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Homogenization of Nonlinear Elliptic Systems∗

Nenad Antonić†, Andrija Raguž‡, and Marko Vrdoljak§

Abstract. We consider nonperiodic homogenization of nonlinear elliptic equations of arbi-

trary order following the ideas of Murat and Tartar developed in the case of stationary diffu-

sion equation. Although the notion of H-convergence is defined analogously, the main prob-

lem arises in the determination of stable classes of functions with respect to H-convergence,

and in the proof of the compactness result. Some other properties of H-convergence, such as

locality principle and independence of boundary conditions, are also obtained.

The same concept of H-convergence can be successfully applied to the case of linear and

nonlinear elliptic systems of higher order. We present some properties of such a convergence.
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1. Linear elliptic systems of higher order

Following the ideas of Murat and Tartar developed in the case of nonperiodic ho-
mogenization of the stationary diffusion equation and monotone operators, we consider
possible generalizations to higher order nonlinear elliptic equations and systems.

In adapting the theory to other types of equations, two choices appear to be
crucial: the appropriate definition of H-convergence (which has to be adjusted to each
type of equation) and the determination of a class of coefficients (functions) stable
with respect to that notion of H-convergence.

In this section we shall consider linear elliptic systems with r equations and the
same number of unknown functions. The order of each equation in the system will
be 2m. Let Ω be an open and bounded subset of Rd, and suppose that the following
functions are given:

A
γδ
ij ∈ L∞(Ω) and f i ∈ H−m(Ω),

for i, j ∈ {1, . . . , r} and γ, δ ∈ {1, . . . , d}m, the set of all multiindices of order m.

∗This work is supported in part by the Croatian Ministry of Science and Technology through
project 037015 — Oscillatory solutions of partial differential equations.

†Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia,
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We can write our problem as follows:














Find u ∈ Hm
0 (Ω;Rr) such that

(−1)m
∑

|δ|=m

∂δ

(

∑

|γ|=m

r
∑

j=1

A
γδ
ij ∂γu

j

)

= fi, i = 1, . . . , r.
(1)

Due to Schwarz’ rule, it is natural to assume the following symmetry for coeffi-
cients:

A
γδ
ij = A

γσ(δ)
ij = A

σ(γ)δ
ij ,

for any permutation σ.

Let us adjust the notation in order to write this problem in a more compact form.
Firstly, all partial derivatives of order m of a vector function u ∈ Hm

0 (Ω;Rr) can be
written as a tensor function ∇mu with values in Tr

S , the space of all symmetric tensors

in L((Rd)m;Rr). The coefficients Aγδ
ij define A ∈ L∞(Ω;L(Tr

S ;T
r
S)) by

(

A(x)Ξ
)δ

i
:=

r
∑

j=1

∑

|γ|=m

A
γδ
ij Ξj

γ ,

for i ∈ {1, . . . , r} and δ ∈ {1, . . . , d}m. With this notation, the equation in (1) can be
written as

(−1)m divm(A∇mu) = f.

Further assumptions on A are given by the following inequalities:

A(x)Ξ ·Ξ ≥ α |Ξ|2, A(x)Ξ ·Ξ ≥
1

β
|A(x)Ξ|2,

for every tensor Ξ ∈ Tr
S and almost every x ∈ Ω. We shall denote the set of all such

tensor functions A by M(α, β; Ω).

The variational formulation of our problem reads










Find u ∈ Hm
0 (Ω;Rr) such that

(∀v ∈ Hm
0 (Ω;Rr))

∫

Ω

A∇mu · ∇mv dx =

∫

Ω

f · v dx.
(2)

It has the unique solution, as a direct consequence of the Lax–Milgram lemma.

Our main goal in this section is to define a topology on the set M(α, β; Ω) such
that the mapping A 7→ u, determined by (2), is continuous.

Definition 1. We say that a sequence (An) in M(α, β; Ω) H-converges to A∞ ∈
M(α, β; Ω) if for any f ∈ H−m(Ω;Rr) the corresponding sequence of solutions (un)
of (2) satisfies the following weak convergences

un −⇀ u∞ in Hm
0 (Ω;Rr),

An∇
mun −⇀ A∞∇mu∞ in L2(Ω;Tr

S).
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Remark 1. The second convergence in particular implies that u∞ is a solution of (2)
with A∞ instead of A.

Remark 2. Using the integration by parts one can show that

An∇
mun · ∇mun

∗
−⇀ A∞∇mu∞ · ∇mu∞

in the weak-∗ topology of Radon measures (vaguely).

The second remark can be easily improved (see [1], their proof can be easily
adapted to this case).

Lemma 1. Let (vn) and (Dn) be weakly convergent sequences in Hm
loc(Ω;R

r) and
L2
loc(Ω;T

r
S), respectively, with limits v∞ and D∞, such that the sequence (divm Dn)

belongs to a compact set in H−m
loc (Ω;Rr). Then

Dn · ∇mvn
∗

−⇀ D∞ · ∇mv∞

vaguely.

It can be shown that this convergence comes from a weak topology (we shall call
it H-topology) on M(α, β; Ω), which is metrizable. Some of the properties of this
topology are presented in the following theorems.

Theorem 1. The set M(α, β; Ω) is compact in the H-topology.

Proof. For simplicity, we denote

V = Hm
0 (Ω;Rr), H = L2(Ω;Rr), V ′ = H−m(Ω;Rr).

Let (An) be a sequence in M(α, β; Ω), and

Anu = (−1)m divm(An∇
mu)

the corresponding operators An : V → V ′. By the Lax–Milgram lemma, these opera-
tors are invertible with uniformly bounded inverse operators:

(∀f ∈ V ′) ‖A−1
n f‖V ≤

1

α
‖f‖V ′ .

Let F = {fn | n ∈ N} be a countable dense subset of V ′. By using the above
inequality and standard diagonal procedure, we obtain a subsequence (A−1

n′ ) such that

(∀f ∈ F) A−1
n′ f −⇀ B(f) weakly in V,

where the operator B : F → V is linear and bounded. Therefore, it can be uniquely
extended to the whole space V ′.
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We can reapply the above procedure to the sequence (An′∇mun′), and obtain a
subsequence such that for each f ∈ V ′, the corresponding sequence (un′′) of solutions
of our boundary value problems satisfies weak convergences

un′′ −⇀ u∞ = B(f) in V,

An′′∇mun′′ −⇀ R(f) in L2(Ω;Tr
S),

where in such a way defined operator R : V ′ → L2(Ω;Tr
S) is linear and bounded. We

have to show that R(f) = A∞∇mu∞ for some A∞ ∈ M(α, β; Ω) or, more precisely,
the equality Cv := RB−1v = A∞∇mv, for each v ∈ V (notice that B is invertible,
because every An is coercive with the same constant α).

For v ∈ V we define f = (−1)m divm(Cv), so that the corresponding u∞ is equal
to v. Using the integration by parts we can show that for any ϕ ∈ Cm(Ω)

∫

Ω

An′′∇mun′′ · ϕ∇mun′′ dx −→

∫

Ω

ϕCv · ∇mv dx.

This implies, due to uniform coercivity of coefficientsAn′′ , the following inequality

Cv · ∇mv ≥ α|∇mv|2 (a.e. on Ω).

Analogously, we can obtain the other inequality:

Cv · ∇mv ≥
1

β
|Cv|2 (a.e. on Ω). (3)

If we prove that Cv = A∇mv for some measurable function A : Ω → L(Tr
S ;T

r
S),

then the previous two inequalities confirm that such A belongs to M(α, β; Ω). In-
equality (3) and the linearity of mapping C imply the following:

∇mv = ∇mw (a.e. on ω) =⇒ Cv = Cw (a.e. on ω),

for any open set ω.

This allows us to define A in the following way: for any point x ∈ Ω and a tensor
Ξ ∈ Tr

S , let U ⊆ Ω be an open neighbourhood of x, and let v ∈ V be such that
∇mv = Ξ on U . Now set A(x)Ξ = Cv(x). It is easy to prove that for any v ∈ V we
have Cv = A∇mv almost everywhere on Ω.

The following theorem gives more precise bounds for the H-limit. The proof is
based on Lemma 1.

Theorem 2. Let (An) be a sequence of symmetric tensor functions in M(α, β; Ω)
H-converging to A∞. Then A∞ is symmetric, as well. Moreover, if

An
∗

−⇀ A+

(An)
−1 ∗

−⇀ (A−)
−1

weak ∗ in L∞(Ω;L(Tr
S ;T

r
S)),

then A− ≤ A∞ ≤ A+ almost everywhere on Ω.
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Theorem 3. Let An and Bn be H-convergent sequences in M(α, β; Ω), with limits
A∞ and B∞, respectively, such that

An = Aτ
n and An ≤ Bn, n ∈ N (a.e. on Ω).

Then the inequality A∞ ≤ B∞ holds almost everywhere on Ω.

Proof. Let g ∈ H−m(Ω;Rr). For n ∈ N consider the boundary value problem
{

(−1)m divm(Bn∇
mvn) = g in Ω

vn ∈ Hm
0 (Ω;Rr).

According to the assumptions, for any nonnegative function ϕ ∈ Cc(Ω) we have
∫

Ω

ϕBn∇
mvn · ∇mvn dx ≥

∫

Ω

ϕAn∇
mvn · ∇mvn dx. (4)

We can pass to the limit at the left-hand side of this inequality by Remark 2. For the
right-hand side, we define f = (−1)m divm(A∞∇mv∞), which then determines the
sequence (un) of solutions of corresponding boundary value problems with coefficients
An. From the inequality

∫

Ω

ϕAn(∇
mvn −∇mun) · (∇

mvn −∇mun) dx ≥ 0, (5)

we conclude that

lim inf
n

∫

Ω

ϕAn∇
mvn · ∇mvn dx ≥

∫

Ω

ϕA∞∇mv∞ · ∇mv∞ dx,

(since all the other terms in (5) have limits by Lemma 1), so we can pass to the limit
inferior on the right-hand side of (4):

∫

Ω

ϕB∞∇mv∞ · ∇mv∞ dx ≥

∫

Ω

ϕA∞∇mv∞ · ∇mv∞ dx.

Since ϕ is arbitrary, we obtain

B∞∇mv∞ · ∇mv∞ ≥ A∞∇mv∞ · ∇mv∞ (a.e. on Ω).

Due to the arbitrariness of function g, we can obtain any tensor in Tr
S in place of

∇mv∞, so A∞ ≤ B∞ holds almost everywhere on Ω.

2. Nonlinear scalar elliptic equations of higher order

In this section we turn our attention to the notion of H-convergence for nonlinear
scalar elliptic equations. We study the case where the nonlinearity is of a particular
Leray–Lions type. We begin by introducing a natural class of (nonlinear) coefficients
for which we define H-convergence. Throughout this section TS will refer to the space
of tensors T1

S defined as above.
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Definition 2. A Carathéodory function (measurable in the first, continuous in the
second variable) A : Ω × TS → TS belongs to a class Mon(α, β; Ω) if the following
estimates hold for every Ξ1, Ξ2 ∈ TS and almost every x ∈ Ω:

(A(x,Ξ1)−A(x,Ξ2)) · (Ξ1 −Ξ2) ≥ α |Ξ1 −Ξ2|
2,

(A(x,Ξ1)−A(x,Ξ2)) · (Ξ1 −Ξ2) ≥
1

β
|A(x,Ξ1)−A(x,Ξ2)|

2.

Definition 3. A sequence (An) in the class Mon(α, β; Ω) H-converges to A∞ ∈
Mon(α, β; Ω) if for any f ∈ H−m(Ω) the sequence of solutions un ∈ Hm

0 (Ω) to the
equations

(−1)m divm(An( · ,∇
mun)) = f

satisfies the following weak convergences

un −⇀ u∞ in Hm
0 (Ω),

An( · ,∇
mun) −⇀ A∞( · ,∇mu∞) in L2(Ω;TS),

where u∞ ∈ Hm
0 (Ω) is the unique solution of

(−1)m divm(A∞( · ,∇mu∞)) = f.

Theorem 4. Consider a sequence (An) in Mon(α, β; Ω) with the property

(∃C > 0)(∀n ∈ N) ‖An( · , 0)‖L2(Ω) ≤ C.

Then there exists a subsequence (Ank
) and an A∞ ∈ Mon(α, β; Ω) such that (Ank

)
H-converges to A∞.

Proof. First, we note that the operators An : Hm
0 (Ω) → H−m(Ω) defined by

An(u) := (−1)m divm(An( · ,∇
mu))

satisfy the conditions of Browder–Minty’s theorem (see [4]). Since the properties of
coefficients An imply the inequalities

H−m(Ω)〈An(u)−An(v), u− v〉Hm

0
(Ω) ≥ α ‖u− v‖2Hm

0
(Ω),

‖An(u)−An(v)‖H−m(Ω) ≤ β ‖u− v‖Hm

0
(Ω),

we are able to deduce the estimates of the same type for operators (An)
−1, as well.

Furthermore, by the assumption we have

(∀n ∈ N) ‖An(0)‖H−m(Ω) ≤ C,

and thus

‖(An)
−1(0)‖Hm

0
(Ω) ≤

1

α
‖An(0)‖H−m(Ω) ≤ C,
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which means

‖(An)
−1(f)‖Hm

0
(Ω) ≤

1

α
‖f‖H−m(Ω) + C.

Now we choose F = {f1, f2, f3, . . .} to be an arbitrary countable dense subset in
H−m(Ω). By using the same line of reasoning as in the linear case, we extract a
subsequence (unk

) satisfying the following weak convergences

(∀s ∈ N) (Ank
)−1(fs) −⇀ B∞(fs) in Hm

0 (Ω),

therefore defining a mapping B∞ : F → Hm
0 (Ω), and then using a similar construction

for R : F → L2(Ω;TS) such that (weakly)

Ank
( · ,∇munk

) −⇀ R(f) in L2(Ω;TS).

By the standard extension theorem we extend B∞ and R to the Lipschitz mappings
on H−m(Ω) (which we still denote by B∞ and R, respectively).

It is easy to verify that B∞ satisfies the conditions of the Browder–Minty theorem,
and that it has an inverse which is Lipschitz continuous, as well. In the next step we
define C := R ◦ (B∞)−1, having in that way the weak convergence

Ank
( · ,∇munk

) −⇀ C(u∞) in L2(Ω).

Finally, we show that C is a local operator of the form C(u∞) = A∞( · ,∇mu∞),
for some A∞ ∈ Mon(α, β; Ω).

To this end, we choose an arbitrary open set ω ⊂⊂ Ω. It is easy to verify that for
any tensor Ξ ∈ TS we can find f ∈ H−m(Ω) such that

∇mv∞(x) = Ξ (a.e. x ∈ ω),

where v∞ ∈ Hm
0 (Ω) is the (unique) solution of the equation

(−1)m divm(C(v∞)) = f.

For such ω ⊂⊂ Ω, x ∈ ω, Ξ ∈ TS and f ∈ H−m(Ω) we define

A∞

∣

∣

ω
(x,Ξ) := R(f)(x).

To check that A∞ : Ω×TS → TS is well-defined mapping, we choose ωi ⊂⊂ Ω,
Ξi ∈ TS and fi ∈ H−m(Ω) as above (where i = 1, 2), (x,Ξ) ∈ ωi ×TS , and we define
A∞,i(x,Ξi) := A∞(x,Ξi). Now it is enough to show that it holds

(∀Ξ ∈ TS) A∞,1

∣

∣

ω1∩ω2

( · ,Ξ) = A∞,2

∣

∣

ω1∩ω2

( · ,Ξ).

For j = 1, 2, we choose vnk,j ∈ Hm
0 (Ω) such that

vnk,j −⇀ v∞,j weakly in Hm
0 (Ω),
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where ∇mvj
∣

∣

ω
= Ξj .

By the construction, with Enk,j := ∇mvnk,j and Dnk,j := Ank
( · ,∇mvnk,j), we

have the weak convergence

Enk,2 − Enk,1 −⇀ Ξ2 −Ξ1 in L2(ω2 ∩ ω1;TS),

and, similarly,

Dnk,2 −Dnk,1 −⇀ A∞( · ,Ξ2)−A∞( · ,Ξ1) in L2(ω2 ∩ ω1;TS).

By Lemma 1 we conclude

(∀ψ ∈ Cc(ω1 ∩ ω2))

∫

ψ (Dnk,2 −Dnk,1) · (Enk,2 − Enk,1) −→ L,

where

L :=

∫

ψ (A∞( · ,Ξ2)−A∞( · ,Ξ1)) · (Ξ2 −Ξ1),

and, furthermore, obtain the inequalities

lim
k→∞

∫

ψ (Dnk,2 −Dnk,1) · (Enk,2 − Enk,1) ≥ α |Ξ1 −Ξ2|
2

∫

ω1∩ω2

ψ(x) dx,

L ≥ lim inf
k→∞

∫

Ω

ψ
1

β
|Dnk,2 −Dnk,1|

2 ≥

∫

Ω

ψ
1

β
(A∞( · ,Ξ2)−A∞( · ,Ξ1))

2.

Taking Ξ1 = Ξ2 we finally see that A∞ is well-defined. To prove that A∞ belongs
to the class Mon(α, β; Ω), it suffices to consider the above inequalities for varying
nonnegative functions ψ. At last, an application of Lemma 1 and the continuity of
A∞ yield that C(u∞) = A∞( · ,∇mu∞). The weak convergence

Ank
( · ,∇munk

) −⇀ A∞( · ,∇mu∞) in L2(Ω;TS)

assures that u∞ satisfies the equation

(−1)m divm A∞( · ,∇mu∞) = f.

Theorem 5 (Locality of H-limits). Let ω ⊆ Ω be an open set, and (An) and (Bn)
sequences in Mon(α, β; Ω) such that An

∣

∣

ω
= Bn

∣

∣

ω
, for n ∈ N, and H-converging to

A∞ and B∞, respectively. Then

A∞

∣

∣

ω
= B∞

∣

∣

ω
.

Proof. Without loss of generality we may assume ω ⊂⊂ Ω. Therefore we can find an
open set ω′ such that ω ⊂⊂ ω′ ⊂⊂ Ω. Let us fix Ξ1, Ξ2 ∈ TS and choose functions u,
v ∈ C∞

c (Ω) in such a way that

∇mu
∣

∣

ω′
= Ξ1 and ∇mv

∣

∣

ω′
= Ξ2.
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Next we define f, g ∈ H−m(Ω) by

f := (−1)m divm(A∞( · ,∇mu)), g := (−1)m divm(B∞( · ,∇mv)),

and set un, vn ∈ Hm
0 (Ω) to be solutions of the equations

(−1)m divm(An( · ,∇
mun)) = f and (−1)m divm(Bn( · ,∇

mvn)) = g,

respectively.

By the assumptions, for any nonnegative ϕ ∈ Cc(ω) we obtain

∫

Ω

ϕ (An( · ,∇
mun)−Bn( · ,∇

mvn)) · (∇
mun −∇mvn) ≥ α

∫

Ω

ϕ |∇mun −∇mvn|
2,

and, quite analogously as in previous cases, also

∫

Ω

ϕ (A∞( · ,∇mu)−B∞( · ,∇mv)) · (∇mu−∇mv) ≥ α

∫

Ω

ϕ |∇mu−∇mv|2,

which means that for any Ξ1,Ξ2 ∈ TS and ϕ ∈ Cc(ω)

∫

ω

ϕ (A∞( · ,Ξ1)−B∞( · ,Ξ2)) · (Ξ1 −Ξ2) ≥ α

∫

Ω

ϕ |Ξ1 −Ξ2|
2.

Therefore,

(∀Ξ1,Ξ2 ∈ TS) (A∞(x,Ξ1)−B∞(x,Ξ2)) · (Ξ1 −Ξ2) ≥ α |Ξ1−Ξ2|
2 (a.e. x ∈ ω).

If we take Ξ1 = Ξ2+ tΞ, where t > 0 and Ξ ∈ TS , the continuity of Ξ2 7→ A∞(x,Ξ2)
implies that for arbitrary Ξ2 ∈ TS and Ξ ∈ TS we have

(A∞(x,Ξ2)−B∞(x,Ξ2)) ·Ξ ≥ 0 (a.e. x ∈ ω),

which yields the claim.

Theorem 6 (Independence of boundary conditions). Consider weakly conver-
gent sequences (An) in Mon(α, β; Ω) and (un) in Hm(Ω):

An −⇀ A∞ (H-convergence)
and

un −⇀ u∞ in Hm
loc(Ω)

such that divm(An( · ,∇
mun)) is pre-compact (strongly) in H−m(Ω). Then we have

the weak convergence

An( · ,∇
mun) −⇀ A∞( · ,∇mu∞) in L2

loc(Ω;TS).
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3. Generalization to nonlinear systems

In the last two sections we have defined the notion of H-convergence both for
linear systems and for nonlinear scalar equations of higher order. These ideas can be
carried over to nonlinear systems, as well. For simplicity, we shall make some notes
regarding second order systems.

More precisely, we consider a boundary value problem

{

− divA( · ,∇u) = f

u ∈ H1
0 (Ω;R

r),

where f ∈ H−1(Ω;Rr) and A : Ω×Mr×d →Mr×d is a Carathéodory function which,
for arbitrarily chosen B,C ∈Mr×d, satisfies the following estimates:

(A(x,B) −A(x,C)) · (B−C) ≥ α |B−C|2,

(A(x,B) −A(x,C)) · (B−C) ≥
1

β
|A(x,B)−A(x,C)|2,

for almost every x ∈ Ω and some β ≥ α > 0.

If the notion of H-convergence is defined as in Definition 3 (with appropriate
modifications regarding the vector valued functions), it can be shown, using similar
techniques, that previous results are still valid.
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