Reni Banov

Zagreb University of Applied Sciences

20th Central European Conference on Cryptology, June 2020

Introduction

Table of Contents

1 Introduction

2 Binary Decision Diagrams

3 New ordering heuristic

- Introduction

Introduction

Modern communication systems impose strong constraints to digital circuit implementation of the Boolean function, such as

- reliability
- performance
- cost
- security

Notice

Constraints do not always appear in this order of importance.

A possible solution is to minimize the Boolean function expression form

$$f: \mathbb{B}^n \to \mathbb{B},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

by which the number of gates is reduced.

Introduction

Which form to choose for the minimization?

ANF – Reed-Muller expansion

$$f(x_1,\ldots,x_n) = \bigoplus_k \Big(\bigwedge_{i_k=1}^{n_i} x_{i_k}\Big), \qquad n_i \le n$$

CNF – Product-Of-Sums

$$f(x_1,\ldots,x_n) = \bigwedge_k \left(\bigvee_{i_k=1}^n \xi_{i_k}\right), \qquad \xi_i \in \{x_i,\overline{x_i}\}$$

$$f(x_1,\ldots,x_n) = \bigvee_k \left(\bigwedge_{i_k=1}^n \xi_{i_k}\right), \qquad \xi_i \in \{x_i,\overline{x_i}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Introduction

What is the minimal form of DNF?

The conjunction term p containing some literals

$$p = \wedge \xi_i, i = 1, \dots, k \le n$$

having no sub terms

$$q \subset p: q(\mathbf{x}) = 1 \implies f(\mathbf{x}) = 1$$

is called *prime implicants*.

Minimal DNF

The DNF with a minimum number of prime implicants.

Such a minimal DNF form, being implemented in the digital circuit, is optimal in the restricted class of two-level digital circuits (disjunctions of conjunctions of literals) gates [Weg91].

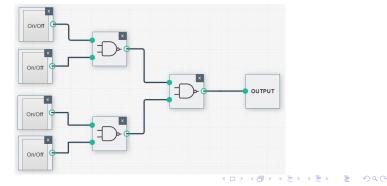
- Introduction

Why DNF is selected?

NAND implementation

It is easy to implement a Boolean function with NAND gates only if converted from a DNF form.

For example, $f(\mathbf{x}) = (x_1 \wedge x_2) \lor (x_3 \wedge x_4) = \overline{(x_1 \wedge x_2)} \land \overline{(x_3 \wedge x_4)}$



Binary Decision Diagrams

Table of Contents

1 Introduction

2 Binary Decision Diagrams

3 New ordering heuristic

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Binary Decision Diagrams

How to find a minimal DNF of the Boolean function?

- Karnaugh maps expression simplification; appropriate for functions defined on less than ≈ 6 variables
- Minterms (Quine-McClusky [Weg91]) conjunction term simplification; appropriate for functions defined on less than ≈ 15 variables
- Heuristic (Espresso [MSBS93]) prime implicants heuristic search; appropriate for functions with less than ≈ 50 variables
- BDDs (Coudert [CM94]) set cover implicit computation; applicable for functions with ≈ 100 variables or more

Monotonic Boolean functions

Minimal DNF of monotic functions can be computed with BDDs according to the Rauzy approach [Rau93].

Binary Decision Diagrams

What are BDDs?

One of the only really fundamental data structures that came out in the last twenty-five years (D.E. Knuth, 2008)

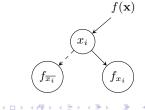
Bryant [Bry86]

The Boolean Decision Diagrams (BDDs) a variant of *directed acyclic graphs* (DAGs) used for Boolean functions representation.

Two-terminal DAG based on Shannon identity

$$f(\mathbf{x}) = \left(x_i \wedge f_{x_i}(\mathbf{x})\right) \vee \left(\overline{x_i} \wedge f_{\overline{x_i}}(\mathbf{x})\right)$$

built from vertices representing the *If-Then-Else* (ITE) construct.



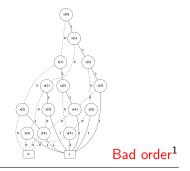
Binary Decision Diagrams

Why and when BDDs?

Canonicity

The BDDs are a canonical representation of the Boolean function.

but, they are sensitive to the selection of the variable order



¹Source: PyEDA documentation [Dra20]

Binary Decision Diagrams

Any strong results for BDDs? I

Hardness of variable ordering

- The problem of finding an optimal order is NP-hard [TY00], and even by improving a variable order, the problem is NP-complete [BW96],
- There are Boolean functions which have an exponential size BDD for every ordering [Bry86]

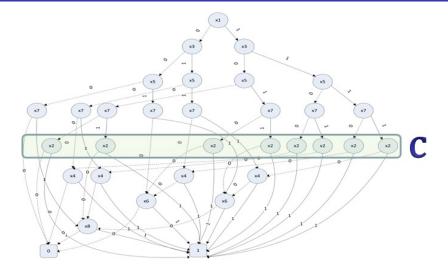
Friedman-Supowit [FS90]

Let $I \subseteq \{1, \ldots, n\}, k = |I|, v \in I$, then there is a constant c such that for each $\pi \in \Pi(I)$ satisfying $\pi[k] = v$, we have

$$cost_v(f,\pi) = c.$$

Binary Decision Diagrams

Any strong results for BDDs? II



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

└─New ordering heuristic

Table of Contents

1 Introduction

2 Binary Decision Diagrams

3 New ordering heuristic

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

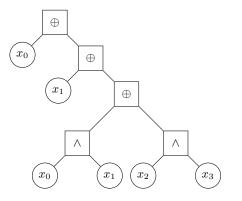
└─New ordering heuristic

Parse tree

Parse tree

First step: to build the parse tree of the Boolean function expression

Option: to build a Boolean Expression Diagram (BED) to remove redundant subexpressions [AH02]



 $f(\mathbf{x}) = x_0 \oplus x_1 \oplus (x_0 \wedge x_1) \oplus (x_2 \wedge x_3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

└─New ordering heuristic

A new variable ordering heuristic

```
Input: f top node in parse tree or BED
Output: \pi a new variable order for top node
Orders \leftarrow \emptyset:
                                     // Hash table for orders
for each node \in DFSOrder(f) do
    if node is Variable then
        x_i \leftarrow Variable(node)
        \pi_i \leftarrow \{(x_i, count : 1)\}
        Orders.Insert(key:node, value:\pi_i)
    end
    else
        /* node is boolean operator
                                                                    */
        \pi_l \leftarrow \text{Orders.FindValue(key:LeftChild(node))}
        \pi_r \leftarrow \text{Orders.FindValue(key:RightChild(node))}
        \pi \leftarrow MergeOrders(\pi_l, \pi_r) // Merge heuristic
        Orders.Insert(key:node, value:\pi)
    end
end
\pi \leftarrow \text{Orders.FindValue(key:f)}
                 // final order of variables for f node
return \pi
                                                                   ロ ト 4 回 ト 4 三 ト 4 三 ト ・ 回 ・ ク Q ()
```

└─ New ordering heuristic

$MergeOrders(\pi_l, \pi_r)$

```
Input: \pi_l, \pi_r two variable orders for merging
\pi \leftarrow \emptyset
(x_l, c_l) \leftarrow \mathsf{First}(\pi_l)
(x_r, c_r) \leftarrow \mathsf{First}(\pi_r)
while (x_l \neq \emptyset) \& (x_r \neq \emptyset) do
    /* Heuristic criteria
                                                                           */
    if (c_l + 2 * c_r) \le (c_r + 2 * c_l) then
         Append_If_Not_Present(\pi, {x_l, count : c_l + 2 * c_r})
         (x_l, c_l) \leftarrow \mathsf{Next}(\pi_l)
    end
    else
         Append_If_Not_Present(\pi, {x_r, count : c_r + 2 * c_l})
         (x_r, c_r) \leftarrow \mathsf{Next}(\pi_r)
    end
end
if x_1 \neq \emptyset then
    Append(\pi, from:x_l, \pi_l)
                                                    // Left finished?
end
if x_r \neq \emptyset then
    Append(\pi, from:x_r, \pi_r)
                                                  // Right finished?
end
                                               // Two orders merged
return \pi
```

└─New ordering heuristic

Results

example	variables	operators	BDD ¹	$ DNF ^2$
ex1	13	12	15	11
ex2	70	53	254	36.292
ex3	43	32	57	1.043
ex4	66	50	281	32.369
ex5	44	35	49	784
ex6	98	141	264	960
ex7	18	19	31	46
ex8	61	84	2.481	46.188
ex9	194	158	3.048	34.477.555

Table: Preliminary results

¹ count of nodes in BDD built with heuristic order

² count of prime implicants for minimal DNF form

Conclusion

Table of Contents

1 Introduction

2 Binary Decision Diagrams

3 New ordering heuristic

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Conclusion

Why minimal DNF and BDDs?

Some reasons for minimal DNF in digital implementations

- Reduced cost due to the minimal number of gates used
- Improved performance due to minimized total delay
- Design constraints fullfiled (die size, thermal, ...)
- More reliable circuits

What else can be done with BDDs besides the DNF minimization?

- Expressing (and solving) of a 0/1 optimization problems
- Representing a structure function of complex systems
- Could properties of the Boolean functions be derived from topological properties of the BDD DAGs
- Other ideas?

Conclusion

Thank You!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Conclusion

References I

- Henrik Reif Andersen and Henrik Hulgaard, *Boolean expression diagrams*, Information and Computation **179** (2002), no. 2, 194 212.
- Bryant, Graph-based algorithms for boolean function manipulation, IEEE Transactions on Computers C-35 (1986), no. 8, 677–691.
- B. Bollig and I. Wegener, *Improving the variable ordering of obdds is np-complete*, IEEE Transactions on Computers 45 (1996), no. 9, 993–1002.
- O. Coudert and J. C. Madre, *Metaprime: an interactive fault-tree analyzer*, IEEE Transactions on Reliability 43 (1994), no. 1, 121–127.

- Conclusion

References II

- C. Drake, Python Electronic Design Automation, 2020.
- S. J. Friedman and K. J. Supowit, *Finding the optimal variable ordering for binary decision diagrams*, IEEE Transactions on Computers **39** (1990), no. 5, 710–713.
- P. C. McGeer, J. V. Sanghavi, R. K. Brayton, and A. L. Sangiovanni-Vicentelli, *Espresso-signature: a new exact minimizer for logic functions*, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 1 (1993), no. 4, 432–440.
- Antoine Rauzy, New algorithms for fault trees analysis, Reliability Engineering & System Safety 40 (1993), no. 3, 203 – 211.

Conclusion

References III

Yasuhiko Takenaga and Shuzo Yajima, Hardness of identifying the minimum ordered binary decision diagram, Discrete Applied Mathematics 107 (2000), no. 1, 191 – 201, SI Boolean Functions.

I. Wegener, *The complexity of boolean functions*, Wiley Teubner, ISBN: 978-0-471-91555-3, 1991.