Optimal Cryptographic Functions Solving Hard Mathematical Problems

Lilya Budaghyan

Selemer Center Department of Informatics University of Bergen NORWAY

CECC 2020

June, 2020

Outline

Introduction Preliminaries APN and AB functions

Optimal cryptographic functions Introduction

- Preliminaries
- APN and AB functions
- Equivalence relations of functions
 - EAI-equivalence and known power APN functions
 - CCZ-equivalence and its relation to EAI-equivalence
 - Application of CCZ-equivalence
- 3 APN constructions and their applications and properties
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Applications of APN constructions
 - Nonlinearity properties of APN functions

Introduction Preliminaries APN and AB functions

Vectorial Boolean functions

For *n* and *m* positive integers Boolean functions: $F : \mathbb{F}_2^n \to \mathbb{F}_2$ Vectorial Boolean (n, m)-functions: $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$

Modern applications of Boolean functions:

- reliability theory, multicriteria analysis, mathematical biology, image processing, theoretical physics, statistics;
- voting games, artificial intelligence, management science, digital electronics, propositional logic;
- algebra, coding theory, combinatorics, sequence design, cryptography.

Cryptographic properties of functions

Functions used in block ciphers, S-boxes, should possess certain properties to ensure resistance of the ciphers to cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding properties of S-boxes:

- Linear attack Nonlinearity
- Differential attack Differential uniformity
- Algebraic attack Existence of low degree multivariate equations
- Higher order differential attack Algebraic degree
- Interpolation attack Univariate polynomial degree

Introduction Preliminaries APN and AB functions

Optimal cryptographic functions

Optimal cryptographic functions

- are vectorial Boolean functions optimal for primary cryptographic criteria (APN and AB functions);
- are UNIVERSAL they define optimal objects in several branches of mathematics and information theory (coding theory, sequence design, projective geometry, combinatorics, commutative algebra);
- are "HARD-TO-GET" there are only a few known constructions (13 AB, 19 APN);
- are "HARD-TO-PREDICT" most conjectures are proven to be false.

Outline

Introduction Preliminaries APN and AB functions

Optimal cryptographic functions Introduction

- Preliminaries
- APN and AB functions
- Equivalence relations of functions
 - EAI-equivalence and known power APN functions
 - CCZ-equivalence and its relation to EAI-equivalence
 - Application of CCZ-equivalence
- 3 APN constructions and their applications and properties
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Applications of APN constructions
 - Nonlinearity properties of APN functions

Introduction Preliminaries APN and AB functions

Univariate representation of functions

The univariate representation of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$ for m|n:

$$F(x) = \sum_{i=0}^{2^n-1} c_i x^i, \quad c_i \in \mathbb{F}_{2^n}.$$

The univariate degree of F is the degree of its univariate representation.

Example

$$F(x) = x^7 + \alpha x^6 + \alpha^2 x^5 + \alpha^4 x^3$$

where α is a primitive element of \mathbb{F}_{2^3} .

Introduction Preliminaries APN and AB functions

Algebraic degree of univariate function

For *n* a positive integer, binary expansion of an integer *k*, $0 \le k < 2^n$ is

$$k=\sum_{s=0}^{n-1}2^{s}k_{s},$$

where k_s , $0 \le k_s \le 1$. Then binary weight of k:

$$w_2(k)=\sum_{s=0}^{n-1}k_s.$$

Algebraic degree of F

$$\mathsf{F}(x) = \sum_{i=0}^{2^n-1} c_i x^i, \quad c_i \in \mathbb{F}_{2^n},$$

 $\boldsymbol{d}^{\circ}(\boldsymbol{F}) = \max_{0 \leq i < 2^n, c_i \neq 0} \boldsymbol{W}_2(\boldsymbol{I}).$

Special functions

• F is linear if

$$F(x)=\sum_{i=0}^{n-1}b_ix^{2^i}.$$

- F is affine if it is a linear function plus a constant.
- F is quadratic if for some affine A

$$F(x) = \sum_{i,j=0}^{n-1} b_{ij} x^{2^i+2^j} + A(x).$$

- *F* is power function or monomial if $F(x) = x^d$.
- *F* is permutation if it is a one-to-one map.
- The inverse F^{-1} of a permutation F is s.t. $F^{-1}(F(x)) = F(F^{-1}(x)) = x.$

Introduction Preliminaries APN and AB functions

Introduction Preliminaries APN and AB functions

Trace and component functions

Trace function from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} for m|n:

$$\operatorname{tr}_n^m(x) = \sum_{i=0}^{n/m-1} x^{2^{im}}.$$

Absolute trace function:

$$\operatorname{tr}_n(x) = \operatorname{tr}_n^1(x) = \sum_{i=0}^{n-1} x^{2^i}.$$

For $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ and $v \in \mathbb{F}_{2^n}^*$ $\operatorname{tr}_n(vF(x))$

is a component function of F.

Outline

Introduction Preliminaries APN and AB functions

Optimal cryptographic functions

- Introduction
- Preliminaries

APN and AB functions

- 2 Equivalence relations of functions
 - EAI-equivalence and known power APN functions
 - CCZ-equivalence and its relation to EAI-equivalence
 - Application of CCZ-equivalence
- 3 APN constructions and their applications and properties
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Applications of APN constructions
 - Nonlinearity properties of APN functions

Differential uniformity and APN functions

- Differential cryptanalysis of block ciphers was introduced by Biham and Shamir in 1991.
- $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is differentially δ -uniform if

$$F(x + a) + F(x) = b,$$
 $\forall a \in \mathbb{F}_{2^n}^*, \forall b \in \mathbb{F}_{2^n},$

has at most δ solutions.

- Differential uniformity measures the resistance to differential attack [Nyberg 1993].
- *F* is almost perfect nonlinear (APN) if $\delta = 2$.
- APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:

- Gold function $x^{2^{i+1}}$ on \mathbb{F}_{2^n} with gcd(i, n) = 1;
- Inverse function x^{2^n-2} on \mathbb{F}_{2^n} with *n* odd.

Introduction Preliminaries APN and AB functions

Nonlinearity of functions

- Linear cryptanalysis was discovered by Matsui in 1993.
- Distance between two Boolean functions:

$$d(f,g)=|\{x\in\mathbb{F}_{2^n}:f(x)\neq g(x)\}|.$$

• Nonlinearity of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$N_F = \min_{a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_2, v \in \mathbb{F}_{2^n}^*} d(\operatorname{tr}_n(v \ F(x), \operatorname{tr}_n(ax) + b))$$

 Nonlinearity measures the resistance to linear attack [Chabaud and Vaudenay 1994].

Introduction Preliminaries APN and AB functions

Walsh transform of an (n, n)-function F

$$\lambda_{F}(u, v) = \sum_{x \in \mathbb{F}_{2^{n}}} (-1)^{\operatorname{tr}_{n}(v \ F(x)) + \operatorname{tr}_{n}(ax)}, \quad u \in \mathbb{F}_{2^{n}}, \ v \in \mathbb{F}_{2^{n}}^{*}$$

- Walsh coefficients of *F* are the values of its Walsh transform.
- Walsh spectrum of *F* is the set of all Walsh coefficients of *F*.
- The extended Walsh spectrum of *F* is the set of absolute values of all Walsh coefficients of *F*.
- F is APN iff

$$\sum_{u,v\in\mathbb{F}_{2^n},v\neq 0}\lambda_F^4(u,v)=2^{3n+1}(2^n-1).$$

Introduction Preliminaries APN and AB functions

Almost bent functions

The nonlinearity of *F* via Walsh transform:

$$N_F = 2^{n-1} - \frac{1}{2} \max_{u \in \mathbb{F}_{2^n}, v \in \mathbb{F}_{2^n}^*} |\lambda_F(u, v)| \le 2^{n-1} - 2^{\frac{n-1}{2}}.$$

Functions achieving this bound are called almost bent (AB).

- AB functions are optimal for linear cryptanalysis.
- *F* is AB iff $\lambda_F(u, v) \in \{0, \pm 2^{\frac{n+1}{2}}\}.$
- AB functions exist only for *n* odd.
- F is maximally nonlinear if n is even and N_F = 2ⁿ⁻¹ 2^{n/2}/₂ (conjectured optimal).

Introduction Preliminaries APN and AB functions

Almost bent functions II

- If F is AB then it is APN.
- If *n* is odd and *F* is quadratic APN then *F* is AB.
- Algebraic degrees of AB functions are upper bounded by $\frac{n+1}{2}$ [Carlet, Charpin, Zinoviev 1998].

First example of AB functions:

- Gold functions $x^{2^{i+1}}$ on \mathbb{F}_{2^n} with gcd(i, n) = 1, *n* odd;
- Gold APN functions with *n* even are not AB;
- Inverse functions are not AB.

Optimal cryptographic functions Equivalence relations of functions

APN constructions and their applications and properties

Outline

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions

2 Equivalence relations of functions

- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence
- 3 APN constructions and their applications and properties
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Applications of APN constructions
 - Nonlinearity properties of APN functions

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Cyclotomic, EA- and EAI- equivalences

• F and F' are extended affine equivalent (EA-equivalent) if

$$F' = A_1 \circ F \circ A_2 + A$$

for some affine permutations A_1 and A_2 and some affine A.

- *F* and *F'* are EAI-equivalent if *F'* is obtained from *F* by a sequence of applications of EA-equivalence and inverses of permutations.
- Functions x^d and x^{d'} over 𝔽_{2ⁿ} are cyclotomic equivalent if d' = 2ⁱ ⋅ d mod (2ⁿ - 1) for some 0 ≤ i < n or, d' = 2ⁱ/d mod (2ⁿ - 1) in case gcd(d, 2ⁿ - 1) = 1.

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Invariants and relation between equivalences

- EA-equivalence and cyclotomic equivalence are particular cases of EAI-equivalence.
- APNness and ABness are preserved by EAI-equivalence.
- Algebraic degree is preserved by EA-equivalence but not by EAI-equivalence.
- Univariate degree is not preserved by any of the equivalences.

Optimal cryptographic functions Equivalence relations of functions

APN constructions and their applications and properties

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Known AB power functions x^d on \mathbb{F}_{2^n}

Functions	Exponents d	Conditions on <i>n</i> odd
Gold (1968)	2 ^{<i>i</i>} + 1	$gcd(i, n) = 1, 1 \le i < n/2$
Kasami (1971)	$2^{2i} - 2^i + 1$	$gcd(i, n) = 1, 2 \le i < n/2$
Welch (conj.1968)	2 ^{<i>m</i>} + 3	n = 2m + 1
Niho	$2^m + 2^{\frac{m}{2}} - 1$, <i>m</i> even	n = 2m + 1
(conjectured in 1972)	$2^m + 2^{\frac{3m+1}{2}} - 1, m \text{ odd}$	

Welch and Niho cases were proven by Canteaut, Charpin, Dobbertin (2000) and Hollmann, Xiang (2001), respectively.

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Known APN power functions x^d on \mathbb{F}_{2^n}

Functions Exponents d		Conditions	
Gold	2 ^{<i>i</i>} + 1	$gcd(i, n) = 1, 1 \le i < n/2$	
Kasami	$2^{2i} - 2^i + 1$	$gcd(i, n) = 1, 2 \le i < n/2$	
Welch	$2^{m} + 3$	n = 2m + 1	
Niho	$2^m + 2^{\frac{m}{2}} - 1$, <i>m</i> even	n = 2m + 1	
	$2^m + 2^{\frac{3m+1}{2}} - 1$, <i>m</i> odd		
Inverse	2 ^{<i>n</i>-1} – 1	<i>n</i> = 2 <i>m</i> + 1	
Dobbertin	$2^{4m} + 2^{3m} + 2^{2m} + 2^m - 1$	n = 5m	

- Power APN functions are permutations for *n* odd and 3-to-1 for *n* even [Dobbertin 1999].
- This list is up to cyclotomic equivalence and is conjectured complete [Dobbertin 1999].
- For *n* even the Inverse function is differentially 4-uniform and maximally nonlinear and is used as S-box in AES with *n* = 8.

Optimal cryptographic functions Equivalence relations of functions

APN constructions and their applications and properties

Outline

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions

2 Equivalence relations of functions

- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence
- 3 APN constructions and their applications and properties
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Applications of APN constructions
 - Nonlinearity properties of APN functions

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

CCZ-equivalence

The graph of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is the set

$$G_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}.$$

F and *F'* are CCZ-equivalent if $\mathcal{L}(G_F) = G_{F'}$ for some affine permutation \mathcal{L} of $\mathbb{F}_{2^n} \times \mathbb{F}_{2^n}$ [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence

- preserves differential uniformity, nonlinearity, extended Walsh spectrum and resistance to algebraic attack.
- is more general than EAI-equivalence [B., Carlet, Pott 2005].
- was used to disprove two conjectures of 1998:
 - On nonexistence of AB functions EA-inequivalent to any permutation [disproved by B., Carlet, Pott 2005];
 - On nonexistence of APN permutations for *n* even [disproved for *n* = 6 by Dillon et al. 2009].

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Relation between equivalences

- Two power functions are CCZ-equivalent iff they are cyclotomic equivalent [Dempwolff 2018].
- For quadratic APN functions CCZ-equivalence is more general than EAI-equivalence [B., Carlet, Leander 2009].
- For non-quadratic power APN with n ≤ 7 CCZ- and EAI-equivalences coincide [B., Calderini, Villa, 2020].
- For non-power non-quadratic APN functions CCZ-equivalence is more general than EAI-equivalence [B., Calderini, Villa, 2020].

Cases when CCZ-equivalence coincides with EA-equivalence:

- Boolean functions [B., Carlet 2010];
- Two quadratic APN functions are CCZ-equivalent iff they are EA-equivalent [Yoshiara 2017].

Optimal cryptographic functions Equivalence relations of functions

APN constructions and their applications and properties

Outline

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions

2 Equivalence relations of functions

- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence
- 3 APN constructions and their applications and properties
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Applications of APN constructions
 - Nonlinearity properties of APN functions

Optimal cryptographic functions Equivalence relations of functions

APN constructions and their applications and properties

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

CCZ-equiv. is more general than EAI-equiv.

Example: APN maps $F(x) = x^{2^{i+1}}$, gcd(i, n) = 1, over \mathbb{F}_{2^n} and $F'(x) = x^{2^{i+1}} + (x^{2^i} + x + tr_n(1) + 1)tr_n(x^{2^{i+1}} + x tr_n(1))$ are CCZ-equivalent but EAI-inequivalent.

Take for *n* odd $\mathcal{L}(x, y) = (L_1(x), L_2(x)) = (x + \operatorname{tr}_n(x) + \operatorname{tr}_n(y), y + \operatorname{tr}_n(y) + \operatorname{tr}_n(x))$ and for *n* even $\mathcal{L}(x, y) = (L_1, L_2)(x, y) = (x + \operatorname{tr}_n(y), y)$.

For *n* odd F' is AB and is EA-inequivalent to permutations. This disproved the conjecture from 1998 that every AB function is EA-equivalent to permutation.

Among more than 480 known AB functions over \mathbb{F}_{2^7} only 6 of them, that are power functions, are CCZ-equivalent to permutations [Yu et al 2020].

EAI-equivalence and known power APN functions CCZ-equivalence and its relation to EAI-equivalence Application of CCZ-equivalence

First classes of APN and AB maps EAI-inequivalent to monomials

APN functions CCZ-equivalent to Gold functions and EAI-inequivalent to power functions on \mathbb{F}_{2^n} ; they are AB for *n* odd [B., Carlet, Pott 2005].

Functions	Conditions
	<i>n</i> ≥ 4
$x^{2^{i}+1} + (x^{2^{i}} + x + \operatorname{tr}_{n}(1) + 1)\operatorname{tr}_{n}(x^{2^{i}+1} + x \operatorname{tr}_{n}(1))$	gcd(i, n) = 1
	6 <i>n</i>
$[x + \operatorname{tr}_n^3(x^{2(2^i+1)} + x^{4(2^i+1)}) + \operatorname{tr}_n(x)\operatorname{tr}_n^3(x^{2^i+1} + x^{2^{2^i}(2^i+1)})]^{2^i+1}$	gcd(i, n) = 1
	$m \neq n$
$x^{2^{i}+1} + \operatorname{tr}_{n}^{m}(x^{2^{i}+1}) + x^{2^{i}}\operatorname{tr}_{n}^{m}(x) + x \operatorname{tr}_{n}^{m}(x)^{2^{i}}$	<i>n</i> odd
+ $[\operatorname{tr}_{n}^{m}(x)^{2^{i}+1} + \operatorname{tr}_{n}^{m}(x^{2^{i}+1}) + \operatorname{tr}_{n}^{m}(x)]^{\frac{1}{2^{i}+1}}(x^{2^{i}} + \operatorname{tr}_{n}^{m}(x)^{2^{i}} + 1)$	m n
+ $[\operatorname{tr}_{n}^{m}(x)^{2^{i}+1} + \operatorname{tr}_{n}^{m}(x^{2^{i}+1}) + \operatorname{tr}_{n}^{m}(x)]^{\frac{2^{i}}{2^{i}+1}}(x + \operatorname{tr}_{n}^{m}(x))$	gcd(i, n) = 1

CCZ-construction of APN permutation for *n* even

• No quadratic APN permutations for *n* even [Nyberg 1993].

The only known APN permutation for *n* even [Dillon et al 2009]:

• Applying CCZ-equivalence to quadratic APN on \mathbb{F}_{2^n} with n = 6 and *c* primitive

$$F(x) = x^3 + x^{10} + cx^{24}$$

obtain a nonquadratic APN permutation $c^{25}x^{57} + c^{30}x^{56} + c^{32}x^{50} + c^{37}x^{49} + c^{23}x^{48} + c^{39}x^{43} + c^{44}x^{42} + c^{4}x^{41} + c^{18}x^{40} + c^{46}x^{36} + c^{51}x^{35} + c^{52}x^{34} + c^{18}x^{33} + c^{56}x^{32} + c^{53}x^{29} + c^{30}x^{28} + cx^{25} + c^{58}x^{24} + c^{60}x^{22} + c^{37}x^{21} + c^{51}x^{20} + cx^{18} + c^2x^{17} + c^4x^{15} + c^{44}x^{14} + c^{32}x^{13} + c^{18}x^{12} + cx^{11} + c^9x^{10} + c^{17}x^8 + c^{51}x^7 + c^{17}x^6 + c^{18}x^5 + x^4 + c^{16}x^3 + c^{13}x$

Outline

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
- 2 Equivalence relations of functions
 - EAI-equivalence and known power APN functions
 - CCZ-equivalence and its relation to EAI-equivalence
 - Application of CCZ-equivalence

3 APN constructions and their applications and properties

- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

First APN and AB classes CCZ-ineq. to monomials

Let *s*, *k*, *p* be positive integers such that n = pk, p = 3, 4, gcd(k, p) = gcd(s, pk) = 1 and α primitive in $\mathbb{F}_{2^n}^*$.

 $x^{2^{s}+1} + \alpha^{2^{k}-1}x^{2^{-k}+2^{k+s}}$

is quadratic APN on \mathbb{F}_{2^n} . If *n* is odd then this function is an AB permutation [B., Carlet, Leander 2006-2008].

This disproved the conjecture from 1998 on nonexistence of quadratic AB functions inequivalent to Gold functions.

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Extension of one of the classes of APN binomials

Let *s*, *k* be positive integers such that n = 3k, gcd(*k*, 3) = gcd(*s*, 3*k*) = 1 and and α primitive in $\mathbb{F}_{2^n}^*$.

 $x^{2^{s}+1} + \alpha^{2^{k}-1}x^{2^{-k}+2^{k+s}}$

is quadratic APN on \mathbb{F}_{2^n} .

Add more quadratic terms [McGuire et al 2008-2011]:

$$\alpha x^{2^{s}+1} + \alpha^{2^{k}} x^{2^{-k}+2^{k+s}} + b x^{2^{-k}+1} + d\alpha^{2^{k}+1} x^{2^{k+s}+2^{s}},$$

where $b, d \in \mathbb{F}_{2^k}$, $bd \neq 1$.

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Another APN quadrinomial family

$$F_{bin}(x) = x^3 + wx^{36}$$

over $\mathbb{F}_{2^{10}}$, where *w* has the order 3 or 93 [Edel et al. 2005].

Let n = 2m with m odd and $3 \nmid m$, β primitive in \mathbb{F}_{2^2} , $(a, b, c) = (\beta, \beta^2, 1)$ and i = m - 2 or $i = (m - 2)^{-1} \mod n$. Then

$$x^{3} + a(x^{2'+1})^{2^{k}} + bx^{3 \cdot 2^{m}} + c(x^{2'+m+2^{m}})^{2^{k}}$$

is APN on \mathbb{F}_{2^n} [B., Helleseth, Kaleyski 2020].

F_{bin} is a particular case of this quadrinomial with n = 10, *a* primitive in \mathbb{F}_4 , b = c = 0, i = 3, k = 2.

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

A class of APN and AB functions $x^3 + tr_n(x^9)$

B., Carlet, Leander 2009:

 $F(x) + tr_n(G(x))$ is at most differentially 4-uniform for any APN function *F* and any function *G*.

- $x^3 + \operatorname{tr}_n(x^9)$ is APN over \mathbb{F}_{2^n} .
- It is the only APN polynomial CCZ-inequivalent to power functions which is defined for any *n*.
- It was the first APN polynomial CCZ-inequivalent to power functions with all coefficients in F₂.

Optimal cryptographic functions Equivalence relations of functions Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

APN constructions and their applications and properties

Known APN families CCZ-ineq. to power functions

N°	Functions	Conditions
C1-	- 2 ⁱ +1 , 2 ^k -1 2 ^{ik} +2 ^{mk+i}	$n = pk, \gcd(k, 3) = \gcd(s, 3k) = 1, p \in \{3, 4\}$.
C2	$x^- + u^- x^-$	$i = sk \mod p, m = p - i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^*$
00	$a+1$, $2^{i}+1$, $a(2^{i}+1)$, $2^{i}a+1$, $a(2^{i}+a)$	$q=2^m, n=2m, gcd(i,m)=1, c\in \mathbb{F}_{2^n}, s\in \mathbb{F}_{2^n}\setminus \mathbb{F}_{q}.$
	$sx^{*+} + x^{*+} + x^{*+} + cx^{*+} + cx^{*+} + cx^{*+}$	$X^{2^{i}+1} + cX^{2^{i}} + c^{q}X + 1$ has no solution x s.t. $x^{q+1} = 1$
C4	$x^3 + a^{-1}\mathrm{Tr}_n(a^3x^9)$	a eq 0
C5	$x^3 + a^{-1} Tr_n^3 (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$
C6	$x^3 + a^{-1} \operatorname{Tr}_n^3 (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$
C7-	$ux^{2^s+1}+u^{2^k}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^s+2^{k+s}}\\$	$n = 3k, \gcd(k, 3) = \gcd(s, 3k) = 1, v, w \in \mathbb{F}_{2^k}$,
C9		$vw \neq 1, 3 (k + s), u \text{ primitive in } \mathbb{F}_{2^n}^*$
C10	$(1, 2^m)^{2k+1}$, $(1, 2^m)^{2m}^{2m}^{2m}^{2k+1}^{2k+1}^{2k}$, $(1, 2^m)^{2m}^{2m}^{2m}^{2m}^{2m}$	$n=2m,m\geqslant 2$ even, $\gcd(k,m)=1$ and $i\geqslant 2$ even,
010	(x + x) + u(ux + u x) + u(x + x)(ux + u x)	u primitive in $\mathbb{F}_{2^n}^*$, $u' \in \mathbb{F}_{2^m}$ not a cube
C11	$L(x)^{2^i}x + L(x)x^{2^i}$	
010	$ut(x)(x^q+x)+t(x)^{2^{2i}+2^{2i}}+at(x)^{2^{2i}}(x^q+x)^{2^i}+b(x^q+x)^{2^i+1}$	$n = 2m, q = 2^m, gcd(m, i) = 1, t(x) = u^q x + x^q u$.
612		$X^{2^i+1} + aX + b$ has no solution over \mathbb{F}_{2^m}
C13	$x^3+a(x^{2^{l+1}})^{2^k}+bx^{3\cdot 2^m}+c(x^{2^{l+m}+2^m})^{2^k}$	$n=2m=10, (a,b,c)=(\beta,1,0,0), i=3, k=2, \beta$ primitive in \mathbb{F}_{2^2}
		$n = 2m, m \text{ odd}, 3 \nmid m, (a, b, c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2}$,
		$i \in \{m-2, m, 2m-1, (m-2)^{-1} \mod n\}$

- All are quadratic. For n odd they are AB otherwise have optimal nonlinearity.
- In general, these families are pairwise CCZ-inequivalent [B., Calderini, Villa, 2020].

Only one known example of APN polynomial CCZ-inequivalent to quadratics and to power functions for n=6 [Leander et al, Edel et al. 2008].

Optimal cryptographic functions Equivalence relations of functions Classes of APN polynomials CCZ-inequivalent to monomials

Applications of APN constructions

APN constructions and their applications and properties

Representatives of APN polynomial families $n \leq 11$

Dimension	Functions	Equivalent to
	x ²⁴ +ax ¹⁷ +a ⁸ x ¹⁰ +ax ⁹ +x ³	C3
6	$ax^3 + x^{17} + a^4 x^{24}$	C7-C9
7	$x^3 + Tr_7(x^9)$	C4
	x ³ +x ¹⁷ +a ⁴⁸ x ¹⁸ +a ³ x ³³ +ax ³⁴ +x ⁴⁸	C3
	$x^3 + Tr_{\theta}(x^9)$	C4
8	$x^{3}+a^{-1}Tr_{6}(a^{3}x^{9})$	C4
	$a(x+x^{16})(ax+a^{16}x^{16})+a^{17}(ax+a^{16}x^{16})^{12}$	C10
	$x^9 + Tr_{B}(x^3)$	C11
9	$x^3 + Tr_{9}(x^9)$	C4
	$x^3 + Tr_3^3(x^9 + x^{18})$	C5
	$x^{3}+Tr_{3}^{3}(x^{18}+x^{36})$	C6
	$x^{3} + a^{246} x^{10} + a^{47} x^{17} + a^{181} x^{66} + a^{428} x^{129}$	C11
	x ⁶ +x ³³ +a ³¹ x ¹⁹²	C3
	x ³³ +x ⁷² +a ³¹ x ²⁵⁸	СЗ
	x ³ +Tr ₁₀ (x ⁹)	C4
	$x^3 + a^{-1} Tr_{10}(a^3 x^9)$	C4
	$x^3 + a^{341}x^9 + a^{682}x^{96} + x^{268}$	C13
	$x^3 + a^{341}x^{129} + a^{662}x^{96} + x^{36}$	C13
10	$x^{3} + a^{128}x^{6} + a^{384}x^{12} + a^{133}x^{33} + x^{34} + a^{2}x^{64} + x^{65} + a^{128}x^{68} + x^{95} + a^{4}x^{130} + a^{250}x^{135} + a^{4}x^{192} + a^{136}x^{260} + a^{12}x^{384} + a^{12}x^{18} + a^{12}x$	C12
	$x^{3} + s^{920}x^{6} + s^{153}x^{12} + s^{925}x^{33} + x^{34} + s^{794}x^{64} + x^{65} + s^{920}x^{68} + x^{96} + s^{796}x^{130} + s^{29}x^{136} + s^{796}x^{192} + s^{928}x^{260} + s^{804}x^{384} + s^{16}x^{16} + s$	C12
	$x^{3} + a^{788}x^{6} + a^{21}x^{12} + a^{793}x^{33} + x^{34} + a^{662}x^{64} + x^{65} + a^{788}x^{68} + x^{96} + a^{664}x^{130} + a^{920}x^{136} + a^{664}x^{192} + a^{796}x^{260} + a^{672}x^{384} + a^{662}x^{164} + a^{166}x^{164} + a^{16}x^{164} + a^{16$	C12
	$x^5 + a^{576}x^{18} + a^{512}x^{20} + a^{133}x^{33} + x^{36} + a^2x^{64} + a^{514}x^{80} + x^{129} + a^{512}x^{144} + x^{160} + a^{80}x^{514} + a^{16}x^{516} + a^{18}x^{576} + a^{16}x^{640} + a^{16}x^{640$	C12
	$x^{5} + a^{477}x^{18} + a^{413}x^{20} + a^{34}x^{33} + x^{36} + a^{926}x^{64} + a^{415}x^{80} + x^{129} + a^{413}x^{144} + x^{160} + a^{1004}x^{514} + a^{940}x^{516} + a^{942}x^{576} + a^{940}x^{640} + a^{1004}x^{640} + a^{100$	C12
	$x^5 + a^{81}x^{18} + a^{17}x^{20} + a^{661}x^{33} + x^{36} + a^{530}x^{64} + a^{19}x^{80} + x^{129} + a^{17}x^{144} + x^{160} + a^{608}x^{514} + a^{544}x^{516} + a^{546}x^{576} + a^{544}x^{640} + a^{544}x^{540} + a^{54}x^{540} + a^{54}x$	C12
11	x ³ +Tr ₁₁ (x ⁹)	C4

Infinite families are identified for

- only 3 out of 11 quadratic APN functions of 𝔽₂₆;
- only 4 out of more than 480 quadratic APN of \mathbb{F}_{2^7} ;
- only 7 out of more than 8180 quadratic APN of \mathbb{F}_{2^8} .

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Classification of APN functions

Leander et al 2008:

CCZ-classification finished for:

• APN functions with $n \le 5$ (there are only power functions).

EA-classification is finished for:

 APN functions with n ≤ 5 (there are only power functions and the ones constructed by CCZ-equivalence in 2005).

There are some partial results for

- CCZ-equivalence of quadratic APN for n = 7,8 by Yu et al. 2013;
- EA-classification of APN functions for n ≥ 6 by Calderini 2019;
- quadratic APN functions with coefficients in 𝔽₂ for n ≤ 9 by B., Kaleyski, Li, Yu 2020.

Optimal cryptographic functions Equivalence relations of functions

APN constructions and their applications and properties

Classes of APN polynomials CCZ-inequivalent to mon Applications of APN constructions Nonlinearity properties of APN functions

Outline

- Optimal cryptographic functions
 - Introduction
 - Preliminaries
 - APN and AB functions
- 2 Equivalence relations of functions
 - EAI-equivalence and known power APN functions
 - CCZ-equivalence and its relation to EAI-equivalence
 - Application of CCZ-equivalence

3 APN constructions and their applications and properties

- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Application to commutative semifields

 $\mathbb{S} = (S, +, \star)$ is a commutative semifield if all axioms of finite fields hold except associativity for multiplication.

- $\mathbb{S} = (S, +, \star)$ is considered as $\mathbb{S} = (\mathbb{F}_{p^n}, +, \star)$.
- $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is planar (p odd) if

$$F(x+a) - F(x), \qquad \forall a \in \mathbb{F}_{p^n}^*,$$

are permutations.

• There is one-to-one correspondence between quadratic planar functions and commutative semifields.

The only previously known infinite classes of commutative semifields defined for all odd primes p were Dickson (1906) and Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns for constructions of new such classes of semifields [B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010].

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Yet another equivalence?

- Isotopisms of commutative semifields induces isotopic equivalence of quadratic planar functions more general than CCZ-equivalence [B., Helleseth 2007].
- If quadratic planar functions F and F' are isotopic equivalent then F' is EA-equivalent to

F(x + L(x)) - F(x) - F(L(x))

for some linear permutation *L* [B., Calderini, Carlet, Coulter, Villa 2018].

• Isotopic equivalence for APN functions?

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Isotopic construction

Isotopic construction of APN functions:

F(x + L(x)) - F(x) - F(L(x))

where *L* is linear and *F* is APN. It is not equivalence but a powerful construction method for APN functions:

- a new infinite family of quadratic APN functions;
- for n = 6, starting with any quadratic APN it is possible to construct all the other quadratic APNs.

Isotopic construction for planar functions?

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Application to crooked functions

F is crooked if F(0) = 0, for all distinct x, y, z and $\forall a \neq 0, b, c, d$ $F(x) + F(y) + F(z) + F(x + y + z) \neq 0$ and $F(x) + F(y) + F(z) + F(x + a) + F(y + a) + F(z + a) \neq 0.$

- Every quadratic AB permutation with F(0) = 0 is crooked.
- Every crooked function is an AB permutation.
- Conjecture: Every crooked function is quadratic.
- Crookedness is preserved only by affine equivalence.

Known crooked functions over \mathbb{F}_{2^n} .

Functions	Exponents d	Conditions
Gold (1968)	x ^{2ⁱ+1}	<i>n</i> odd
AB binomials (2006)	$x^{2^{s}+1} + \alpha^{2^{k}-1}x^{2^{-k}+2^{k+s}}$	n = 3k odd

Among all 480 known quadratic AB functions with n = 7, only Gold maps are CCZ-equivalent to permutations.

Optimal cryptographic functions Equivalence relations of functions

APN constructions and their applications and properties

Classes of APN polynomials CCZ-inequivalent to monom Applications of APN constructions Nonlinearity properties of APN functions

Outline

- Optimal cryptographic functions
 - Introduction
 - Preliminaries
 - APN and AB functions
- 2 Equivalence relations of functions
 - EAI-equivalence and known power APN functions
 - CCZ-equivalence and its relation to EAI-equivalence
 - Application of CCZ-equivalence

3 APN constructions and their applications and properties

- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Nonlinearity properties of known APN families

All known APN families, except inverse and Dobbertin functions, have Gold-like Walsh spectra:

- for *n* odd they are AB;
- for *n* even Walsh spectra are $\{0, \pm 2^{n/2}, \pm 2^{n/2+1}\}$.

Sporadic examples of quadratic APN functions with non-Gold like Walsh spectra:

• For n = 6 only one example of quadratic APN function with $\{0, \pm 2^{n/2}, \pm 2^{n/2+1}, \pm 2^{n/2+2}\}$:

$$x^{3} + a^{11}x^{5} + a^{13}x^{9} + x^{17} + a^{11}x^{33} + x^{48}$$
.

• For *n* = 8 there are 499 out of 8180 quadratic APN functions.

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions Nonlinearity properties of APN functions

Problems on nonlinearity of APN functions

- Find a family of quadratic APN polynomials with non-Gold like nonliniarity.
- The only family of APN power functions with unknown Walsh spectrum is Dobbertin function:
 - All Walsh coefficients are divisible by 2²ⁿ/₅ but not by 2²ⁿ⁺¹/₅ [Canteaut, Charpin, Dobbertin 2000].
 - Walsh spectrum is conjectured by B., Calderini, Carlet, Davidova, Kaleyski 2020.
- What is a low bound for nonlinearity of APN functions?