1 = 28 \equiv 4 \pmod{8}$
 $d = -3 \Rightarrow 27 + 3 = 30 \equiv 6 \pmod{8}$

 \Rightarrow the digit set D contains a unique representative for all odd residue classes modulo 8

Case studies

- both integers are even
- both integers are odd
- one integer is odd and the other one is even

Results regarding the algorithm for $D = \{0, \pm 1, \pm 3\}$

- algorithm terminates
- outputs of the algorithm fulfil predefined syntactic constraints
- necessary look-ahead for a selection of the digits is 7

Finite State Machines (Transducers)

- convert binary expansions into expansions computed with the algorithm
- weight expansions computed with the algorithm
- convert arbitrary inputs with digits from D into expansions computed with the algorithm

Asymptotic moments for an expansion of length ℓ

- expectation: $281/786\ell + \mathcal{O}(1) \sim 0.36\ell + \mathcal{O}(1)$
- variance: $1397284/60698457\ell + \mathcal{O}(1) \sim 0.02\ell + \mathcal{O}(1)$

Bellman-Ford Algorithm

• there is no shorter path

Complexity

$$D = \{0, \pm 1, \pm 3\} \qquad \qquad D = \{0, \pm 1\}$$
 Precomputation 12 points 2 points
$$\text{Average weight} \qquad 0.36\ell \qquad \qquad 0.5\ell$$

 \Rightarrow costs for precomputation are offset after 71 bit

Thank you for your attention!

clemens.heuberger@aau.at
 dupucher@edu.aau.at