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Vectorial Boolean functions

For n and m positive integers
Boolean functions: F : Fn

2 → F2
Vectorial Boolean (n,m)-functions: F : Fn

2 → Fm
2

Modern applications of Boolean functions:
reliability theory, multicriteria analysis, mathematical
biology, image processing, theoretical physics, statistics;
voting games, artificial intelligence, management science,
digital electronics, propositional logic;
algebra, coding theory, combinatorics, sequence design,
cryptography.
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Cryptographic properties of functions

Functions used in block ciphers, S-boxes, should possess
certain properties to ensure resistance of the ciphers to
cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding
properties of S-boxes:

Linear attack – Nonlinearity

Differential attack – Differential uniformity

Algebraic attack – Existence of low degree multivariate
equations

Higher order differential attack – Algebraic degree

Interpolation attack – Univariate polynomial degree
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Optimal cryptographic functions

Optimal cryptographic functions

are vectorial Boolean functions optimal for primary
cryptographic criteria (APN and AB functions);

are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

are "HARD-TO-GET" - there are only a few known
constructions (13 AB, 19 APN);

are "HARD-TO-PREDICT" - most conjectures are proven
to be false.
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Univariate representation of functions

The univariate representation of F : F2n → F2m for m|n:

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .

The univariate degree of F is the degree of its univariate
representation.
Example

F (x) = x7 + αx6 + α2x5 + α4x3

where α is a primitive element of F23 .
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Algebraic degree of univariate function

For n a positive integer, binary expansion of an integer k ,
0 ≤ k < 2n is

k =
n−1∑
s=0

2sks,

where ks, 0 ≤ ks ≤ 1. Then binary weight of k :

w2(k) =
n−1∑
s=0

ks.

Algebraic degree of F

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n ,

d◦(F ) = max
0≤i<2n,ci 6=0

w2(i).
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Special functions

F is linear if

F (x) =
n−1∑
i=0

bix2i
.

F is affine if it is a linear function plus a constant.
F is quadratic if for some affine A

F (x) =
n−1∑
i,j=0

bijx2i+2j
+ A(x).

F is power function or monomial if F (x) = xd .
F is permutation if it is a one-to-one map.
The inverse F−1 of a permutation F is s.t.
F−1(F (x)) = F (F−1(x)) = x .
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Trace and component functions

Trace function from F2n to F2m for m|n:

trm
n (x) =

n/m−1∑
i=0

x2im
.

Absolute trace function:

trn(x) = tr1
n(x) =

n−1∑
i=0

x2i
.

For F : F2n → F2n and v ∈ F∗2n

trn(vF (x))

is a component function of F .
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Differential uniformity and APN functions

Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.
F : F2n → F2n is differentially δ-uniform if

F (x + a) + F (x) = b, ∀a ∈ F∗2n , ∀b ∈ F2n ,

has at most δ solutions.
Differential uniformity measures the resistance to
differential attack [Nyberg 1993].
F is almost perfect nonlinear (APN) if δ = 2.
APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:
Gold function x2i+1 on F2n with gcd(i ,n) = 1;
Inverse function x2n−2 on F2n with n odd.
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Nonlinearity of functions

Linear cryptanalysis was discovered by Matsui in 1993.

Distance between two Boolean functions:

d(f ,g) = |{x ∈ F2n : f (x) 6= g(x)}|.

Nonlinearity of F : F2n → F2n :

NF = min
a∈F2n ,b∈F2,v∈F∗2n

d(trn(v F (x), trn(ax) + b)

Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].
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Walsh transform of an (n,n)-function F

λF (u, v) =
∑

x∈F2n

(−1)trn(v F (x))+trn(ax), u ∈ F2n , v ∈ F∗2n

Walsh coefficients of F are the values of its Walsh
transform.

Walsh spectrum of F is the set of all Walsh coefficients of
F .

The extended Walsh spectrum of F is the set of absolute
values of all Walsh coefficients of F .

F is APN iff ∑
u,v∈F2n ,v 6=0

λ4
F (u, v) = 23n+1(2n − 1).
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Almost bent functions

The nonlinearity of F via Walsh transform:

NF = 2n−1 − 1
2

max
u∈F2n ,v∈F∗2n

|λF (u, v)| ≤ 2n−1 − 2
n−1

2 .

Functions achieving this bound are called almost bent (AB).

AB functions are optimal for linear cryptanalysis.

F is AB iff λF (u, v) ∈ {0,±2
n+1

2 }.

AB functions exist only for n odd.

F is maximally nonlinear if n is even and NF = 2n−1 − 2
n
2

(conjectured optimal).
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Almost bent functions II

If F is AB then it is APN.

If n is odd and F is quadratic APN then F is AB.

Algebraic degrees of AB functions are upper bounded by
n+1

2 [Carlet, Charpin, Zinoviev 1998].

First example of AB functions:

Gold functions x2i+1 on F2n with gcd(i ,n) = 1, n odd;

Gold APN functions with n even are not AB;

Inverse functions are not AB.
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Cyclotomic, EA- and EAI- equivalences

F and F ′ are extended affine equivalent (EA-equivalent) if

F ′ = A1 ◦ F ◦ A2 + A

for some affine permutations A1 and A2 and some affine A.

F and F ′ are EAI-equivalent if F ′ is obtained from F by a
sequence of applications of EA-equivalence and inverses
of permutations.

Functions xd and xd ′ over F2n are cyclotomic equivalent if
d ′ = 2i · d mod (2n − 1) for some 0 ≤ i < n
or, d ′ = 2i/d mod (2n − 1) in case gcd(d ,2n − 1) = 1.
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Invariants and relation between equivalences

EA-equivalence and cyclotomic equivalence are particular
cases of EAI-equivalence.

APNness and ABness are preserved by EAI-equivalence.

Algebraic degree is preserved by EA-equivalence but not
by EAI-equivalence.

Univariate degree is not preserved by any of the
equivalences.

19 / 44



Optimal cryptographic functions
Equivalence relations of functions

APN constructions and their applications and properties

EAI-equivalence and known power APN functions
CCZ-equivalence and its relation to EAI-equivalence
Application of CCZ-equivalence

Known AB power functions xd on F2n

Functions Exponents d Conditions on n odd

Gold (1968) 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami (1971) 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch (conj.1968) 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

(conjectured in 1972) 2m + 2
3m+1

2 − 1, m odd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.
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Known APN power functions xd on F2n

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

2m + 2
3m+1

2 − 1, m odd

Inverse 2n−1 − 1 n = 2m + 1

Dobbertin 24m + 23m + 22m + 2m − 1 n = 5m

Power APN functions are permutations for n odd and
3-to-1 for n even [Dobbertin 1999].
This list is up to cyclotomic equivalence and is conjectured
complete [Dobbertin 1999].
For n even the Inverse function is differentially 4-uniform
and maximally nonlinear and is used as S-box in AES with
n = 8.
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CCZ-equivalence

The graph of a function F : F2n → F2n is the set

GF = {(x ,F (x)) : x ∈ F2n}.

F and F ′ are CCZ-equivalent if L(GF ) = GF ′ for some affine
permutation L of F2n × F2n [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence
preserves differential uniformity, nonlinearity, extended
Walsh spectrum and resistance to algebraic attack.
is more general than EAI-equivalence [B., Carlet, Pott
2005].
was used to disprove two conjectures of 1998:

On nonexistence of AB functions EA-inequivalent to any
permutation [disproved by B., Carlet, Pott 2005];
On nonexistence of APN permutations for n even
[disproved for n = 6 by Dillon et al. 2009].
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Relation between equivalences

Two power functions are CCZ-equivalent iff they are
cyclotomic equivalent [Dempwolff 2018].
For quadratic APN functions CCZ-equivalence is more
general than EAI-equivalence [B., Carlet, Leander 2009].
For non-quadratic power APN with n ≤ 7 CCZ- and
EAI-equivalences coincide [B., Calderini, Villa, 2020].
For non-power non-quadratic APN functions
CCZ-equivalence is more general than EAI-equivalence
[B., Calderini, Villa, 2020].

Cases when CCZ-equivalence coincides with EA-equivalence:
Boolean functions [B., Carlet 2010];
Two quadratic APN functions are CCZ-equivalent iff they
are EA-equivalent [Yoshiara 2017].

24 / 44



Optimal cryptographic functions
Equivalence relations of functions

APN constructions and their applications and properties

EAI-equivalence and known power APN functions
CCZ-equivalence and its relation to EAI-equivalence
Application of CCZ-equivalence

Outline

1 Optimal cryptographic functions
Introduction
Preliminaries
APN and AB functions

2 Equivalence relations of functions
EAI-equivalence and known power APN functions
CCZ-equivalence and its relation to EAI-equivalence
Application of CCZ-equivalence

3 APN constructions and their applications and properties
Classes of APN polynomials CCZ-inequivalent to
monomials
Applications of APN constructions
Nonlinearity properties of APN functions

25 / 44



Optimal cryptographic functions
Equivalence relations of functions

APN constructions and their applications and properties

EAI-equivalence and known power APN functions
CCZ-equivalence and its relation to EAI-equivalence
Application of CCZ-equivalence

CCZ-equiv. is more general than EAI-equiv.

Example: APN maps F (x) = x2i+1, gcd(i ,n) = 1, over F2n and
F ′(x) = x2i+1 +

(
x2i

+ x + trn(1) + 1
)
trn
(
x2i+1 + x trn(1)

)
are CCZ-equivalent but EAI-inequivalent.

Take for n odd
L(x , y) = (L1(x),L2(x)) =

(
x + trn(x)+ trn(y), y + trn(y)+ trn(x)

)
and for n even L(x , y) = (L1,L2)(x , y) = (x + trn(y), y).

For n odd F ′ is AB and is EA-inequivalent to permutations. This
disproved the conjecture from 1998 that every AB function is
EA-equivalent to permutation.

Among more than 480 known AB functions over F27 only 6 of
them, that are power functions, are CCZ-equivalent to
permutations [Yu et al 2020].
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First classes of APN and AB maps EAI-inequivalent to
monomials

APN functions CCZ-equivalent to Gold functions and
EAI-inequivalent to power functions on F2n ; they are AB for n
odd [B., Carlet, Pott 2005].

Functions Conditions

n ≥ 4

x2i+1 + (x2i
+ x + trn(1) + 1)trn(x2i+1 + x trn(1)) gcd(i, n) = 1

6|n
[x + tr3

n(x2(2i+1) + x4(2i+1)) + trn(x)tr3
n(x2i+1 + x22i (2i+1))]2

i+1 gcd(i, n) = 1

m 6= n

x2i+1 + trm
n (x2i+1) + x2i

trm
n (x) + x trm

n (x)2i
n odd

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

1
2i+1 (x2i

+ trm
n (x)2i

+ 1) m|n

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

2i

2i+1 (x + trm
n (x)) gcd(i, n) = 1
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CCZ-construction of APN permutation for n even

No quadratic APN permutations for n even [Nyberg 1993].

The only known APN permutation for n even [Dillon et al 2009]:
Applying CCZ-equivalence to quadratic APN on F2n with
n = 6 and c primitive

F (x) = x3 + x10 + cx24

obtain a nonquadratic APN permutation
c25x57+c30x56+c32x50+c37x49+c23x48+c39x43+ c44x42+
c4x41+c18x40+c46x36+c51x35+c52x34+ c18x33+c56x32+
c53x29+c30x28+cx25+c58x24+ c60x22+c37x21+c51x20+
cx18 + c2x17 + c4x15 + c44x14 + c32x13 + c18x12 + cx11 +
c9x10 + c17x8 + c51x7 + c17x6 + c18x5 + x4 + c16x3 + c13x
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First APN and AB classes CCZ-ineq. to monomials

Let s, k ,p be positive integers such that n = pk , p = 3,4,
gcd(k ,p) = gcd(s,pk) = 1 and α primitive in F∗2n .

x2s+1 + α2k−1x2−k+2k+s

is quadratic APN on F2n . If n is odd then this function is an AB
permutation [B., Carlet, Leander 2006-2008].

This disproved the conjecture from 1998 on nonexistence of
quadratic AB functions inequivalent to Gold functions.
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Extension of one of the classes of APN binomials

Let s, k be positive integers such that n = 3k ,
gcd(k ,3) = gcd(s,3k) = 1 and and α primitive in F∗2n .

x2s+1 + α2k−1x2−k+2k+s

is quadratic APN on F2n .

Add more quadratic terms [McGuire et al 2008-2011]:

αx2s+1 + α2k
x2−k+2k+s

+ bx2−k+1 + dα2k+1x2k+s+2s
,

where b,d ∈ F2k , bd 6= 1.
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Another APN quadrinomial family

Fbin(x) = x3 + wx36

over F210 , where w has the order 3 or 93 [Edel et al. 2005].

Let n = 2m with m odd and 3 - m, β primitive in F22 ,
(a,b, c) = (β, β2,1) and i = m − 2 or i = (m − 2)−1 mod n.
Then

x3 + a(x2i+1)2k
+ bx3·2m

+ c(x2i+m+2m
)2k

is APN on F2n [B., Helleseth, Kaleyski 2020].

Fbin is a particular case of this quadrinomial with n = 10, a
primitive in F4, b = c = 0, i = 3, k = 2.
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A class of APN and AB functions x3 + trn(x9)

B., Carlet, Leander 2009:

F (x) + trn(G(x)) is at most differentially 4-uniform for any APN
function F and any function G.

x3 + trn(x9) is APN over F2n .

It is the only APN polynomial CCZ-inequivalent to power
functions which is defined for any n.

It was the first APN polynomial CCZ-inequivalent to power
functions with all coefficients in F2.
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Known APN families CCZ-ineq. to power functions

All are quadratic. For n odd they are AB otherwise have
optimal nonlinearity.
In general, these families are pairwise CCZ-inequivalent
[B., Calderini, Villa, 2020].

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6 [Leander et al,
Edel et al. 2008].
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Representatives of APN polynomial families n ≤ 11

Infinite families are identified for
only 3 out of 11 quadratic APN functions of F26 ;
only 4 out of more than 480 quadratic APN of F27 ;
only 7 out of more than 8180 quadratic APN of F28 .
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Classification of APN functions

Leander et al 2008:

CCZ-classification finished for:
APN functions with n ≤ 5 (there are only power functions).

EA-classification is finished for:
APN functions with n ≤ 5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).

There are some partial results for
CCZ-equivalence of quadratic APN for n = 7,8 by Yu et al.
2013;
EA-classification of APN functions for n ≥ 6 by Calderini
2019;
quadratic APN functions with coefficients in F2 for n ≤ 9 by
B., Kaleyski, Li, Yu 2020.
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Application to commutative semifields

S = (S,+, ?) is a commutative semifield if all axioms of finite
fields hold except associativity for multiplication.

S = (S,+, ?) is considered as S = (Fpn ,+, ?) .
F : Fpn → Fpn is planar (p odd) if

F (x + a)− F (x), ∀a ∈ F∗pn ,

are permutations.
There is one-to-one correspondence between quadratic
planar functions and commutative semifields.

The only previously known infinite classes of commutative
semifields defined for all odd primes p were Dickson (1906) and
Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns
for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010].
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Yet another equivalence?

Isotopisms of commutative semifields induces isotopic
equivalence of quadratic planar functions more general
than CCZ-equivalence [B., Helleseth 2007].
If quadratic planar functions F and F ′ are isotopic
equivalent then F ′ is EA-equivalent to

F (x + L(x))− F (x)− F (L(x))

for some linear permutation L [B., Calderini, Carlet,
Coulter, Villa 2018].
Isotopic equivalence for APN functions?
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Isotopic construction

Isotopic construction of APN functions:

F (x + L(x))− F (x)− F (L(x))

where L is linear and F is APN.
It is not equivalence but a powerful construction method for
APN functions:

a new infinite family of quadratic APN functions;
for n = 6, starting with any quadratic APN it is possible to
construct all the other quadratic APNs.

Isotopic construction for planar functions?
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Application to crooked functions

F is crooked if F (0) = 0, for all distinct x , y , z and ∀a 6= 0,b, c,d
F (x) + F (y) + F (z) + F (x + y + z) 6= 0 and
F (x) + F (y) + F (z) + F (x + a) + F (y + a) + F (z + a) 6= 0.

Every quadratic AB permutation with F (0) = 0 is crooked.
Every crooked function is an AB permutation.
Conjecture: Every crooked function is quadratic.
Crookedness is preserved only by affine equivalence.

Known crooked functions over F2n .

Functions Exponents d Conditions

Gold (1968) x2i+1 n odd

AB binomials (2006) x2s+1 + α2k−1x2−k+2k+s
n = 3k odd

Among all 480 known quadratic AB functions with n = 7, only
Gold maps are CCZ-equivalent to permutations.
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Nonlinearity properties of known APN families

All known APN families, except inverse and Dobbertin
functions, have Gold-like Walsh spectra:

for n odd they are AB;
for n even Walsh spectra are {0,±2n/2,±2n/2+1}.

Sporadic examples of quadratic APN functions with non-Gold
like Walsh spectra:

For n = 6 only one example of quadratic APN function with
{0,±2n/2,±2n/2+1,±2n/2+2}:

x3 + a11x5 + a13x9 + x17 + a11x33 + x48.

For n = 8 there are 499 out of 8180 quadratic APN
functions.
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Problems on nonlinearity of APN functions

Find a family of quadratic APN polynomials with non-Gold
like nonliniarity.

The only family of APN power functions with unknown
Walsh spectrum is Dobbertin function:

All Walsh coefficients are divisible by 2
2n
5 but not by 2

2n
5 +1

[Canteaut, Charpin, Dobbertin 2000].

Walsh spectrum is conjectured by B., Calderini, Carlet,
Davidova, Kaleyski 2020.

What is a low bound for nonlinearity of APN functions?
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