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Sandpile model

Discete logarithm problem

General problem
Let G a multiplicative group, g , h P G . The problem is to find an
x such that g x “ h.

In additive groups
Let G be an additive group, g , h P G , The problem is to find an
x such that x ¨ g “ h.
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Sandpile model

Sandpile graph

A pV ,E , sq triplet is called sandpile graph, if pV ,E q is a directed
multigraph and s P V is a globally accessible vertex.

A vertex is globally accessible or sink, if it can be accessed from
each of the vertices of the graph G .
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Sandpile model

Configurations

Configuration
A configuration over G is a c : V Ñ Z function, such that

cpvq ě 0 for all v P V ˚, furthermore cpsq “ ´
ÿ

vPṼ

cpvq, and

denoted by c “ pc1, . . . , cnq.

Stable configuration

A c configuration is stable in v P V ztsu, if cpvq ď d´pvq.
Otherwise, c is unstable.
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Sandpile model

Stabilization

An unstable c configuration can be fired, which gives a c̃
configuration. It means we reduce cpvq by d´pvq, and every
adjacent u vertex of v increases by 1. So that

c̃pvq “

$

’

&

’

%

cpuq ´ d´puq, if u “ v ,

cpuq ` 1, if u and v are adjacent,

cpvq, other.

We say a firing is legal, if c is unstable at v .
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Sandpile model

Sandpile group

Stable addition
Let M denote the set of nonnegative stable configurations on G .
Then M is a commutative monoid under stable addition

a ©̊ b :“ pa ` bq˝.

A stable addition is a vector addition in NṼ followed by
stabilization.
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Sandpile model

Accesible configuration
A configuration c is accessible if for each configuration a, there
exists a configuration b such that a ` b Ñ c .

Recurrent configuration
A configuration c is recurrent if it is nonnegative, accessible, and
stable.

Sandpile group
The collection of recurrent configurations of G forms a group
under stable addition, that is called the sandpile group of G and
denoted by SpG q.
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Sandpile model

Example

Elements of sandpile group

c1 “ p2, 1, 1, 2q
c2 “ p2, 0, 1, 2)
c3 “ p1, 1, 1, 2q
c4 “ p1, 0, 1, 2q
c5 “ p0, 1, 1, 2q
c6 “ p1, 1, 0, 2q
c7 “ p2, 0, 0, 2q
c8 “ p2, 1, 0, 2q
c9 “ p2, 1, 0, 1q
c10 “ p2, 1, 1, 1q
c11 “ p2, 1, 1, 0q
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Solving DLP

Divisor
The D divisors of the G groups are the elements of

DivpG q “
 

ÿ

vPV pGq

av pvq | av P Z
(

Monodromy pairing
Let P be an arbitrary pseudoinverse of the L Laplacian matrix,
then monodromy pairing can define as the following:

xD1,D2y “ rD1s
TPrD2s pmod Zq.
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Solving DLP

Solving DLP

Input: D1,D2 P Div
0pG q, where D2 “ x ¨ D1 in Jac(G )

Output: x pmod ordpD1qq

1 Compute xD1, gy “ r1 ` Z and xD2, gy “ r2 ` Z.

2 Solve the r2 “ r1x ` y Diophantine equation to get
x pmod ordpDqq.
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Solving DLP

C 2
n Square cycle

(a) n “ 3 (b) n “ 4 (c) n “ 8

Krisztián Dsupin 20th Central European Conference on Cryptology 10 / 21



Solving DLP

Square cycle

Let n be a positive integer, and Cn a cycle graph with
V “ tv1, . . . , vnu vertices. Than C 2

n square cycle is a 4-regular
graph with vertex set V , and ith vertex is adjacent to
i ˘ 1 pmod nq and i ˘ 2 pmod nq vertices.

Structure of SpC 2
n q

The sandpile group of C 2
n is the direct sum of two or three cyclic

groups, which are the followings:

SpC 2
n q – Zpn,Fnq ‘ ZFn ‘ Z nFn

pn,Fnq

.
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Solving DLP

Solving DLP

1 Compute L “ D ´ A Laplace-matrix and P pseudoinverse

2 Specify Dg1 ,Dg2 ,Dg3 divisors of g1, g2, g3 generators

3 Compute divisors of c1 and c2 configurations
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Solving DLP

Solving DLP in cyclic groups

4 Dc1 ¨ P ¨ Dg1 and Dc2 ¨ P ¨ Dg1

Dc1 ¨ P ¨ Dg2 and Dc2 ¨ P ¨ Dg2

Dc1 ¨ P ¨ Dg3 and Dc2 ¨ P ¨ Dg3

pairings gives solutions for Diophantine equations modulo
ordpg1q, ordpg2q, ordpg3q

5 Solving that congruence system with Chinese remainder
theorem, the solution of the DLP can be given.
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Generalised inverse

Generalised inverse

k-circulant matrix
A square A “ paijq matrix is k-circulant, it there exists a k such
that the matrix has the form of

A “

¨

˚

˚

˚

˚

˝

a0 a1 a2 . . . an´1

kan´1 ka0 a1 . . . an´2

kan´2 kan´1 a0 . . . an´3
...

...
...

. . .
...

ka1 ka2 ka3 . . . a0

˛

‹

‹

‹

‹

‚

.
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Generalised inverse

Generalised inverse

Let A an n ˆ n k-circulant matrix with first row a0, . . . , an´1 and
with µ0, . . . , µn´1 eigenvalues. Let ω be primitive nth root of
unity, and suppose λn “ k . Then the first row b0, . . . , bn´1 of As

is given by

bi “
1

n

n´1
ÿ

j“0

βjpλω
j
q
´i , i “ 0, 1, . . . , n ´ 1,

where

βj “

#

0 if µj “ 0;
1
µj

if µj ‰ 0.
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Generalised inverse

Suppose that the generators of C 2
n are gi , the input

configurations of the DLP problems are cj , than the monodromy
pairings are given by the following form.

P ¨ gi “

¨

˚

˚

˝

vi ,0
vi ,1

...
vi ,n´1

˛

‹

‹

‚

,where

vi ,k “

$

’

’

’

’

&

’

’

’

’

%

n´1
ÿ

l“0

pl ¨ gl if k “ 0;

n´1
ÿ

l“0

¨pl´k p mod nq ¨ gl if k ‰ 0.
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Generalised inverse

Monodromy pairing in C 2
n

The monodromy pairing can also be given by

cj ¨P ¨gi “
n´1
ÿ

l“0

cj ,l ¨ vi ,l “ c0 ¨

n´1
ÿ

l“0

pl ¨gl `
n´1
ÿ

k“1

ck

n´1
ÿ

l“0

pl´k p mod nq ¨gl ,

Conclusion
With this method the monodromy pairing can express explicitly,
and the solution of the DLP is depending on solving at most
three Diophantine equations and the congruence system.
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Generalised inverse
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Generalised inverse
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The end

Thank you for your attention!
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