Optimal Cryptographic Functions Solving Hard Mathematical Problems

Lilya Budaghyan

Selemer Center
Department of Informatics
University of Bergen
NORWAY

CECC 2020
June, 2020

Outline

(1) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2) Equivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence
(3) APN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Vectorial Boolean functions

For n and m positive integers
Boolean functions:

$$
F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}
$$

Vectorial Boolean (n, m)-functions: $\quad F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$

Modern applications of Boolean functions:

- reliability theory, multicriteria analysis, mathematical biology, image processing, theoretical physics, statistics;
- voting games, artificial intelligence, management science, digital electronics, propositional logic;
- algebra, coding theory, combinatorics, sequence design, cryptography.

Cryptographic properties of functions

Functions used in block ciphers, S-boxes, should possess certain properties to ensure resistance of the ciphers to cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding properties of S-boxes:

- Linear attack - Nonlinearity
- Differential attack - Differential uniformity
- Algebraic attack - Existence of low degree multivariate equations
- Higher order differential attack - Algebraic degree
- Interpolation attack - Univariate polynomial degree

Optimal cryptographic functions

Optimal cryptographic functions

- are vectorial Boolean functions optimal for primary cryptographic criteria (APN and AB functions);
- are UNIVERSAL - they define optimal objects in several branches of mathematics and information theory (coding theory, sequence design, projective geometry, combinatorics, commutative algebra);
- are "HARD-TO-GET" - there are only a few known constructions (13 AB, 19 APN);
- are "HARD-TO-PREDICT" - most conjectures are proven to be false.

Outline

(9) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2) Equivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence

3) APN constructions and their applications and properties

- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Univariate representation of functions

The univariate representation of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{m}}$ for $m \mid n$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

The univariate degree of F is the degree of its univariate representation.
Example

$$
F(x)=x^{7}+\alpha x^{6}+\alpha^{2} x^{5}+\alpha^{4} x^{3}
$$

where α is a primitive element of $\mathbb{F}_{2^{3}}$.

Algebraic degree of univariate function

For n a positive integer, binary expansion of an integer k, $0 \leq k<2^{n}$ is

$$
k=\sum_{s=0}^{n-1} 2^{s} k_{s}
$$

where $k_{s}, 0 \leq k_{s} \leq 1$. Then binary weight of k :

$$
w_{2}(k)=\sum_{s=0}^{n-1} k_{s}
$$

Algebraic degree of F

$$
\begin{aligned}
& F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}} \\
& d^{\circ}(F)=\max _{0 \leq i<2^{n}, c_{i} \neq 0} w_{2}(i)
\end{aligned}
$$

Special functions

- F is linear if

$$
F(x)=\sum_{i=0}^{n-1} b_{i} x^{2^{i}} .
$$

- F is affine if it is a linear function plus a constant.
- F is quadratic if for some affine A

$$
F(x)=\sum_{i, j=0}^{n-1} b_{i j} x^{2^{i}+2^{j}}+A(x) .
$$

- F is power function or monomial if $F(x)=x^{d}$.
- F is permutation if it is a one-to-one map.
- The inverse F^{-1} of a permutation F is s.t.

$$
F^{-1}(F(x))=F\left(F^{-1}(x)\right)=x .
$$

Trace and component functions

Trace function from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{m}}$ for $m \mid n$:

$$
\operatorname{tr}_{n}^{m}(x)=\sum_{i=0}^{n / m-1} x^{2^{i m}}
$$

Absolute trace function:

$$
\operatorname{tr}_{n}(x)=\operatorname{tr}_{n}^{1}(x)=\sum_{i=0}^{n-1} x^{2^{i}} .
$$

For $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ and $v \in \mathbb{F}_{2^{n}}^{*}$

$$
\operatorname{tr}_{n}(v F(x))
$$

is a component function of F.

Outline

(1) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2) Equivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalenceAPN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Differential uniformity and APN functions

- Differential cryptanalysis of block ciphers was introduced by Biham and Shamir in 1991.
- $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is differentially δ-uniform if

$$
F(x+a)+F(x)=b, \quad \forall a \in \mathbb{F}_{2^{n}}^{*}, \quad \forall b \in \mathbb{F}_{2^{n}}
$$

has at most δ solutions.

- Differential uniformity measures the resistance to differential attack [Nyberg 1993].
- F is almost perfect nonlinear (APN) if $\delta=2$.
- APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:

- Gold function $x^{2^{i}+1}$ on $\mathbb{F}_{2^{n}}$ with $\operatorname{gcd}(i, n)=1$;
- Inverse function $x^{2^{n}-2}$ on $\mathbb{F}_{2^{n}}$ with n odd.

Nonlinearity of functions

- Linear cryptanalysis was discovered by Matsui in 1993.
- Distance between two Boolean functions:

$$
d(f, g)=\left|\left\{x \in \mathbb{F}_{2^{n}}: f(x) \neq g(x)\right\}\right|
$$

- Nonlinearity of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$:

$$
N_{F}=\min _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2}, v \in \mathbb{F}_{2^{n}}^{*}} d\left(\operatorname{tr}_{n}\left(v F(x), \operatorname{tr}_{n}(a x)+b\right)\right.
$$

- Nonlinearity measures the resistance to linear attack [Chabaud and Vaudenay 1994].

Walsh transform of an (n, n)-function F

$$
\lambda_{F}(u, v)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}_{n}(v F(x))+\operatorname{tr}_{n}(a x)}, \quad u \in \mathbb{F}_{2^{n}}, v \in \mathbb{F}_{2^{n}}^{*}
$$

- Walsh coefficients of F are the values of its Walsh transform.
- Walsh spectrum of F is the set of all Walsh coefficients of F.
- The extended Walsh spectrum of F is the set of absolute values of all Walsh coefficients of F.
- F is APN iff

$$
\sum_{u, v \in \mathbb{F}_{2^{n}}, v \neq 0} \lambda_{F}^{4}(u, v)=2^{3 n+1}\left(2^{n}-1\right)
$$

Almost bent functions

The nonlinearity of F via Walsh transform:

Functions achieving this bound are called almost bent (AB).

- AB functions are optimal for linear cryptanalysis.
- F is AB iff $\lambda_{F}(u, v) \in\left\{0, \pm 2^{\frac{n+1}{2}}\right\}$.
- AB functions exist only for n odd.
- F is maximally nonlinear if n is even and $N_{F}=2^{n-1}-2^{\frac{n}{2}}$ (conjectured optimal).

Almost bent functions II

- If F is AB then it is APN .
- If n is odd and F is quadratic APN then F is AB.
- Algebraic degrees of $A B$ functions are upper bounded by $\frac{n+1}{2}$ [Carlet, Charpin, Zinoviev 1998].

First example of $A B$ functions:

- Gold functions $x^{2^{i}+1}$ on $\mathbb{F}_{2^{n}}$ with $\operatorname{gcd}(i, n)=1, n$ odd;
- Gold APN functions with n even are not AB;
- Inverse functions are not AB .

Outline

(1) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2) Equivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalenceAPN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Cyclotomic, EA- and EAI- equivalences

- F and F^{\prime} are extended affine equivalent (EA-equivalent) if

$$
F^{\prime}=A_{1} \circ F \circ A_{2}+A
$$

for some affine permutations A_{1} and A_{2} and some affine A.

- F and F^{\prime} are EAI-equivalent if F^{\prime} is obtained from F by a sequence of applications of EA-equivalence and inverses of permutations.
- Functions x^{d} and $x^{d^{\prime}}$ over $\mathbb{F}_{2^{n}}$ are cyclotomic equivalent if $d^{\prime}=2^{i} \cdot d \bmod \left(2^{n}-1\right)$ for some $0 \leq i<n$ or, $d^{\prime}=2^{i} / d \bmod \left(2^{n}-1\right)$ in case $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$.

Invariants and relation between equivalences

- EA-equivalence and cyclotomic equivalence are particular cases of EAI-equivalence.
- APNness and ABness are preserved by EAI-equivalence.
- Algebraic degree is preserved by EA-equivalence but not by EAl-equivalence.
- Univariate degree is not preserved by any of the equivalences.

Known AB power functions x^{d} on $\mathbb{F}_{2^{n}}$

Functions	Exponents d	Conditions on n odd
Gold (1968)	$2^{i}+1$	$\operatorname{gcd}(i, n)=1,1 \leq i<n / 2$
Kasami (1971)	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(i, n)=1,2 \leq i<n / 2$
Welch (conj.1968)	$2^{m}+3$	$n=2 m+1$
Niho	$2^{m}+2^{\frac{m}{2}}-1, m$ even	$n=2 m+1$
(conjectured in 1972)	$2^{m}+2^{\frac{3 m+1}{2}}-1, m$ odd	

Welch and Niho cases were proven by Canteaut, Charpin, Dobbertin (2000) and Hollmann, Xiang (2001), respectively.

Known APN power functions x^{d} on $\mathbb{F}_{2^{n}}$

Functions	Exponents d	Conditions
Gold	$2^{i}+1$	$\operatorname{gcd}(i, n)=1,1 \leq i<n / 2$
Kasami	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(i, n)=1,2 \leq i<n / 2$
Welch	$2^{m}+3$	$n=2 m+1$
Niho	$2^{m}+2^{\frac{m}{2}}-1, m$ even	$n=2 m+1$
$2^{m}+2^{\frac{3 m+1}{2}}-1, m$ odd		
Inverse	$2^{n-1}-1$	$n=2 m+1$
Dobbertin	$2^{4 m}+2^{3 m}+2^{2 m}+2^{m}-1$	$n=5 m$

- Power APN functions are permutations for n odd and 3-to-1 for n even [Dobbertin 1999].
- This list is up to cyclotomic equivalence and is conjectured complete [Dobbertin 1999].
- For n even the Inverse function is differentially 4-uniform and maximally nonlinear and is used as S-box in AES with $n=8$.

Outline

(1) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2) Equivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalenceAPN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

CCZ-equivalence

The graph of a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is the set

$$
G_{F}=\left\{(x, F(x)): x \in \mathbb{F}_{2^{n}}\right\} .
$$

F and F^{\prime} are CCZ-equivalent if $\mathcal{L}\left(G_{F}\right)=G_{F^{\prime}}$ for some affine permutation \mathcal{L} of $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ [Carlet, Charpin, Zinoviev 1998].
CCZ-equivalence

- preserves differential uniformity, nonlinearity, extended Walsh spectrum and resistance to algebraic attack.
- is more general than EAI-equivalence [B., Carlet, Pott 2005].
- was used to disprove two conjectures of 1998:
- On nonexistence of AB functions EA-inequivalent to any permutation [disproved by B., Carlet, Pott 2005];
- On nonexistence of APN permutations for n even [disproved for $n=6$ by Dillon et al. 2009].

Relation between equivalences

- Two power functions are CCZ-equivalent iff they are cyclotomic equivalent [Dempwolff 2018].
- For quadratic APN functions CCZ-equivalence is more general than EAI-equivalence [B., Carlet, Leander 2009].
- For non-quadratic power APN with $n \leq 7$ CCZ- and EAI-equivalences coincide [B., Calderini, Villa, 2020].
- For non-power non-quadratic APN functions CCZ-equivalence is more general than EAI-equivalence [B., Calderini, Villa, 2020].

Cases when CCZ-equivalence coincides with EA-equivalence:

- Boolean functions [B., Carlet 2010];
- Two quadratic APN functions are CCZ-equivalent iff they are EA-equivalent [Yoshiara 2017].

Outline

(1) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2) Equivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalenceAPN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

CCZ-equiv. is more general than EAI-equiv.

Example: APN maps $F(x)=x^{2^{i}+1}, \operatorname{gcd}(i, n)=1$, over $\mathbb{F}_{2^{n}}$ and $F^{\prime}(x)=x^{2^{i}+1}+\left(x^{2^{i}}+x+\operatorname{tr}_{n}(1)+1\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}+x \operatorname{tr}_{n}(1)\right)$ are CCZ-equivalent but EAI-inequivalent.

Take for n odd
$\mathcal{L}(x, y)=\left(L_{1}(x), L_{2}(x)\right)=\left(x+\operatorname{tr}_{n}(x)+\operatorname{tr}_{n}(y), y+\operatorname{tr}_{n}(y)+\operatorname{tr}_{n}(x)\right)$ and for n even $\mathcal{L}(x, y)=\left(L_{1}, L_{2}\right)(x, y)=\left(x+\operatorname{tr}_{n}(y), y\right)$.

For n odd F^{\prime} is AB and is EA-inequivalent to permutations. This disproved the conjecture from 1998 that every $A B$ function is EA-equivalent to permutation.

Among more than 480 known $A B$ functions over $\mathbb{F}_{2^{7}}$ only 6 of them, that are power functions, are CCZ-equivalent to permutations [Yu et al 2020].

First classes of APN and AB maps EAl-inequivalent to monomials

APN functions CCZ-equivalent to Gold functions and
EAI-inequivalent to power functions on $\mathbb{F}_{2^{n}}$; they are $A B$ for n odd [B., Carlet, Pott 2005].

Functions	Conditions
$x^{2^{i}+1}+\left(x^{2^{i}}+x+\operatorname{tr}_{n}(1)+1\right) \operatorname{tr}_{n}\left(x^{2^{i}+1}+x \operatorname{tr}_{n}(1)\right)$	$n \geq 4$
$\left[x+\operatorname{tr}_{n}^{3}\left(x^{2\left(2^{i}+1\right)}+x^{4\left(2^{i}+1\right)}\right)+\operatorname{tr}_{n}(x) \operatorname{tr}_{n}^{3}\left(x^{2^{i}+1}+x^{2^{2 i}\left(2^{i}+1\right)}\right)\right]^{2^{i}+1}$	$\operatorname{gcd}(i, n)=1$
	$\operatorname{gcd}(i, n)=1$
$x^{2^{i}+1}+\operatorname{tr}_{n}^{m}\left(x^{2^{i}+1}\right)+x^{2^{i}} \operatorname{tr}_{n}^{m}(x)+x \operatorname{tr}_{n}^{m}(x)^{2^{i}}$	$m \neq n$
$+\left[\operatorname{tr}_{n}^{m}(x)^{2^{i}+1}+\operatorname{tr}_{n}^{m}\left(x^{2^{i}+1}\right)+\operatorname{tr}_{n}^{m}(x)\right]^{\frac{1}{2^{i}+1}}\left(x^{2^{i}}+\operatorname{tr}_{n}^{m}(x)^{2^{i}}+1\right)$	n odd
$+\left[\operatorname{tr}_{n}^{m}(x)^{2^{i}+1}+\operatorname{tr}_{n}^{m}\left(x^{2^{i}+1}\right)+\operatorname{tr}_{n}^{m}(x)\right]^{\frac{2^{i}+1}{2+1}}\left(x+\operatorname{tr}_{n}^{m}(x)\right)$	$m \mid n$

CCZ-construction of APN permutation for n even

- No quadratic APN permutations for n even [Nyberg 1993].

The only known APN permutation for n even [Dillon et al 2009]:

- Applying CCZ-equivalence to quadratic APN on $\mathbb{F}_{2^{n}}$ with $n=6$ and c primitive

$$
F(x)=x^{3}+x^{10}+c x^{24}
$$

obtain a nonquadratic APN permutation

$$
c^{25} x^{57}+c^{30} x^{56}+c^{32} x^{50}+c^{37} x^{49}+c^{23} x^{48}+c^{39} x^{43}+c^{44} x^{42}+
$$

$$
c^{4} x^{41}+c^{18} x^{40}+c^{46} x^{36}+c^{51} x^{35}+c^{52} x^{34}+c^{18} x^{33}+c^{56} x^{32}+
$$

$$
c^{53} x^{29}+c^{30} x^{28}+c x^{25}+c^{58} x^{24}+c^{60} x^{22}+c^{37} x^{21}+c^{51} x^{20}+
$$

$$
c x^{18}+c^{2} x^{17}+c^{4} x^{15}+c^{44} x^{14}+c^{32} x^{13}+c^{18} x^{12}+c x^{11}+
$$

$$
c^{9} x^{10}+c^{17} x^{8}+c^{51} x^{7}+c^{17} x^{6}+c^{18} x^{5}+x^{4}+c^{16} x^{3}+c^{13} x
$$

Outline

Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functionsEquivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence
(3) APN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

First APN and AB classes CCZ-ineq. to monomials

Let s, k, p be positive integers such that $n=p k, p=3,4$, $\operatorname{gcd}(k, p)=\operatorname{gcd}(s, p k)=1$ and α primitive in $\mathbb{F}_{2^{n}}^{*}$.

$$
x^{2^{s}+1}+\alpha^{2^{k}-1} x^{2^{-k}+2^{k+s}}
$$

is quadratic $A P N$ on $\mathbb{F}_{2^{n}}$. If n is odd then this function is an $A B$ permutation [B., Carlet, Leander 2006-2008].
This disproved the conjecture from 1998 on nonexistence of quadratic $A B$ functions inequivalent to Gold functions.

Extension of one of the classes of APN binomials

Let s, k be positive integers such that $n=3 k$, $\operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1$ and and α primitive in $\mathbb{F}_{2^{n}}^{*}$.

$$
x^{2^{s}+1}+\alpha^{2^{k}-1} x^{2^{-k}+2^{k+s}}
$$

is quadratic APN on $\mathbb{F}_{2^{n}}$.
Add more quadratic terms [McGuire et al 2008-2011]:

$$
\alpha x^{2^{s}+1}+\alpha^{2^{k}} x^{2^{-k}+2^{k+s}}+b x^{2^{-k}+1}+d \alpha^{2^{k}+1} x^{2^{k+s}+2^{s}}
$$

where $b, d \in \mathbb{F}_{2^{k}}, b d \neq 1$.

Another APN quadrinomial family

$$
F_{b i n}(x)=x^{3}+w x^{36}
$$

over $\mathbb{F}_{2^{10}}$, where w has the order 3 or 93 [Edel et al. 2005].
Let $n=2 m$ with m odd and $3 \nmid m, \beta$ primitive in $\mathbb{F}_{2^{2}}$,
$(a, b, c)=\left(\beta, \beta^{2}, 1\right)$ and $i=m-2$ or $i=(m-2)^{-1} \bmod n$. Then

$$
x^{3}+a\left(x^{2^{i}+1}\right)^{2^{k}}+b x^{3 \cdot 2^{m}}+c\left(x^{2^{i+m}+2^{m}}\right)^{2^{k}}
$$

is $A P N$ on $\mathbb{F}_{2^{n}}$ [B., Helleseth, Kaleyski 2020].
$F_{b i n}$ is a particular case of this quadrinomial with $n=10, a$ primitive in $\mathbb{F}_{4}, b=c=0, i=3, k=2$.

A class of APN and AB functions $x^{3}+\operatorname{tr}_{n}\left(x^{9}\right)$

B., Carlet, Leander 2009:
$F(x)+\operatorname{tr}_{n}(G(x))$ is at most differentially 4-uniform for any APN function F and any function G.

- $x^{3}+\operatorname{tr}_{n}\left(x^{9}\right)$ is APN over $\mathbb{F}_{2^{n}}$.
- It is the only APN polynomial CCZ-inequivalent to power functions which is defined for any n.
- It was the first APN polynomial CCZ-inequivalent to power functions with all coefficients in \mathbb{F}_{2}.

Optimal cryptographic functions Equivalence relations of functions
APN constructions and their applications and properties

Known APN families CCZ-ineq. to power functions

N°	Functions	Conditions
$\begin{aligned} & \mathrm{C} 1- \\ & \mathrm{C} 2 \end{aligned}$	$x^{2^{s}+1}+u^{2^{k}-1} x^{2^{i k}+2^{m k+s}}$	$\begin{gathered} n=p k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, p \in\{3,4\} \\ i=s k \bmod p, m=p-i, n \geq 12, u \text { primitive in } F_{2^{n}}^{*} \end{gathered}$
C3	$s x^{q+1}+x^{2^{i}+1}+x^{q\left(2^{i}+1\right)}+c x^{2^{i} q+1}+c^{q} x^{2^{i}+q}$	$\begin{aligned} & q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1, c \in \mathbb{F}_{2^{n}}, s \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{q}, \\ & X^{2^{i}+1}+c X^{2^{i}}+c^{q} X+1 \text { has no solution } x \text { s.t. } x^{q+1}=1 \end{aligned}$
C4	$x^{3}+a^{-1} \mathrm{Tr}_{n}\left(a^{3} x^{9}\right)$	$a \neq 0$
C5	$x^{3}+a^{-1} \operatorname{Tr}_{n}^{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$	$3 \mid n, a \neq 0$
C6	$x^{3}+a^{-1} \mathrm{Tr}_{n}^{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$	$3 \mid n, a \neq 0$
$\begin{array}{\|l\|} \hline \text { C7- } \\ \text { C9 } \\ \hline \end{array}$	$u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}}+v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}}$	$\begin{gathered} n=3 k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, v, w \in \mathbb{F}_{2^{k}} \\ v w \neq 1,3 \mid(k+s), u \text { primitive in } \mathbb{F}_{2^{n}}^{*} \end{gathered}$
C10	$\left(x+x^{2^{m}}\right)^{2^{k}+1}+u^{\prime}\left(u x+u^{2^{m}} x^{2^{m}}\right)^{\left(2^{k}+1\right) 2^{i}}+u\left(x+x^{2^{m}}\right)\left(u x+u^{2^{m}} x^{2^{m}}\right)$	$n=2 m, m \geqslant 2$ even, $\operatorname{gcd}(k, m)=1$ and $i \geqslant 2$ even, u primitive in $\mathbb{F}_{2^{n}}^{*}, u^{\prime} \in \mathbb{F}_{2^{m}}$ not a cube
C11	$L(x)^{2^{i}} x+L(x) x^{2^{i}}$	
C12	$u t(x)\left(x^{q}+x\right)+t(x)^{2^{2 i}+2^{3 i}}+a t(x)^{2^{2 i}}\left(x^{q}+x\right)^{2^{i}}+b\left(x^{q}+x\right)^{2 i}+1$	$\begin{aligned} n= & 2 m, q=2^{m}, \operatorname{gcd}(m, i)=1, t(x)=u^{q} x+x^{q} u, \\ & X^{2^{i}+1}+a X+b \text { has no solution over } \mathbb{F}_{2^{m}} \end{aligned}$
		$n=2 m=10,(a, b, c)=(\beta, 1,0,0), i=3, k=2, \beta$ primitive in $\mathbb{F}_{2^{2}}$
C13	$x^{3}+a\left(x^{2^{i}+1}\right)^{2^{k}}+b x^{3 \cdot 2^{m}}+c\left(x^{2^{i+m}+2^{m}}\right)^{2^{k}}$	$\begin{gathered} n=2 m, m \text { odd }, 3 \nmid m,(a, b, c)=\left(\beta, \beta^{2}, 1\right), \beta \text { primitive in } \mathbb{F}_{2^{2}}, \\ i \in\left\{m-2, m, 2 m-1,(m-2)^{-1} \quad \bmod n\right\} \end{gathered}$

- All are quadratic. For n odd they are $A B$ otherwise have optimal nonlinearity.
- In general, these families are pairwise CCZ-inequivalent [B., Calderini, Villa, 2020].
Only one known example of APN polynomial CCZ-inequivalent to quadratics and to power functions for $\mathrm{n}=6$ [Leander et al, Edel et al. 2008].

Optimal cryptographic functions Equivalence relations of functions
APN constructions and their applications and properties

Classes of APN polynomials CCZ-inequivalent to monomials Applications of APN constructions
Nonlinearity properties of APN functions

Representatives of APN polynomial families $n \leq 11$

Dimension	Functions	Equivalent to
6	$\begin{gathered} x^{24}+a x^{17}+a^{8} x^{10}+a x^{9}+x^{3} \\ a x^{3}+x^{17}+a^{4} x^{24} \end{gathered}$	$\begin{gathered} C 3 \\ C 7-C 9 \end{gathered}$
7	$x^{3}+\operatorname{Tr}_{7}\left(x^{9}\right)$	C4
8	$\begin{gathered} x^{3}+x^{17}+a^{48} x^{18}+a^{3} x^{33}+a x^{34}+x^{48} \\ x^{3}+\operatorname{Tr}_{8}\left(x^{9}\right) \\ x^{3}+a^{-1} \operatorname{Tr}_{8}\left(a^{3} x^{9}\right) \\ a\left(x+x^{16}\right)\left(a x+a^{16} x^{16}\right)+a^{17}\left(a x+a^{16} x^{16}\right)^{12} \\ x^{9}+\operatorname{Tr}_{8}\left(x^{3}\right) \end{gathered}$	C3 C4 C4 C10 C11
9	$\begin{gathered} x^{3}+\operatorname{Tr}\left(x^{9}\right) \\ x^{3}+\operatorname{Tr}_{9}^{3}\left(x^{9}+x^{18}\right) \\ x^{3}+\operatorname{Tr}_{9}^{3}\left(x^{18}+x^{36}\right) \\ x^{3}+a^{246} x^{10}+a^{47} x^{17}+a^{181} x^{66}+a^{428} x^{129} \end{gathered}$	C4 C5 C6 C11
10	$\begin{gathered} x^{6}+x^{33}+a^{31} x^{192} \\ x^{33}+x^{72}+a^{31} x^{258} \\ x^{3}+\operatorname{Tr} 10\left(x^{9}\right) \\ x^{3}+a^{-1} \operatorname{Tr} 10\left(a^{3} x^{9}\right) \\ x^{3}+a^{341} x^{9}+a^{682} x^{96}+x^{288} \\ x^{3}+a^{341} x^{129}+a^{682} x^{96}+x^{36} \\ x^{3}+a^{128} x^{6}+a^{384} x^{12}+a^{133} x^{33}+x^{34}+a^{2} x^{64}+x^{65}+a^{128} x^{68}+x^{96}+a^{4} x^{130}+a^{260} x^{136}+a^{4} x^{192}+a^{136} x^{260}+a^{12} x^{384} \\ x^{3}+a^{920} x^{6}+a^{153} x^{12}+a^{925} x^{33}+x^{34}+a^{794} x^{64}+x^{65}+a^{920} x^{68}+x^{96}+a^{796} x^{130}+a^{29} x^{136}+a^{796} x^{192}+a^{928} x^{260}+a^{804} x^{384} \\ x^{3}+a^{788} x^{6}+a^{21} x^{12}+a^{793} x^{33}+x^{34}+a^{662} x^{64}+x^{65}+a^{788} x^{68}+x^{96}+a^{664} x^{130}+a^{920} x^{136}+a^{664} x^{192}+a^{796} x^{260}+a^{672} x^{384} \\ x^{5}+a^{576} x^{18}+a^{512} x^{20}+a^{133} x^{33}+x^{36}+a^{2} x^{64}+a^{514} x^{80}+x^{129}+a^{512} x^{144}+x^{160}+a^{80} x^{514}+a^{16} x^{516}+a^{18} x^{576}+a^{16} x^{640} \\ x^{5}+a^{477} x^{18}+a^{413} x^{20}+a^{34} x^{33}+x^{36}+a^{926} x^{64}+a^{415} x^{80}+x^{129}+a^{413} x^{144}+x^{160}+a^{1004} x^{514}+a^{940} x^{516}+a^{942} x^{576}+a^{940} x^{640} \\ x^{5}+a^{81} x^{18}+a^{17} x^{20}+a^{661} x^{33}+x^{36}+a^{530} x^{64}+a^{19} x^{80}+x^{129}+a^{17} x^{144}+x^{160}+a^{608} x^{514}+a^{544} x^{516}+a^{546} x^{576}+a^{544} x^{640} \end{gathered}$	$\begin{aligned} & C 3 \\ & C 3 \\ & C 4 \\ & C 4 \\ & C 13 \\ & C 13 \\ & C 12 \end{aligned}$
11	$x^{3}+\operatorname{Tr}_{11}\left(x^{9}\right)$	C4

Infinite families are identified for

- only 3 out of 11 quadratic APN functions of \mathbb{F}_{26};
- only 4 out of more than 480 quadratic $A P N$ of $\mathbb{F}_{2^{7}}$;
- only 7 out of more than 8180 quadratic APN of $\mathbb{F}_{2^{8}}$.

Classification of APN functions

Leander et al 2008:
CCZ-classification finished for:

- APN functions with $n \leq 5$ (there are only power functions).

EA-classification is finished for:

- APN functions with $n \leq 5$ (there are only power functions and the ones constructed by CCZ-equivalence in 2005).

There are some partial results for

- CCZ-equivalence of quadratic APN for $n=7,8$ by Yu et al. 2013;
- EA-classification of APN functions for $n \geq 6$ by Calderini 2019;
- quadratic APN functions with coefficients in \mathbb{F}_{2} for $n \leq 9$ by B., Kaleyski, Li, Yu 2020.

Outline

(1) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2) Equivalence relations of functions
- EAI-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence
(3) APN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Application to commutative semifields

$\mathbb{S}=(S,+, \star)$ is a commutative semifield if all axioms of finite fields hold except associativity for multiplication.

- $\mathbb{S}=(S,+, \star)$ is considered as $\mathbb{S}=\left(\mathbb{F}_{\left.p^{n},+, \star\right)}\right)$.
- $F: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ is planar (p odd) if

$$
F(x+a)-F(x), \quad \forall a \in \mathbb{F}_{p^{n}}^{*},
$$

are permutations.

- There is one-to-one correspondence between quadratic planar functions and commutative semifields.

The only previously known infinite classes of commutative semifields defined for all odd primes p were Dickson (1906) and Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010].

Yet another equivalence?

- Isotopisms of commutative semifields induces isotopic equivalence of quadratic planar functions more general than CCZ-equivalence [B., Helleseth 2007].
- If quadratic planar functions F and F^{\prime} are isotopic equivalent then F^{\prime} is EA-equivalent to

$$
F(x+L(x))-F(x)-F(L(x))
$$

for some linear permutation L [B., Calderini, Carlet, Coulter, Villa 2018].

- Isotopic equivalence for APN functions?

Isotopic construction

Isotopic construction of APN functions:

$$
F(x+L(x))-F(x)-F(L(x))
$$

where L is linear and F is APN.
It is not equivalence but a powerful construction method for APN functions:

- a new infinite family of quadratic APN functions;
- for $n=6$, starting with any quadratic APN it is possible to construct all the other quadratic APNs.
Isotopic construction for planar functions?

Application to crooked functions

F is crooked if $F(0)=0$, for all distinct x, y, z and $\forall a \neq 0, b, c, d$
$F(x)+F(y)+F(z)+F(x+y+z) \neq 0$ and
$F(x)+F(y)+F(z)+F(x+a)+F(y+a)+F(z+a) \neq 0$.

- Every quadratic AB permutation with $F(0)=0$ is crooked.
- Every crooked function is an $A B$ permutation.
- Conjecture: Every crooked function is quadratic.
- Crookedness is preserved only by affine equivalence.

Known crooked functions over $\mathbb{F}_{2^{n}}$.

Functions	Exponents d	Conditions
Gold (1968)	$x^{2^{\prime}+1}$	n odd
AB binomials (2006)	$x^{2^{s}+1}+\alpha^{2^{k}-1} x^{2^{-k}+2^{k+s}}$	$n=3 k$ odd

Among all 480 known quadratic AB functions with $n=7$, only Gold maps are CCZ-equivalent to permutations.

Outline

(1) Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
(2)

Ec|uivalence relations of functions

- EAl-equivalence and known power APN functions
- CCZ-equivalence and its relation to EAI-equivalence
- Application of CCZ-equivalence
(3) APN constructions and their applications and properties
- Classes of APN polynomials CCZ-inequivalent to monomials
- Applications of APN constructions
- Nonlinearity properties of APN functions

Nonlinearity properties of known APN families

All known APN families, except inverse and Dobbertin functions, have Gold-like Walsh spectra:

- for n odd they are $A B$;
- for n even Walsh spectra are $\left\{0, \pm 2^{n / 2}, \pm 2^{n / 2+1}\right\}$.

Sporadic examples of quadratic APN functions with non-Gold like Walsh spectra:

- For $n=6$ only one example of quadratic APN function with

$$
\begin{aligned}
\left\{0, \pm 2^{n / 2},\right. & \left. \pm 2^{n / 2+1}, \pm 2^{n / 2+2}\right\}: \\
& x^{3}+a^{11} x^{5}+a^{13} x^{9}+x^{17}+a^{11} x^{33}+x^{48}
\end{aligned}
$$

- For $n=8$ there are 499 out of 8180 quadratic APN functions.

Problems on nonlinearity of APN functions

- Find a family of quadratic APN polynomials with non-Gold like nonliniarity.
- The only family of APN power functions with unknown Walsh spectrum is Dobbertin function:
- All Walsh coefficients are divisible by $2^{\frac{2 n}{5}}$ but not by $2^{\frac{2 n}{5}+1}$ [Canteaut, Charpin, Dobbertin 2000].
- Walsh spectrum is conjectured by B., Calderini, Carlet, Davidova, Kaleyski 2020.
- What is a low bound for nonlinearity of APN functions?

