Stable Algorithm for Calculating with q–Splines

Tina Bosner† and Mladen Rogina‡

Abstract. We are using a technique to calculate with Chebyshevian splines of order ≤ 4, based on the known derivative formula for Chebyshevian splines and an Oslo type algorithm, to produce simple formulæ for qB-splines developed by Kulkarni and Laurent. Starting with the known fact that local basis for q-splines of order 3 and 4 can be evaluated by making positive linear combinations of less smooth, one order higher polynomial B-splines, we deduce a simple and stable algorithm for such splines.

It is an interesting fact in itself, that the coefficients in such linear combinations are discrete Chebyshevian splines, and therefore make a partition of unity. The same is true for qB-splines themselves.

AMS subject classification: 65D07, 41A50

Key words: Chebyshev spline, q-spline, knot insertion

1. Introduction

The notion of q-spline has an origin in the beam theory. Consider a simply supported beam with supports $\{(x_i, f_i)\}_{i=0}^{k+1}$: then the deflection of the beam between successive supports is the solution $s(x)$ to the differential equation $[E \cdot I \cdot D^2]s = M$. Here E denotes Young’s modulus of elasticity, I is the cross-sectional moment of inertia, and M is the bending moment. We suppose that $E \cdot I = 1/q$, $q > 0$, where q and, under assumption of weightlessness, M, are piecewise linear continuous functions with break points at the supports. Differentiating the above equation twice, we arrive at the two-point boundary value problem on $[x_i, x_{i+1}]$, for $i = 0, \ldots, k$:

$$D^2 1/q D^2 s = 0, \quad s(x_i) = f_i, \quad s(x_{i+1}) = f_{i+1}, \quad s''(x_i) = s''_{i}, \quad s(x_{i+1}) = s''_{i+1},$$

where s''_{i} and s''_{i+1} are chosen so as to ensure that $s \in C^2[x_0, x_{k+1}]$. Such a function s is called a q-spline.

The aim is to construct a stable algorithm for calculating with q-splines, based on the known derivative formula for Chebyshevian splines and an Oslo type algorithm. To

*This work was supported by the Grant No. 037011 from the Ministry of Science and Technology of the Republic of Croatia.

†Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia, e-mail: tinab@math.hr

‡Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia, e-mail: rogina@math.hr
this end, we will use one special *Canonical Complete Chebyshev* (CCT)–system, and some general techniques from the *Chebyshevian Spline Theory*. Instead of calculating directly with \(q\)-splines, we propose to write such splines as linear combinations of locally supported ones, which can be expressed as linear combinations of ordinary polynomial B-splines.

Since their introduction by Kulkarni and Laurent [2], \(q\)-splines have been used in various applications in computer aided geometric design.

2. Chebyshev theory preliminaries

Let \(t_1 \leq t_2 \leq t_3 \leq a = t_4 < t_5 < \cdots < t_{k+5} = b \leq t_{k+6} \leq t_{k+7} \leq t_{k+8}\) be an extended partition of the interval \([a, b]\), and let \(q\) be a continuous, piecewise linear function defined by

\[
q(x)_{[t_i, t_{i+1}]} = \frac{q_{i+1} - q_i}{h_i} (x - t_i) + q_i,
\]

where \(h_i = t_{i+1} - t_i\), and \(q_1 > 0\). Consider the CCT–system \(\{u_1, u_2, u_3, u_4\}\):

\[
\begin{align*}
 u_1(x) &= 1, & u_2(x) &= \int_a^x ds_2, \\
 u_3(x) &= \int_a^x ds_2 \int_a^x q(s_3) ds_3, & u_4(x) &= \int_a^x ds_2 \int_a^x q(s_3) ds_3 \int_a^x ds_4.
\end{align*}
\]

We wish to construct a local basis for the spline space spanned piecewisely by these functions, that is, B-splines in \(S(4, m, d\sigma, \Delta)\), where \(m\) is the *multiplicity vector*, \(m = (1, \ldots, 1)^T\), \(d\sigma := (ds_2, q(s_3) ds_3, ds_4)^T\) is the *measure vector*, and \(\Delta = \{t_i\}_{i=1}^{k+8}\) (see [5] for details of the notation). An important role is played by the associated generalized derivatives:

\[
L_{1, d\sigma} = D, \quad L_{2, d\sigma} = \frac{1}{q} D^2, \quad L_{3, d\sigma} = D \frac{1}{q} D^2, \quad L_{4, d\sigma} = D^2 \frac{1}{q} D^2.
\]

To begin with, we focus on the *reduced system* \(\{u_{1,1}, u_{1,2}, u_{1,3}\}\), spanning the space \(S(3, m, d\sigma^{(1)}, \Delta)\), \(d\sigma^{(1)} \equiv (q(s_3) ds_3, ds_4)^T\), on each interval. The CCT–system is:

\[
\begin{align*}
 u_{1,1}(x) &= 1, & u_{1,2}(x) &= \int_a^x q(s_3) ds_3, & u_{1,3}(x) &= \int_a^x q(s_3) ds_3 \int_a^x ds_4.
\end{align*}
\]

Next consider less smooth B-splines \(\tilde{T}_j^3\) from the space \(S(3, \tilde{m}, d\sigma^{(1)}, \Delta)\), with the multiplicity vector \(\tilde{m} = (2, \ldots, 2)^T\) on the same knot sequence. For the fixed index \(i\), we denote the points in the new extended partition as \(t_i = \tilde{t}_{r-1} < \tilde{t}_r < \tilde{t}_{r+1}\), and polynomial B-splines on this partition simply as \(\tilde{B}_j^3\). It is easily seen from the definition of the basis (1) that we can write \(\tilde{T}_j^3\) as

\[
\tilde{T}_{r-1}^3(x) = \sum_{j=s=3}^r a_{r-1,j} \tilde{B}_j^3(x),
\]

(2)
Stable Algorithm for Calculating with q–Splines

\[\tilde{T}_r^3(x) = \sum_{j=s-3}^{s+3} \alpha_{r,j} \tilde{B}_j^4(x), \]

(3)

with $\tilde{B}_j^4 \in S(4, \tilde{m}, d\lambda, \Delta)$, where $\tilde{m} = (3, \ldots, 3)^T$ on the same knot sequence Δ, and $d\lambda$ is the measure vector determined by Lebesgue measures only. Points in this partition will be denoted as $t_i = t_{s-2} = t_{s-1} = t_s < t_{s+1}$.

We will use the following general theorem, which is a generalization to Chebyshevian splines of the derivative formula for polynomial B-splines [1, 4]:

Theorem 1. Let $L_{1, d\sigma}$ be the first generalized derivative with respect to CCT–system $S(n, d\sigma)$, and let the multiplicity vector $m = (m_1, \ldots, m_k)^T$ satisfy $m_i < n - 1$ for $i = 1, \ldots, k$. Then for $x \in [a, b]$ and $i = 1, \ldots, n + \sum_{i=1}^k m_i$, the following derivative formula holds:

\[L_{1, d\sigma} T_{i, d\sigma}^n(x) = \frac{T_{i+1, d\sigma}^{n-1}(x)}{C_{n-1}(i+1)} - \frac{T_{i, d\sigma}^{n-1}(x)}{C_{n-1}(i+1)}, \]

(4)

where

\[C_{n-1}(i) := \int_{t_i}^{t_{i+n-1}} T_{i, d\sigma}^{n-1} \, d\sigma_2, \]

(5)

with measure vectors

\[d\sigma = (d\sigma_2(\delta), \ldots, d\sigma_n(\delta))^T \in \mathbb{R}^{n-1}, \quad d\sigma^{(1)} := (d\sigma_3(\delta), \ldots, d\sigma_n(\delta))^T \in \mathbb{R}^{n-2}, \]

for all measurable δ.

3. Construction of the local basis for q-spline spaces

It is obvious from (1) and Theorem 1 that

\[\tilde{L}_1 \tilde{T}_r^3 = \frac{\tilde{B}_r^2(x)}{C_2(r-1)} - \frac{\tilde{B}_r^2(x)}{C_2(r)}, \]

where $\tilde{L}_1 := L_{1, d\sigma^{(1)}} = \frac{1}{q} D$ is the generalized derivative for the reduced CCT–system, and

\[\tilde{C}_2(j) = \int_{t_j}^{t_{j+2}} \tilde{B}_2(t) \, dt. \]

In particular,

\[\tilde{C}_2(r-1) = \frac{(2q_i + q_{i+1})h_i}{6}, \quad \tilde{C}_2(r) = \frac{(q_i + 2q_{i+1})h_i}{6}. \]

From the simple properties of B-splines:

\[\tilde{T}_r^3(t_i) = 0, \quad \tilde{L}_1 \tilde{T}_r^3(t_i^+) = \frac{1}{C_2(r-1)}, \]

\[\tilde{T}_r^3(t_{i+1}) = 0, \quad \tilde{L}_1 \tilde{T}_r^3(t_{i+1}^-) = \frac{1}{C_2(r)}. \]
we get the coefficients in (2):

\[a_{r-1,s-3} = a_{r-1,s} = 0, \]
\[a_{r-1,s-2} = \frac{2q_i}{2q_i + q_{i+1}}, \quad a_{r-1,s-1} = \frac{2q_{i+1}}{q_i + 2q_{i+1}}, \]

whence

\[\tilde{T}^3_{r-1}(x) = \frac{2q_i}{2q_i + q_{i+1}} \hat{B}^4_{s-2}(x) + \frac{2q_{i+1}}{q_i + 2q_{i+1}} \hat{B}^4_{s-1}(x). \] (6)

To calculate \(\tilde{T}^3_r \), we use the equations

\[\tilde{T}^3_r(t_i) = \bar{L}_1 \tilde{T}^3_r(t_i) = \tilde{T}^3_r(t_{i+2}) = 0, \]
\[\tilde{T}^3_r(t_{i+1}) = 1, \quad {\bar{L}_1} \tilde{T}^3_r(t_{i+1}) = \frac{1}{C_2(r)}, \quad L_1 \tilde{T}^3_r(t_{i+1}) = -\frac{1}{C_2(r+1)}, \]

to get the coefficients in (3):

\[a_{r,s-3} = a_{r,s-2} = a_{r,s+2} = a_{r,s+3} = 0, \]
\[a_{r,s} = 1, \quad a_{r,s-1} = \frac{q_i}{2q_i + q_{i+1}}, \quad a_{r,s+1} = \frac{q_{i+2}}{2q_{i+1} + q_{i+2}}, \]

and, finally

\[\tilde{T}^3_r(x) = \frac{q_i}{q_i + 2q_{i+1}} \hat{B}^2_{s-1}(x) + \hat{B}_s^4(x) + \frac{q_{i+2}}{2q_{i+1} + q_{i+2}} \hat{B}^4_{s+1}(x). \] (7)

By integrating (4) in Theorem 1, we can further calculate splines of higher order. We start with the equation

\[\tilde{T}^3_{r-1}(x) = \frac{1}{C_3(r-1)} \int_{t_{r-1}}^x \tilde{T}^3_{r-1}(t) \, dt - \frac{1}{C_3(r)} \int_{t_r}^x \tilde{T}^3_{r}(t) \, dt. \] (8)

It is easy to see from (6) and (7) that

\[C_3(r-1) = \frac{h_i}{4} \left[\frac{2q_i}{2q_i + q_{i+1}} + \frac{2q_{i+1}}{q_i + 2q_{i+1}} \right], \]
\[C_3(r) = \frac{1}{4} \left[\frac{q_i h_i}{q_i + 2q_{i+1}} + h_i + h_{i+1} + \frac{q_{i+2}h_{i+1}}{2q_{i+1} + q_{i+2}} \right]. \]

From (8), by using (6), (7), and the well known recurrence for integrals of the polynomial B-splines

\[\int_{-\infty}^x B^r_i(t) \, dt = \frac{t_{i+n} - t_i}{n} \sum_{j=1}^{i+n-1} B^r_j(x), \]
where \(\{t_i\} \) is now any extended partition, we obtain (by looking separately at \(x \) from each of the subintervals \([t_i, t_{i+1}]\) and \([t_{i+1}, t_{i+2}]\)), that

\[
\tilde{T}_{r-1}^4(x) = \frac{1}{C_3(r-1) 2q_i + q_{i+1}} \frac{h_i}{4} \tilde{B}_{s-2}^5(x)
\]

\[
+ \frac{1}{C_3(r)} \left(\frac{h_i + h_{i+1}}{4} + \frac{q_{i+2}}{2q_{i+1} + q_{i+2}} \frac{h_{i+1}}{4} \right) \tilde{B}_{s-1}^5(x)
\]

\[
+ \frac{1}{C_3(r)} \frac{q_{i+2}}{2q_{i+1} + q_{i+2}} \frac{h_{i+1}}{4} \tilde{B}_s^5(x).
\]

In the same way,

\[
\tilde{T}_r^4(x) = \frac{1}{C_3(r+1)} \frac{q_i}{4} \tilde{B}_{s-1}^5(x)
\]

\[
+ \frac{1}{C_3(r+1)} \left(\frac{q_i}{4} + \frac{h_i + h_{i+1}}{4} \right) \tilde{B}_s^5(x)
\]

\[
+ \frac{1}{C_3(r+1)} \frac{2q_{i+2}}{h_{i+1}} \frac{q_{i+2}}{4} \tilde{B}_{s+1}^5(x).
\]

The following lemma and theorem are connecting general T-splines of orders 3 and 4 with less smooth ones, which are simpler to calculate, and (in the case of \(q \)-splines) have already been constructed by the explicit formulæ. Proofs are omitted and may be found in [4].

Lemma 1. Let \(T_{i,d\sigma}^3 \in S(3, m, d\sigma^{(1)}, \Delta) \) be a Chebyshevian B-spline of order 3 associated with the multiplicity vector \(m = (1, \ldots, 1)^T \), and let us assume that \(\tilde{T}_{i,d\sigma}^3 \in S(3, \tilde{m}, d\sigma^{(1)}, \Delta) \) are B-splines associated with multiplicity vector \(\tilde{m} = (2, \ldots, 2)^T \) on the same knot sequence. If \(\{t_i, \ldots, t_{k+6}\} \) and \(\{\tilde{t}_i, \ldots, \tilde{t}_{k+6}\} \) are the associated extended partitions, and \(r \) an index such that \(t_r < \tilde{t}_{r+1} \), then for \(i = 1, \ldots, k+3 \):

\[
T_{i,d\sigma}^3 = T_{i,d\sigma}^3(t_{i+1}) \tilde{T}_{r+1,d\sigma}^3(t_r) + T_{i,d\sigma}^3(t_{i+1}) T_{r+1,d\sigma}^3(t_r) + T_{i,d\sigma}^3(t_{i+1}) T_{r+2,d\sigma}^3(t_r).
\]

Theorem 2. Let \(T_{i,d\sigma}^4 \in S(4, m, d\sigma, \Delta) \), \(\tilde{T}_{i,d\sigma}^4 \in S(4, \tilde{m}, d\sigma, \Delta) \), the multiplicity vectors \(m, \tilde{m} \) being as in Lemma 1. Then positive \(\delta_i^4(j) \) exist such that

\[
T_{i,d\sigma}^4 = \sum_{j=r}^{r+3} \delta_i^4(j) \tilde{T}_{j,d\sigma}^4,
\]

where \(r = r_i \) satisfies \(t_r = \tilde{t}_{r+1} \). Let the extended partitions be \(\{t_1, \ldots, t_{k+6}\} \) and \(\{\tilde{t}_1, \ldots, \tilde{t}_{k+8}\} \). Then \(\delta_i^4(j), j = r, \ldots, r+3 \), are determined by the formulæ:

\[
\delta_i^4(r) = \frac{T_{i,d\sigma}^3(t_{i+1}) \tilde{C}(r)}{T_{i,d\sigma}^3(t_{i+1}) \tilde{C}(r) + \tilde{C}(r+1) + T_{i,d\sigma}^3(t_{i+2}) \tilde{C}(r+2)},
\]

\[
\delta_i^4(r+1) = \frac{T_{i,d\sigma}^3(t_{i+1}) \tilde{C}(r) + \tilde{C}(r+1)}{T_{i,d\sigma}^3(t_{i+1}) \tilde{C}(r) + \tilde{C}(r+1) + T_{i,d\sigma}^3(t_{i+2}) \tilde{C}(r+2)}.
\]
\[\delta_4^r(r + 2) = \frac{T^3_{i+1, d\sigma_1}(t_{i+3}) \tilde{C}(r + 4) + C(r + 3)}{T^3_{i+1, d\sigma_1}(t_{i+2}) \tilde{C}(r + 2) + C(r + 3) + T^3_{i+1, d\sigma_1}(t_{i+3}) \tilde{C}(r + 4)}, \]

\[\delta_4^r(r + 3) = \frac{T^3_{i+1, d\sigma_1}(t_{i+3}) \tilde{C}(r + 4)}{T^3_{i+1, d\sigma_1}(t_{i+2}) \tilde{C}(r + 2) + C(r + 3) + T^3_{i+1, d\sigma_1}(t_{i+3}) \tilde{C}(r + 4)}, \]

where, as in (5)

\[\tilde{C}(i) = \int_{\text{supp}} T^3_{i, d\sigma_1} \, d\sigma. \]

To use Lemma 1 and Theorem 2, it remains to calculate \(T^3_3(t_{i+1}) \) and \(T^3_3(t_{i+2}) \).

The derivative formula in Theorem 1 implies

\[T^3_3(x) = \frac{1}{C_2(i)} \int_{t_i}^x B^3_1(t) q(t) \, dt - \frac{1}{C_2(i+1)} \int_{t_{i+1}}^x B^3_{i+1}(t) q(t) \, dt, \]

where

\[C_2(i) = \int_{t_i}^{t_{i+2}} B^3_1(t) q(t) \, dt = \frac{1}{6} \left[(q_i + 2q_{i+1})h_i + (2q_{i+1} + q_{i+2})h_{i+1} \right]. \]

One finds easily that

\[T^3_3(t_{i+1}) = \frac{h_i(q_i + 2q_{i+1})}{6C^2_2(i)}, \quad T^3_3(t_{i+2}) = \frac{h_{i+2}(2q_{i+1} + q_{i+3})}{6C^2_2(i+1)}, \]

and we have everything that is needed for the evaluation of \(T^4_3 \) by means of Theorem 2.

4. Conclusion

We have constructed formulae for calculating with \(q \)-splines as linear combinations of polynomial B-splines. Moreover, all the coefficients involved are positive, and thus we have to calculate scalar products of positive quantities only, guaranteeing numerical stability of such an algorithm.

References

