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Introduction

Modern communication systems impose strong constraints to
digital circuit implementation of the Boolean function, such as

reliability

performance

cost

security

Notice

Constraints do not always appear in this order of importance.

A possible solution is to minimize the Boolean function expression
form

f : Bn → B,

by which the number of gates is reduced.
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Which form to choose for the minimization?

ANF – Reed-Muller expansion

f(x1, . . . , xn) =
⊕
k

( ni∧
ik=1

xik

)
, ni ≤ n

CNF – Product-Of-Sums

f(x1, . . . , xn) =
∧
k

( n∨
ik=1

ξik

)
, ξi ∈ {xi, xi}

DNF – Sum-Of-Products

f(x1, . . . , xn) =
∨
k

( n∧
ik=1

ξik

)
, ξi ∈ {xi, xi}
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What is the minimal form of DNF?

The conjunction term p containing some literals

p = ∧ξi, i = 1, . . . , k ≤ n

having no sub terms

q ⊂ p : q(x) = 1 =⇒ f(x) = 1

is called prime implicants.

Minimal DNF

The DNF with a minimum number of prime implicants.

Such a minimal DNF form, being implemented in the digital
circuit, is optimal in the restricted class of two-level digital circuits
(disjunctions of conjunctions of literals) gates [Weg91].
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Why DNF is selected?

NAND implementation

It is easy to implement a Boolean function with NAND gates only
if converted from a DNF form.

For example, f(x) = (x1 ∧ x2) ∨ (x3 ∧ x4) = (x1 ∧ x2) ∧ (x3 ∧ x4)
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How to find a minimal DNF of the Boolean function?

Karnaugh maps – expression simplification; appropriate for
functions defined on less than ≈ 6 variables

Minterms (Quine-McClusky [Weg91]) – conjunction term
simplification; appropriate for functions defined on less than
≈ 15 variables

Heuristic (Espresso [MSBS93]) – prime implicants heuristic
search; appropriate for functions with less than ≈ 50 variables

BDDs (Coudert [CM94]) – set cover implicit computation;
applicable for functions with ≈ 100 variables or more

Monotonic Boolean functions

Minimal DNF of monotic functions can be computed with BDDs
according to the Rauzy approach [Rau93].
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What are BDDs?

One of the only really fundamental data structures that came out
in the last twenty-five years (D.E. Knuth, 2008)

Bryant [Bry86]

The Boolean Decision Diagrams (BDDs) a variant of directed
acyclic graphs (DAGs) used for Boolean functions representation.

Two-terminal DAG based on Shannon identity

f(x) =
(
xi ∧ fxi(x)

)
∨
(
xi ∧ fxi(x)

)
built from vertices representing the
If-Then-Else (ITE) construct.

f(x)

xi

fxifxi
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Why and when BDDs?

Canonicity

The BDDs are a canonical representation of the Boolean function.

but, they are sensitive to the selection of the variable order

Bad order1 Good order
1Source: PyEDA documentation [Dra20]
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Any strong results for BDDs? I

Hardness of variable ordering

The problem of finding an optimal order is NP-hard [TY00],
and even by improving a variable order, the problem is
NP-complete [BW96],

There are Boolean functions which have an exponential size
BDD for every ordering [Bry86]

Friedman-Supowit [FS90]

Let I ⊆ {1, . . . , n}, k = |I| , v ∈ I, then there is a constant c such
that for each π ∈ Π(I) satisfying π[k] = v, we have

costv(f, π) = c.
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Any strong results for BDDs? II
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Parse tree

Parse tree

First step: to build the
parse tree of the Boolean
function expression

Option: to build a
Boolean Expression
Diagram (BED) to remove
redundant subexpressions
[AH02]

⊕

x0 ⊕

x1 ⊕

∧ ∧

x0 x1 x2 x3

f(x) = x0 ⊕ x1 ⊕ (x0 ∧ x1)⊕ (x2 ∧ x3)
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A new variable ordering heuristic

Input: f top node in parse tree or BED
Output: π a new variable order for top node

Orders ← ∅; // Hash table for orders

for each node ∈ DFSOrder(f) do
if node is Variable then

xi ← Variable(node)
πi ← {(xi, count : 1)}
Orders.Insert(key:node, value:πi)

end
else

/* node is boolean operator */

πl ← Orders.FindValue(key:LeftChild(node))
πr ← Orders.FindValue(key:RightChild(node))

π ← MergeOrders(πl, πr) // Merge heuristic

Orders.Insert(key:node, value:π)

end

end
π ← Orders.FindValue(key:f)
return π // final order of variables for f node
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MergeOrders(πl, πr)

Input: πl, πr two variable orders for merging
π ← ∅
(xl, cl)← First(πl)
(xr, cr)← First(πr)
while (xl 6= ∅) & (xr 6= ∅) do

/* Heuristic criteria */

if (cl + 2 ∗ cr) ≤ (cr + 2 ∗ cl) then
Append If Not Present(π, {xl, count : cl + 2 ∗ cr})
(xl, cl)← Next(πl)

end
else

Append If Not Present(π, {xr, count : cr + 2 ∗ cl})
(xr, cr)← Next(πr)

end

end
if xl 6= ∅ then

Append(π, from:xl, πl) // Left finished?

end
if xr 6= ∅ then

Append(π, from:xr, πr) // Right finished?

end
return π // Two orders merged
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Results

Table: Preliminary results

example variables operators |BDD| 1 |DNF | 2

ex1 13 12 15 11
ex2 70 53 254 36.292
ex3 43 32 57 1.043
ex4 66 50 281 32.369
ex5 44 35 49 784
ex6 98 141 264 960
ex7 18 19 31 46
ex8 61 84 2.481 46.188
ex9 194 158 3.048 34.477.555

1 count of nodes in BDD built with heuristic order
2 count of prime implicants for minimal DNF form
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Why minimal DNF and BDDs?

Some reasons for minimal DNF in digital implementations

Reduced cost due to the minimal number of gates used

Improved performance due to minimized total delay

Design constraints fullfiled (die size, thermal, . . . )

More reliable circuits

What else can be done with BDDs besides the DNF minimization?

Expressing (and solving) of a 0/1 optimization problems

Representing a structure function of complex systems

Could properties of the Boolean functions be derived from
topological properties of the BDD DAGs

Other ideas?
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Thank You!
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