Suffficient conditions of five-valued spectra Boolean functions

Samed Bajrić

JOŽEF STEFAN INSTITUTE Laboratory for Open Systems and Networks Ljubljana, Slovenia

20th Central European Conference on Cryptology June 24–26, 2020, Zagreb, Croatia

Outline

- Short introduction to Boolean functions
- 5-valued spectra Boolean functions
- Infinite families of five-valued spectra Boolean functions

Boolean functions: representation

- ullet A ${\it Boolean\ function\ }f$ in n variables is an \mathbb{F}_2- valued function on \mathbb{F}_2^n
- Unique representation of f as a polynomial over \mathbb{F}_2 in n variables of the form

$$f(x_1, \dots, x_n) = a_0 + \sum_{1 \le i \le n} a_i x_i + \sum_{1 \le i < j \le n} a_{ij} x_i x_j + \dots + a_{12...n} x_1 x_2 \dots x_n,$$

where $a_0, a_{ij}, \ldots, a_{12...n} \in \mathbb{F}_2$, is called the *algebraic normal form* (ANF) of f

ullet The algebraic degree deg(f) is the degree of the ANF

Boolean functions: representation

ullet Unique trace expansion of f defined on \mathbb{F}_{2^n} as

$$f(x) = \sum_{j \in \Gamma_n} Tr_1^{o(j)}(a_j x^j) + \epsilon (1 + x^{2^n - 1}), \ a_j \in \mathbb{F}_{2^{o(j)}},$$

where:

$$Tr_1^n(x)$$
 is the absolute trace of x over \mathbb{F}_{2^n} defined by $Tr_1^n(x)=x+x^2+x^{2^2}+\ldots+x^{2^{n-1}},$ for all $x\in\mathbb{F}_{2^n}$

 Γ_n - the set of integers obtained by choosing one element in each cyclotomic coset of 2 modulo 2^n-1

o(j) - the size of the cyclotomic coset of 2 modulo 2^n-1 containing j

$$\epsilon = wt(f)$$
 modulo 2, where $wt(f) = \#\{x \in \mathbb{F}_{2^n} : f(x) = 1\}$

Boolean functions: cryptographic criteria

- To prevent the system from Massey's attack by the Berlekamp-Massey algorithm, a Boolean function should have a high algebraic degree
- To prevent the system from leaking statistical dependence between the input and output, a Boolean function should be balanced
- To prevent the system from linear attacks and correlation attacks, a Boolean function should be of high nonlinearity
- To prevent the system from algebraic attack, a Boolean function should have an optimal algebraic immunity

Boolean functions: applications

- In cryptography:
 - Ciphers CAST and Grain
 - Hash function HAVAL
- In discrete mathematics:
 - Strongly regular graphs
 - Reed-Muller and Kerdock codes
- In mobile networks:
 - Constant-amplitude codes for Code Division Multiple Access

Boolean functions: Walsh Hadamard transform

- The most important mathematical tool for the study of cryptographic properties of Boolean functions
- The Walsh Hadamard transform (WHT) of f is an integer valued function over \mathbb{F}_2^n defined by

$$W_f(\omega) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + x \cdot \omega}, \quad \omega \in \mathbb{F}_2^n$$

where
$$x \cdot \omega = x_1 \omega_1 + x_2 \omega_2 + \ldots + x_n \omega_n$$

ullet For the Boolean functions defined on \mathbb{F}_{2^n} it is defined by

$$W_f(\lambda) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + Tr_1^n(\lambda x)}, \quad \lambda \in \mathbb{F}_{2^n}$$

Boolean functions: Walsh Hadamard transform

ullet The nonlinearity of f(x) can be obtained via the Walsh transform as

$$\mathcal{N}_f = 2^{n-1} - \frac{1}{2} \max_{\omega \in \mathbb{F}_2^n} \mid W_f(\omega) \mid$$

- ullet The nonlinearity of f(x) is always upper bounded by $2^{n-1}-2^{\frac{n}{2}-1}$
- It can reach this value if and only if n is even, i.e., f is bent
- f(x) is bent if and only if $|W_f(\omega)| = 2^{\frac{n}{2}}$, for all $\omega \in \mathbb{F}_2^n$

5-valued spectra Boolean functions

- The multiset $\{W_f(\lambda):\lambda\in\mathbb{F}_{2^n}\}$ is called the Walsh–Hadamard spectrum of the Boolean function f
- If the Walsh Hadamard spectrum takes the values in $\{0,\pm 2^{\lambda_1},\pm 2^{\lambda_2}\}$, then f is so-called 5-valued spectra Boolean function
- These functions may satisfy multiple cryptographic criteria
- Their design might contribute to a better understanding of other related combinatorial structures

The WHT of
$$f(x) = g(x) + \prod_{j=1}^{l} Tr_1^n(u_j x)$$

Lemma

Let n and l $(l < 2^n - 1)$ be the positive integers and $u_j \in \mathbb{F}_{2^n}^*$, where $j = 1, \ldots, l$. Let g(x) be a Boolean function defined over \mathbb{F}_{2^n} . Define the Boolean function f(x) by

$$f(x) = g(x) + \prod_{j=1}^{l} Tr_1^n(u_j x).$$
 (1)

Then, for every $a \in \mathbb{F}_{2^n}$,

$$\begin{split} W_f(a) &= \frac{1}{2^{l-1}}[(2^{l-1}-1)W_g(a)+W_g(a+u_1)+W_g(a+u_2)+\ldots+W_g(a+u_l)-\\ &\quad W_g(a+u_1+u_2)-W_g(a+u_1+u_3)-\ldots-W_g(a+u_{l-1}+u_l)+\\ &\quad W_g(a+u_1+u_2+u_3)+W_g(a+u_1+u_2+u_4)+\ldots+W_g(a+u_{l-2}+u_{l-1}+u_l)\\ &\quad \vdots\\ &\quad +(-1)^{l-1}W_g(a+u_1+\ldots+u_{l-2}+u_{l-1}+u_l)]. \end{split}$$

The WHT of
$$f(x) = g(x) + \prod_{j=1}^{l} Tr_1^n(u_j x)$$

Proof.

For $i_1, i_2, \dots, i_{l-1} \in \{0, 1\}$ and $u_j \in \mathbb{F}_{2^n}^*$ define the sets

$$T_{(i_1,i_2,\ldots,i_{l-1})} = \{x \in \mathbb{F}_{2^n} | Tr_1^n(u_1x) = i_1, Tr_1^n(u_2x) = i_2,\ldots, Tr_1^n(u_{l-1}x) = i_{l-1}\},\$$

and denote

$$S_{(i_1,i_2,\dots,i_{l-1})}(a) = \sum_{x \in T_{(i_1,i_2,\dots,i_{l-1})}} (-1)^{g(x)+Tr_1^n(ax)},$$

$$Q_{(i_1,i_2,\dots,i_{l-1})}(a+u_l) = \sum_{x \in T_{(i_1,i_2,\dots,i_{l-1})}} (-1)^{g(x)+Tr_1^n((a+u_l)x)}.$$

The Walsh Hadamard transform of f(x) can be computed as

$$W_f(a) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + Tr_1^n(ax)} = \dots$$
$$= W_g(a) - S_{(1,1,\dots,1,1)}(a) + Q_{(1,1,\dots,1,1)}(a+u_l).$$

The WHT of
$$f(x) = g(x) + \prod_{j=1}^{l} Tr_1^n(u_j x)$$

Proof.

Note that

$$W_g(a) = S_{(0,0,\dots,0,0)}(a) + S_{(0,0,\dots,0,1)}(a) + \dots + S_{(1,1,\dots,1,1)}(a)$$

Similarly, we get

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & -1 & 1 & \dots & 1 & -1 \\ 1 & 1 & -1 & \dots & -1 & -1 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 1 & -1 & -1 & \dots & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} S_{(0,0,\dots,0,0)}(a) \\ S_{(0,0,\dots,0,1)}(a) \\ S_{(0,0,\dots,1,0)}(a) \\ \vdots \\ S_{(1,1,\dots,1,1)}(a) \end{pmatrix} = \begin{pmatrix} W_g(a) \\ W_g(a+u_1) \\ W_g(a+u_2) \\ \vdots \\ W_g(a+u_1+\dots+u_{l-1}) \end{pmatrix}.$$

The coefficient matrix is a Hadamard matrix of order 2^{l-1} . Since for the Hadamard matrix holds $H \cdot H^T = n \cdot I_n$, we can easily compute $S_{(1,1,\ldots,1,1)}(a)$ and get the final result.

5-valued spectra functions via Niho bent functions

Theorem

Let $f(x)=g(x)+\prod_{j=1}^l Tr_1^n(u_jx)$, where n=2m is a positive integer, $l<2^n-1, u_j\in \mathbb{F}_{2^n}^*$. Let $g(x)=Tr_1^m(\lambda x^{2^m+1}),\ \lambda\in \mathbb{F}_{2^m}^*$ be the monomial Niho quadratic bent function with the Walsh Hadamard transform given by

$$W_g(a) = -2^m (-1)^{Tr_1^m (\lambda^{-1} a^{2^m + 1})}.$$

If

$$Tr_1^n(\lambda^{-1}u_1^{2^m}u_2) = 1, \ and$$

 $Tr_1^n(\lambda^{-1}u_1^{2^m}u_3) = \dots = Tr_1^n(\lambda^{-1}u_{l-1}^{2^m}u_l) = 0,$

then f is a 5-valued spectra function with the Walsh spectrum $\{0,\pm 2^m,\pm 2^{m+1}\}.$

Example I

Let n=8 so that m=4, and \mathbb{F}_{2^8} be generated by the primitive polynomial $x^8+x^4+x^3+x^2+1$ and α be a primitive element of \mathbb{F}_{2^8} .

Take
$$\lambda=1, u_1=\alpha^2, u_2=\alpha^{10}, u_3=\alpha^5, u_4=\alpha^{24}$$
. Then,
$$Tr_1^8((\alpha^2)^{16}\alpha^{10})=1, \quad Tr_1^8((\alpha^2)^{16}\alpha^5)=Tr_1^8((\alpha^2)^{16}\alpha^{24})=0,$$

$$Tr_1^8((\alpha^{10})^{16}\alpha^5)=Tr_1^8((\alpha^{10})^{16}\alpha^{24})=Tr_1^8((\alpha^5)^{16}\alpha^{24})=0.$$

The function

$$f(x) = Tr_1^4(x^{17}) + Tr_1^8(\alpha^2 x)Tr_1^8(\alpha^{10} x)Tr_1^8(\alpha^5 x)Tr_1^8(\alpha^{24} x),$$

is 5-valued with the Walsh spectrum $\{0,\pm 2^4,\pm 2^5\}$.

5-valued spectra functions via Gold-like monomial functions

Theorem

Let $f(x)=g(x)+\prod_{j=1}^{l}Tr_1^n(u_jx)$, where n=2m is a positive integer, $l<2^n-1, u_j\in\mathbb{F}_{2^n}^*$. Let $g(x)=Tr_1^{4m}(\lambda x^{2^m+1})$, where $m\geq 2$ and $\lambda\in\mathbb{F}_{2^{4m}}^*, \lambda+\lambda^{2^{3m}}=1$ be the Gold-like monomial bent function with the Walsh Hadamard transform given by

$$W_g(a) = 2^{2m} (-1)^{Tr_1^{4m} (\lambda a^{2^m+1})}.$$

If

$$Tr_1^{4m}(\lambda(u_1^{2^m}u_2 + u_1u_2^{2^m})) = 1, \ and$$

 $Tr_1^{4m}(\lambda(u_1^{2^m}u_3 + u_1u_3^{2^m})) = \dots = Tr_1^{4m}(\lambda(u_{l-1}^{2^m}u_l + u_{l-1}u_l^{2^m})) = 0,$

then f is a 5-valued spectra function with the Walsh spectrum $\{0,\pm 2^m,\pm 2^{m+1}\}.$

Example II

Let n=8 so that m=2, and \mathbb{F}_{2^8} be generated by the primitive polynomial $x^8+x^4+x^3+x^2+1$ and α be a primitive element of \mathbb{F}_{2^8} .

Take
$$\lambda=\alpha^{17}, u_1=\alpha, u_2=\alpha^3, u_3=\alpha^2, u_4=\alpha^{15}$$
. Then, $\alpha^{17}+(\alpha^{17})^{2^6}=1$, and
$$Tr_1^8(\alpha^{17}(\alpha^7+\alpha^{13}))=1$$

$$Tr_1^8(\alpha^{17}(\alpha^6+\alpha^{17}))=Tr_1^8(\alpha^{17}(\alpha^{19}+\alpha^{61}))=Tr_1^8(\alpha^{17}(\alpha^{14}+\alpha^{11}))=Tr_1^8(\alpha^{17}(\alpha^{27}+\alpha^{63}))=Tr_1^8(\alpha^{17}(\alpha^{23}+\alpha^{62}))=0.$$

The function

$$f(x) = Tr_1^8(\alpha^{17}x^5) + Tr_1^8(\alpha x)Tr_1^8(\alpha^3 x)Tr_1^8(\alpha^2 x)Tr_1^8(\alpha^{15}x)$$

is 5-valued with the Walsh spectrum $\{0, \pm 2^4, \pm 2^5\}$.

Further work

 Specify the necessary conditions for constructing 5-valued spectra Boolean functions defined by (1) and their Walsh spectrum distributions.

Hvala za pozornost!

Questions: samed@e5.ijs.si