
Proceedings of the 1. Conference on

Applied Mathematics and Computation

Dubrovnik, Croatia, September 13–18, 1999

pp. 253–261

Parameter Identification Problem Solving Using
Genetic Algorithm

Krešimir Seršić∗ and Igor Urbiha†

Abstract. We describe two methods for solving the parameter identification problem for

ordinary differential equations of the second order — a genetic algorithm and a variant of

Monte Carlo method. These methods were tested and compared in one practical example.

AMS subject classification: 65C05, 65L99

Key words: Monte Carlo methods, genetic algorithms, evolution programs, parameter iden-

tification, system of ordinary differential equations, optimization

1. Introduction

Many processes occurring in nature and living organisms can be modelled by a
system of differential equations (see, e.g., [21, 11, 23, 22]). Models usually contain
some unknown parameters, which are to be determined from the given data in order
to minimize the differences between the experimental values and the values given by
models. This problem is known as the Parameter Identification Problem.

There are several methods developed for solving such problems (and they are
usually difficult to implement on a computer) for ordinary differential equations of the
first order: finite differences (see, e.g., [16, 3]), integration of data (see [3]), initial value
approach (see [3, 4, 7, 19, 24, 25, 26]), smoothing the data (see, e.g., [16, 17, 23, 24]),
multiple shooting approach (see, e.g., [4, 9]). The parameter identification problem
for ordinary differential equations of the second order is studied in [16, 24] and [21].

Complicated methods tend to introduce errors which, combined with errors al-
ready present in experimental data, may effect undesirable influence on computed
results. Errors introduced by such methods can be diminished by using simpler meth-
ods.

Suppose a theoretical model is described by an ordinary differential equation of
the second order:

d2y

dt2
= f

(

t, y(t), y′(t), ~P
)

, (1)

∗Faculty of Electrical Engineering, University of Osijek, Kneza Trpimira 2b, 31000 Osijek, Croatia,
e–mail: sersic@etfos.hr

†Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia,
e–mail: urbiha@math.hr

254 K. Seršić and I. Urbiha

where ~P is a vector of n real parameters. Experimental data are given with pairs
(ti, yi), i = 1, 2, . . . ,m, where 0 ≤ t1 < · · · < tm < ∞, and y1, . . . , ym denote approx-
imate values of the searched function y at the data points t1, . . . , tm. According to
given data, one has to determine the optimal parameter values ~P = (p1, p2, . . . , pn)
which minimize the functional:

F (~P) =

m
∑

i=1

(

yi − y(ti, ~P)
)2
. (2)

The parameter identification problem for the system of ordinary differential equations
of the second order is similarly defined. The problem is usually stated as follows: Find
reasonable values for ~P so that, for suitably chosen initial conditions, the solution
of (1) fits given data. Once the values for ~P have been estimated, suitable initial
conditions y(t1) = µ, y′(t1) = ν, still have to be found in order to determine the
function y from (1).

Various numerical methods usually try to find ~P first, and then, taking it into ac-
count, search for suitable µ and ν thus solving the problem. The algorithms described
below search for ~P , µ and ν simultaneously, so a change in (2) is needed:

Fp(~P , µ, ν) =

m
∑

i=1

∣

∣yi − yµ,ν(ti, ~P)
∣

∣

p
, (3)

or

F∞(~P , µ, ν) = max
{

∣

∣yi − yµ,ν(ti, ~P)
∣

∣

∣

∣

∣
i = 1, 2, . . . ,m

}

, (4)

so F∞ actually measures maximal error of the approximation.

Due to the nature of the method, L1 (or “Manhattan”) norm can be used, which
also makes computations faster. Algorithms were tested with p ∈ {1, 2}, i.e., with L1

and L2 norms (squaring was avoided, as it slows down execution of a program).

Two methods that can be used to solve the mentioned problems are given in this
paper, one using Monte Carlo’s “massive attack” strategy, and the other relying on
genetic (or evolution, see [14, 15]) algorithms. Both methods depend on extensive use
of (pseudo) random numbers.

A function which needs to be minimized (optimized) is often referred to as an
objective function.

2. Algorithms

The first algorithm relies on Monte Carlo strategy of “massive attack”. Suppose
we need to solve an optimization problem f(X) → min, where f : S ⊆ R

m → R
+.

Let X∗ = (x∗

1, x
∗

2, . . . , x
∗

m) ∈ S be the solution, i.e., f(X∗) = minX∈S f(X). First, a
bounded subset of the domain of the function f , which containsX∗, needs to be found.
With smaller starting domain, program will find good approximations to the solution
faster. A domain is given as a Cartesian product of the form D0 = Πm

i=1〈ai, bi〉, where

Parameter Identification Problem Solving Using Genetic Algorithm 255

x∗

i ∈ 〈ai, bi〉. The program randomly computes a large number of points Yi ∈ D0

belonging to the domain (“massive attack”), and keeps track of a certain number of
points Yj with lowest values f(Yj). Those points are used to determine the smallest
domain D1 which contains them all. The program repeats the process and finds a
sequence of domains Di, i = 0, 1, . . . , n, where D0 ⊇ D1 ⊇ · · · ⊇ Dn, each of which,
hopefully, contains the solution, and keeps track of several points with lowest function
values. The point with the minimal function value is given as the approximation to
the solution.

Algorithm 1 (MC). “Massive attack” with successive domain shrinking:

input: domain

repeat

compute sufficiently many random points belonging to the domain

domain ← the smallest domain containing the best points found so far

until some appropriate condition is met

output: domain and the best point

The other algorithm uses genetic approach devised by J. H. Holland [14] and
was implemented using modified program GENOCOP III, originally programmed by
Z. Michalewicz [15].

The main difference between the two algorithms is in the way they handle ran-
domly generated points. While the first algorithm leaves them alone, the second one
tries to “push” them towards (or, in the general direction of) the solution, in some-
what random fashion, hoping that better approximations will be obtained. Since the
solution is unknown, it uses the best approximation found, expecting that it is near
the solution. Description of various “pushing” methods used by genetic and evolution
algorithms is beyond the scope of this article. It suffices to say that freshly gener-
ated random point and the best current approximation are combined to produce an
“offspring”, a new point whose function value is then compared with currently best
function values.

Algorithm 2 (GEN). Genetic or evolution approach:

input: domain

repeat

repeat

compute a random point belonging to the domain

“push” it towards the best current point

until sufficiently many points are generated

domain ← the smallest domain containing the best points found so far

until some appropriate condition is met

output: domain and the best point

Due to the nature of generation of new points, this algorithm can “forget” the
best point found so far, when making transition to a new domain. Nevertheless, it

256 K. Seršić and I. Urbiha

exhibited faster convergence than the first algorithm. However, it is not clear whether
the genetic approach is significantly better than the plain “massive attack” approach.

A domain given as an output can be used again as input, if necessary. It is
advisable to rerun the program several times with sufficiently small domains. Due to
the uncertainty involved with the use of random numbers, it may happen that some
domains could be shrunk too much and thus lose the solution. In such cases, an
approximation to some local optimal point would be found.

3. Example

The following example is taken from [21]. Enzyme effusion problem is described
by the following system of differential equations (see, e.g., [13, 12, 11, 24]):

y′1 = p1 · (27.8− y1) +
p4
2.6
· (y2 − y1) +

1991

t
√
2π

exp
(

−w2

2

)

,

y′2 =
p4
2.7
· (y1 − y2),

(5)

where w = (ln(t) − p2)/p3 is a model of enzyme effusion into the blood after a heart
attack. It contains four parameters which need to be estimated according to the given
data (see Table 1). The system is transformed into a second-order differential equation
for a function whose values on experimental data are known. Function f mentioned
in 1) for this problem is

f(t, y, y′, ~P) = − 5.3

7.02
p4y

′− p1y
′+

p1p4
2.7

(27.8− y)+
1991

t2

(p4
2.7

t− 1− w

p3

)

exp
(

−w2

2

)

,

where w is the same as in (5). Experimental data are given in Table 1.

t y t y t y t y

0.1 27.8 21.3 331.9 42.4 62.3 81.1 23.5

2.5 20.0 22.9 243.5 44.4 58.7 91.2 24.8

3.8 23.5 24.9 212.0 47.9 41.9 101.9 26.1

7.0 63.6 26.8 164.1 53.1 40.2 115.4 33.3

10.9 267.5 30.1 112.7 59.0 31.3 138.7 17.8

15.0 427.8 34.1 88.1 65.1 30.0 163.2 16.8

18.2 339.7 37.8 76.2 73.1 30.6 186.7 16.8

Table 1. Data for enzyme effusion problem.
Independent variable t is measured in seconds.

Standard Runge–Kutta algorithm (from [20]) was used to calculate yµ,ν(ti, ~P)
needed in (3) and (4).

Parameter Identification Problem Solving Using Genetic Algorithm 257

In the following two tables the results obtained using programs coded after al-
gorithms MC and GEN are shown. The values of function Fp in (3) and (4) for
p ∈ {1, 2,∞} of found approximations are given in the columns denoted by F1, F2 and
F∞ (max norm). The numbers in F∞ column are actually maximal errors.

alg. p1 p2 p3 p4 y(0.1) y′(0.1) F1 F2 F∞

MC 0.272 2.639 0.359 0.251 27.707 −2.605 214.4 4426.3 47.1

GEN 0.279 2.647 0.367 0.237 27.800 −2.720 214.0 4554.0 47.6

Table 2. Results obtained by Monte Carlo method and genetic approach using L1

norm (the objective function in both programs was (3) with p = 1).

alg. p1 p2 p3 p4 y(0.1) y′(0.1) F1 F2 F∞

MC 0.273 2.654 0.373 0.196 27.119 −2.980 224.1 3954.7 36.6

GEN 0.271 2.650 0.370 0.208 25.985 −2.322 225.3 3955.4 37.0

Table 3. Results obtained by Monte Carlo method and genetic approach using L2

norm (the objective function in both programs was (3) with p = 2).

Results obtained with the use of L∞ norm in the objective function were expect-
edly poor, so they were not included here.

Although norms L1 and L2 are equivalent, their use in the objective function (3)
caused different consequences, i.e., different best approximations were found. The
best approximation obtained with the use of one norm does not need to be the best
approximation in some other norm (compare the last three columns in Tables 1 and 3).

The best approximations obtained when using L1 norm had higher errors at few
points and lower average of other errors. The best approximations obtained when
using L2 norm had lower highest errors and higher average of other errors (compare
with Figure 1). It is difficult to say which best solution is better, without knowing
something about the accuracy of data and model.

If most of the experimental data are accurate, then it is better to use L1 norm.
If data are less accurate, but none of them highly inaccurate, then L2 norm could
be a better choice (compare with Figure 1). Of course, errors introduced by a model
must also be taken into account. In the extreme case when we have inaccurate data
or model, then L∞ (max norm) could be a reasonable choice.

Borders of Figure 1 and Figure 3 are drawn in the global picture, given with
Figure 2.

The experimental data for this problem seem to have a kind of periodic behaviour
not captured by the model used. (See Figure 2 – points tend to go “upward” above
the curve, and then suddenly “drop” down below it.)

258 K. Seršić and I. Urbiha

15

20

25

30

35

0 1 2 3 4 5 6 7

L1

L2

Figure 1. Approximations to enzyme effusion problem found with algorithm GEN.

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200

Fig. 1

Fig. 3

L1

L2

Figure 2. Approximations to enzyme effusion problem found with algorithm GEN.
The curve with higher maximum was found using L2 norm.

Parameter Identification Problem Solving Using Genetic Algorithm 259

260

280

300

320

340

360

380

400

420

440

10 12 14 16 18 20 22 24

L1

L2

Figure 3. Approximations to enzyme effusion problem found with algorithm GEN.

It seems that we have many less accurate data without large errors, and best
approximations obtained with the use of L2 norm could be better than other. However,
the use of L1 norm is regarded as a better choice, as it is less sensitive to problems
which may occur at extreme values of given data (see [10]; compare with Figure 3).

Figures 1, 2, and 3 were made with Gnuplot MS–DOS version 3.7.1. Source codes,
written in C, of programs used in the example are available upon request.

4. Some statistics about executions of programs

There are many parameters influencing both programs, so it is difficult to compare
their efficiency. Each program (MC and GEN) has been run three times in a row:
the first time using L1 norm and following starting domain:

y(0.1) ∈ [24.0, 29.0], y′(0.1) ∈ [−4.0, 4.0],
p1 ∈ [0.2, 0.4], p2 ∈ [2.5, 2.9], p3 ∈ [0.3, 0.44], p4 ∈ [0.1, 0.3],

the second and the third time using the output domain of the previous execution as
the input domain. Such “three times invocation” has been repeated ten times. The
program MC generated twice as many approximations (2000), compared to the pro-
gram GEN (1000), to compensate for GEN’s approximations generating technique.
Namely, upon generating one new approximation (via crossing-over operator, using
two “old” approximations), it undergoes a transformation (via mutation operator)
which gives one more approximation. So, actually, two new approximations are gen-

260 K. Seršić and I. Urbiha

erated at each generation, hence the number of generations for the program MC was
doubled.

The execution times for each program are given in the Table 4, together with the
best, average, and the worst values of the objective function (3) with p = 1, using L1

norm of found approximations. Each execution of MC lasted about 19 minutes while
each execution of GEN lasted about 24 minutes, both with negligible deviations.

alg. best average worst time (min)

MC 216.13 218.68 220.91 19

GEN 214.35 218.00 228.82 24

Table 4. The values of the objective function and execution times for the “three times
invocation” of programs MC and GEN.

The program MC is expectedly faster, as it generates an approximation and
does nothing else. Since the program GEN does much more work to generate one
approximation, it is slower, but also gives better approximation, as it tries to “push”
every new approximation towards the best solution.

Programs were run on a PC with 300 MHz processor in a DOS window within
Windows 95 operating system.

5. Conclusion

Two general stochastic methods for solving optimization problems with their ap-
plication in the parameter identification problems were presented in this article. The
methods are simple in comparison to the deterministic ones and easier to code.

It was shown that if both experimental data and model are accurate, with excep-
tion of few data, then it is advisable to use L1 norm in the objective function. If data
or model is less accurate, then it is better to use L2 norm. Finally, if it is necessary
to use inaccurate model or data, then the use of L∞ norm in the objective function
could be useful.

Acknowledgement. The authors wish to thank R. Scitovski, T. Marošević and
D. Jukić for helpful suggestions and improvements of the paper, and Z. Michalewicz
for his GENOCOP III program intended for solving numerical optimization problems
with linear and nonlinear constraints. The program can be freely downloaded at URL
http://www.coe.uncc.edu/~zbyszek/gchome.html.

References

[1] F. S. Acton, Numerical Methods That Usually Work, The Mathematical Association of Amer-
ica, 1990.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation, Oxford
University Press, New York, 1996.

Parameter Identification Problem Solving Using Genetic Algorithm 261

[3] Y. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974.

[4] H. G. Bock, Recent advances in parameter identification techniques for O.D.E., in Numerical
Treatment of Inverse Problems in Differential and Integral Equations, P. Deuflhard, ed.,
Heidelberg, 1983, pp. 95–121.

[5] P. T. Boggs, R. H. Byrd, and R. B. Schnabel, A stable and efficient algorithm for nonlinear

orthogonal distance regression, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 1052–1078.

[6] D. Bokal, Evolutionary algorithms for cluster geometry, Preprint Series, 36 (1998), p. 628.

[7] D. W. Brewer, J. A. Burns, and E. M. Cliff, Parameter identification for an abstract

Cauchy problem by quasilinearization, Quart. Appl. Math., 51 (1993), pp. 1–22.

[8] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983.

[9] P. Deuflhard and G. Bader, Multiple shooting techniques revisited, in Numerical Treatment
of Inverse Problems in Differential and Integral Equations, P. Deuflhard, ed., Heidelberg,
1983, pp. 74–94.

[10] Y. Dodge, ed., L1 Statistical Procedures And Related Topics, Institute of Mathematical Statis-
tics, Hayward, California, 1997.

[11] B. van Domselaar, Een Mathematische Analyse van het Hertinfarct, Report NN 4/74, Math-
ematisch Centrum, Amsterdam, 1974, pp. 19.

[12] B. van Domselaar and P. W. Hemker, Nonlinear parameter estimation in initial value prob-

lems, Report NW 18/75, Mathematisch Centrum, Amsterdam, 1977, pp. 49.

[13] P. W. Hemker and J. Kok, A project on parameter identification in reaction kinetics, Report
NM–R9301, Centrum voor Wiskunde en Informatica, Amsterdam, 1993, pp. 38.

[14] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press,
Ann Arbor, MI, 1975.

[15] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, third ed.,
Springer–Verlag, Berlin, 1996.

[16] H. Mühlig, Parameteridentifikation bei Differentialgleichungen mit Hilfe von B-splines, Wiss.
Z. Tech. Univ. Dresden, 41 (1992), pp. 3–6.

[17] H. Mühlig, Lösung praktischer Appriximationsaufgaben durch Parameteridentifikation, Z.
Angew. Math. Mech., 73 (1993), pp. 837–839.

[18] J. M. Ortega, Numerical Analysis, A Second Course, SIAM, Philadelphia, 1990.

[19] K. Salkauskas, Moving least squares interpolation with thin-plate splines and radial basis

function, Comput. Math. Appl., 24 (1992), pp. 177–185.

[20] F. Scheid, Numerical Analysis, Schaum’s Outline Series in Mathematics, McGraw–Hill, New
York, 1968.

[21] R. Scitovski and D. Jukić, A method for solving the parameter identification problem for or-

dinary differential equations of the second order, Appl. Math. Comput., 74 (1996), pp. 273–
291.

[22] R. Scitovski, T. Marošević, and D. Jukić, Estimation of the optimal initial conditions in

mathematical model, in Proceedings of the 17th International Conference on Information
Technology Interfaces ITI, June 13–16, 1995., Pula, Croatia, pp. 478–479.

[23] J. Swartz and H. Bremermann, Discussion of parameter estimation in biological modelling:

Algorithms for estimation and evaluation of the estimates, J. Math. Biol., 1 (1975), pp. 241–
257.

[24] J. M. Varah, A spline least squares method for numerical parameter estimation in differential

equations, SIAM J. Sci. Statist. Comput., 3 (1982), pp. 28–46.

[25] J. M. Varah, On the conditioning of parameter estimation problems, in Reliable Numerical
Computation, M. G. Cox and S. Hammarling, eds., Oxford Science Publications, New
York, 1990, pp. 187–195.

[26] J. Williams, Approximation and parameter estimation in ordinary differential equations, in
Algorithms for Approximation II, J. C. Mason and M. G. Cox, eds., Chapman and Hall,
London, 1990, pp. 395–403.

