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Abstract. A random field on a bounded domain is usually estimated from data by using the

linear least square estimation. To apply this method it is necessary to know the covariance

function, while distribution of field at a point is not used. Better results of estimation are

expected by applying methods for which the distribution of field must be utilized. We con-

sider here a method for which the random field is represented by using the Loeve–Karhunen

decomposition. Numerical approximations are obtained by grids discretizing the domain

and by solving the corresponding finite-dimensional eigenvalue problem for finite dimensional

matrices.
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1. Introduction

In this article the object of study is a random field on a bounded domain. The
domain (an open set in R

d) is denoted by D. It is assumed that the following property
is valid: int(D̄) = D. Points of D are denoted by x. For the considered random
field x 7→ ξ(x), it is assumed that the first two statistical moments are defined. The
first order moment, i.e., the mean value field E[ξ(·)], is assumed to be constant on
D, and the covariance function (x,y) 7→ C(x,y) is assumed to be continuous on
D̄ × D̄. The field is measured at M points, so that the data consist of M pairs
{(xm, ξm) | m = 1, 2, . . . ,M}. The problem is to estimate the considered random field
at any point of D from the available data set.

The well-known method to estimate a random field from data is the linear least
square estimation (LLSE) [5]. The only information needed about the field is the
covariance function or variogram. An error of estimated values can be derived by
using Chebyshev inequality. If additional information about the field is available,
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one has to use other methods in order to incorporate the whole knowledge about the
considered field [7]. Now we can formulate the problem by using mathematical objects.

Problem. Let Γ be the following event:

Γ = {ξ(xm) ∈ Im | m = 1, 2, . . . ,M}, (1)

where Im are symmetric intervals around measured values ξm with the lengths 2ρm.

The conditional statistical moments E[ξr(x) |Γ], r ∈ N, have to be estimated at each

x ∈ D, and an error of estimates must be calculated.

In Section 2 mathematical aspects of the problem are discussed and a method for
estimation is proposed. Also some properties of statistics are analyzed. In particular,
criteria for statistics to be consistent estimators are clearly specified. Mathematical
modelling of arsenic in soil of the Island Krk is discussed in the first part of Section 3.
Numerical aspects of the problem are presented in the second part of Section 3. Dis-
cussion and concluding remarks are contained in the last section.

2. Field representation and conditional moments

We start our discussion by assuming that the random variables ξ(x) are normal
and that they have zero expectation. The eigenfunction decomposition of the covari-
ance function

C(x,y) =
∑

{k|λk>0}

λkψk(x)ψk(y)

enables the Loeve–Karhunen representation (decomposition) of the considered random
field [2]:

ξ(x) =
∑

k

√
λkηkψk(x), (2)

where ηk are independent random variables of the type N(0, 1). The functions x 7→
ψk(x) are continuous on D̄. If the eigenfunctions ψk(x) are known, the expression (2)
is a basis for Monte Carlo simulations. Since such situations are rarely met in appli-
cations, we have to look for other methods of simulation. A satisfactory approach to
solve the problem is to use grid approximation of the considered random field. Let the
unit vectors ei define the coordinate system. For each n ∈ N, points x = h

∑d

l=1 klel,
h = 2−n, kl ∈ Z, define a numerical grid Gn on R

d. Elements of Gn are called grid
knots. Grid knots contained in D are denoted by Gn(D). Their index set is Jn, and
their number is Jn = card(Jn). When the random field is restricted to Gn(D), it
becomes a Jn-dimensional normal vector:

(
ξ(xk), k ∈ Jn

)
, (3)

which is uniquely defined by E[ξ(xk)] = 0 (or constant) and the covariances ckl =
C(xk,xl), k, l ∈ Jn. Covariance matrix is denoted by Cn and it is of the order Jn.
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The analogue of (2) is the expression of the following form:

ξ(xk) =
∑

l∈Jn

sklηl, k ∈ Jn, (4)

where skl are matrix elements of a square root of the covariance matrix, Sn =
√
Cn.

The representation (4) can be straightforwardly used for Monte Carlo simulation of
the considered random vector (ξ(xk), k ∈ Jn).

Let fm be the m-dimensional density of normal variables ξ(xj), j = 1, 2, . . . ,m,
and let φm(p) be the corresponding characteristic function. The product ofM intervals
in (1) is denoted by K, i.e., K = I1 × I2 × · · · × IM . Let 1K be the indicator of K.

Its Fourier transform is denoted by 1̂K . Then

E[ξr(x) |Γ]P(Γ) =

(
1

i

d

dp0

)r ∫

Rm

φn+1(p0,p) 1̂K(−p) dp

∣∣∣∣
p0=0

.

Explicit expression of conditional moments is not needed. If the intervals Im from (1)
shrink to points rm, the conditional moments

E[ξr(x) | r1, r2, . . . , rM ] = E[ξr(x) | ξ(x1) = r1, ξ(x2) = r2, . . . , ξ(xM ) = rM ]

have simple expressions.

Proposition 1. Let ξ(·) be a normal random field on D. Then

(a) conditional expectation E[ξ(x) | r1, . . . , rM ] is a linear combination of C(x,xj),
j = 1, 2, . . . ,M ,

(b) higher order conditional moments E[ξr(x) | r1, . . . , rM ] are polynomials of the

order r in C(x,x) and C(x,xj), j = 1, 2, . . . ,M .

The well-known linear least square estimator

ξLLSE(x) =

M∑

k=1

wk(x)ξ(xk),

M∑

l=1

C(xk,xl)wl(x) = C(x,xk), k = 1, . . . ,M, (5)

has the same conditional expectation as the field itself. Higher order conditional
moments differ.

If the field ξ(·) is not normal, but two-dimensional densities and statistical mo-
ments of the second order exist, many of mentioned results are valid. For positive
eigenvalues of the covariance function, the random variables

ηj =
1√
λj

∫

D

ψj(x)ξ(x) dx

exist, they are mutually orthogonal, and (2) is the desired Loeve–Karhunen repre-
sentation of the considered field. The conditional moments of the field and of the
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expression (5) differ. In this case, an estimate of field values conditioned to Γ cannot
be obtained from linear least square estimation. However, simulation of conditional
moments based on the representation (2) gives results consistent with assumptions of
the field.

An estimation of statistical moments from data is a crucial step in applications.
It is worthy to discuss conditions on the field ensuring that statistics can be used as
consistent estimators of relevant statistical moments. Since the first and second order
statistics are of common interest in applications, we consider here the statistics for
expectation and covariances. In accordance with statistical models of geostatistics, it
is assumed that the expectation E[ξ(x)] is x-independent and the covariance function
is homogeneous and isotropic, i.e., there exists a positive definite function x 7→ K(x)
on R such that C(x,y) = K(|x − y|). The statistics for expectation are defined by
expressions:

s(ξ, Jn) =
1

Jn

∑

j∈Jn

ξ(xj). (6)

The sequence of statistical moments E[s2(ξ, Jn)] converges,

lim
n

E[s
2(ξ, Jn)] =

1

vol2(D)

∫

D×D

C(x,y) dx dy

in the Riemannian sense, due to the continuity of the covariance function.

The statistics for K(|h|) can also be constructed. Let h be such that there exists
n ∈ N with the following property: each x ∈ Gn implies x + h ∈ Gn. For each h of
this type, the corresponding unbiased statistics are:

s(K(|h|), In) =
1

In

∑

k∈In

ξ(xk)ξ(xk + h), (7)

where In =
{
k ∈ Jn | xk ∈ Gn(D),xk + h ∈ Gn(D)

}
, and In = card(In).

It is easy to calculate variances and answer the basic question about a convergence
of statistics to the corresponding moments. To write expressions as briefly as possible,
we extend functions C and ψk by zero outside of D̄. The L2(D)–scalar product is
denoted by (·|·).

Proposition 2. Let ξ(·) be a random field on D with a constant expectation and a

continuous covariance function. Then:

(i) the statistics (6) and (7) converge in the mean to certain random variables, s(ξ),
and s(K(h)), respectively,

(ii) the statistics (6) converge to E[ξ(x)] in the mean, if and only if (ψk|1) = 0 for

all k for which λk > 0,

(iii) the random variable s(K(h)) has a positive variance for small values of |h|.
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An undesirable conclusion follows from this analysis. The statistics (6) and (7) are
consistent estimators only in some exceptional cases. In order to construct statistics
which converge to the corresponding statistical moments, one is forced to introduce
additional suppositions into the model of random field. It can be assumed that the
random field is actually defined on the whole R

d and considered on D for the present
purpose. Sometimes data can be interpreted as measurements from a large sample of
the Jn–dimensional variable (3), etc.

3. Arsenic concentration in soil. A case study

Model of trace element concentration in soil

Mapping of a trace element filed in rock and soil is one of typical demands in
environmental studies. The developed mathematical tool is applied to estimate the
concentration field of arsenic in soil of the Island Krk. The chosen trace element has an
increased concentration in rock and soil of Kvarner region if compared to concentration
levels in surrounding regions. In order to define the arsenic random field, we follow
some usual assumptions of geostatistics as well as assumptions in accordance with
developed mathematical tool.
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parameter value

m = E[ξg] 26.42 ppm

Al +Ag 95.01 ppm2

Ag/(Al +Ag) 0.784

ρg 0.037 km−2

Var[s(ξ)] 3.1 ppm

Var[s(Kg(0))] 240 ppm2

Figure 1. Sampling locations. Table 1.

Soil of the Island Krk is modeled by a domain D ⊂ R
2. The concentration field

of a trace element in soil can be represented by

ξ(x) = ξl(x) + ξg(x), (8)
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where the components ξl and ξg are independent and represent local and global varia-
tion of concentration. They differ in the range of covariance functions. The former one
has a short range covariance function, while the latter one has a long range covariance
function. The former one can be considered as a noise summed with a smooth filed
ξg. The corresponding covariance functions are assumed to have the following general
structure:

Kl(x) = Al exp(−ρl|x|), (9)

Kg(x) = Ag exp(−ρgx2). (10)

Hence, they are defined by four parameters.

Assumption 1. The arsenic concentration field on D has the following properties:

(a) the mean concentration fields of ξl and ξg are constant on D, E[ξl] = 0,

(b) the covariance functions are homogeneous, isotropic, and have the structure (9),
(10),

(c) the fields ξl, ξg are Gaussian.

All three assumptions must be verified by statistical tests.

A zone of an increased concentration of arsenic is naturally limited to Kvarner
region. Therefore, a supposition about an unbounded domain of the arsenic concen-
tration field with a constant expectation must be ruled out. Trace elements in soil are
subject to permanent chemical reactions. Hence, in soil it is not possible to identify
records from various time periods in order to generate a sample of trace element con-
centration. We are forced to conclude that, regardless of the number of data, statistics
for the first two statistical moments cannot be consistent estimators. Estimated values
of parameters are necessarily random, and, therefore, results of estimation must by
subdued to testing.

The data set consists of measurements of arsenic in soil at 112 locations on the
Island Krk [8]. Locations are evenly spread over the island and illustrated in Figure 1.
This data set is used to estimate necessary parameters. By using smoothing and
regression analysis, the parameters are estimated and the obtained values are presented
in Table 1. The parameter ρl in (9) could not be estimated from available data because
of too large distances between the measurement locations. We can only say that its
value is larger than 5 km−1. This confirms the name “short range” component for ξl
in the representation (8). The estimated value of ρg clearly indicates that the field ξg
is “slowly” varying, since Kg(r)/Kg(0) > 0.1 for r < 4.65 km.

The event Γ of (1) is defined with 28 = 112/4 data (Figure 1). The chosen 28
locations are evenly spread over D. The intervals Im, m = 1, 2, . . . , 28, of (1) are
centred at the measured values and all have the same length equal to 4σl, where
σl =

√
Al. The region D is covered with a grid having the grid step equal 0.588 km.

The number of grid knots in D is Jn = 1683 and their index set is denoted by Jn.
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Computational aspects of eigenfunction decomposition and simulation

The basis of simulation is (4), where skl are matrix elements of
√
Cn, and Cn

is the Jn–dimensional covariance matrix having the elements ckl = Kg(|xk − xl|) as
defined in (10). Let (λk, ek), k = 1, 2, . . . , Jn, denote pairs consisting of eigenvalues λk
and the corresponding eigenvectors ek of Cn, such that ‖ek‖22 =

∑
j |ejk|2 = 1. It is

assumed that the eigenvalues are sorted in a nonincreasing order. The expression (4)
can be written as

ξ(xk) =
∑

l∈Jn

√
λlelkηl.

The computational problems related to
√
Cn are addressed first. Since the matrix

Cn is neither sparse nor too large, its square root can be efficiently calculated by using
eigenvalue decomposition. An alternative approach would be the Newton’s method [4].
The routine dsyev from LAPACK library has been used to compute all eigenvalues and
eigenvectors of the matrix Cn. Let Λ̃ be the diagonal matrix of computed eigenvalues
in floating point arithmetic. The routine dsyev is designed to produce the matrix Λ̃
such that there exists an orthogonal matrix Ũ so that

ŨΛ̃Ũ τ = Cn + δCn, ‖δCn‖2 ≤ α · eps ‖Cn‖2,

where δCn is a symmetric matrix, α is a constant depending on the dimension of the
matrix, and eps is the machine precision. Let λ̃i be the computed values of λi. Weyl’s
theorem can be applied in order to discuss the accuracy of computed eigenvalues,

|λi − λ̃i|
λ1

≤ α 10−16κ2(Cn),

where κ2(Cn) = ‖Cn‖2‖C−1
n ‖2 is the condition number, and eps = 10−16 for double

precision. A computed eigenvalue λ̃ is considered to be accurate if λ is of the same
order of magnitude as λ1. Eigenvectors that belong to those eigenvalues can also be
considered as accurate. In our case, the largest computed eigenvalue is equal 77.05
and 104 eigenvalues have computed values larger than 1. We consider those eigenpairs
as accurately computed.

Now we address problems related to simulations. Instead of the exact expres-
sion (4) for simulations at x ∈ Gn(D), we use an approximation

ξapp(xk) =

Jred∑

l=1

√
λlelkηl, (11)

where Jred is chosen so that the relative error of this approximation, measured in
variance, is less than 10%,

Var[ξ(x)− ξapp(x)]

Var[ξ(x)]
=

∑
l>Jred

λl
∑Jn

l=1 λl
≤ 0.1, x ∈ Gn(D).



240 L. Grubǐsić, N. Limić, and V. Valković

It follows that Jred = 57. Consequently, only accurately computed pairs (λk, ek) of
Cn form the representation (11).

Let N be the number of simulations of (11), and let NΓ < N be the number of
simulations for which ξapp ∈ Γ, so that the estimated probability of P(Γ) is equal

P(Γ) = NΓ/N . Due to a small value of P(Γ), the number of simulations must be very
large. Therefore, a periodicity of sequences of generated random variables must be
analyzed and ruled out. Periodicity can be avoided by random mixing of random num-
bers from various sources [6]. In our computations slaran random number generator
from LAPACK library is taken as the primary source. Random mixing was carried
out by using streams of random bits from two sources, [6] and [3], in the usual way,
by producing random numbers from sequences of 32 random bits. Estimated values
of P(Γ) from 5 different mixing protocols are presented in Table 2.

N = 2 · 107 P(Γ) secondary source

LAPACK 0.211 · 10−4 none

rezma1 0.211 · 10−4 [6]

rez5001 0.207 · 10−4 [6]

rez1001 0.221 · 10−4 [3]

rez5002 0.209 · 10−4 [1]

Table 2.

Results of simulation

The estimated field is mapped and illustrated in Figure 2. The random variables

ζ(x) = ξ(x)− E[ξg(x) |Γ], x ∈ Gn(D),

have the zero conditional expectation and conditional variance equal to:

σ2(x,Γ) = Kl(0) +Var[ξg(x) |Γ].

Because the variance Var[ξg(x) |Γ] is also estimated in the process of simulation, the
normalized random variables

η(x) =
ξ(x) −E[ξg(x) |Γ]

σ(x,Γ)

can be utilized for a comparison with measurements. Their first two conditional mo-
ments are constant, E[η(x) |Γ] = 0, Var[η(x) |Γ] = 1. The measured values

ηm =
ξm −E[ξg(xm) |Γ]

σ(xm,Γ)
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are mapped and random volumes

Θ(κ) =

∫

D

1 |η|>κ(x) dx

are calculated. The random variable Θ(κ) can be interpreted as the volume of excessive
values ξm, i.e., the values outside the layer in R

3 with mid-surface E[ξg(x) |Γ] and
thickness 4σlκ. For 5 estimates of the conditional moments, the following results are
obtained:

Θ(1)

Θ(0)
≈ 0.035 ∼ 0.038.

This is a measure of confidence. Although this is not a genuine statistical measure,
it has to be used, together with statistical tests, as a criterion for acceptance of the
obtained results.

Figure 2. The global component of arsenic field.

4. Discussion and conclusion

Since the mathematical objects utilized in simulation are well-known, we have to
discuss only their appropriate choice and efficiency in solving the defined problem.

Random characterization of trace element concentration in soil is analyzed in
terms of the following stochastic model. A trace element concentration in soil is defined
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by the local and global field components (8), corresponding covariance functions (9),
(10), and Loeve–Karhunen decomposition of the global components. In order to verify
whether data structure is consistent with the supposed model structure, statistical
tests must be applied to data set. After a reliable estimation of the first two statistical
moments, the data set is split into two spatially disjoint portions. One portion is used
for simulation of the field, and the other one for verification of the supposed random
structure in Loeve–Karhunen decomposition. In case of the analyzed data set (arsenic
field in soil), the following conclusions can be drawn:

1. The data on arsenic field in soil were first treated without any smoothing. The
result was poor. The only conclusion was that correlation could not be identified
and the set of 112 data behaves as a sample of normal variables. After smoothing,
the supposed structure of (8) was clear. Unfortunately, the variance of estimated
covariance function is too large and the mutual portion of two fields, ξl, ξg, cannot
be reliably estimated. We have to conclude from this analysis that the punctual
sampling of soil cannot give us a reliable information about the structure of
arsenic field in soil of the Krk island. Additional sampling must be planned
with the aim to get a reliable data set for the determination of long range trace
element field in soil.

2. There exists a local component of trace element field which behaves like a noise.
In order to analyze the structure of noise, at few locations at least, punctual
samples from a small region must be available.

3. The Assumption 1(a) of the constant mean value, m = E[ξg(x)], seems to be
acceptable because of a relatively small variance of the estimated value m. The
Assumption 1(b) is already discussed in the first item. The Assumption 1(c) can
be efficiently verified and other nonnormal fields utilized and simulated, after a
reliable statistics is obtained.

4. If the field is normal (Gaussian), the conditional expectation can be obtained in
principle by LLSE of (5). To get an estimate at x ∈ Gn(D), one has to solve
the linear algebraic system (5) in variables wk(x). In the considered case, the
order of the system is 112, but the matrix of the system is ill-conditioned. The
maximal and minimal eigenvalues are 7.5 and 3.0·10−5, respectively. The matrix
elements of its inverse are graphically presented in Figure 3. The inverse matrix
is obtained from the spectral decomposition.

5. Other trace elements in soil [8] were also analyzed in order to check similarity
with arsenic. All of them have properties mentioned in item 1, no correlation is
established in the original data set. It seems that all measured trace elements
have structure (8). Since the covariances of various trace element concentrations
at a location have meaning only for the corresponding global components, mul-
tivariate analysis is not possible until the structure (8) is established for each
trace element.
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Figure 3. The inverse of the covariance matrix.
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