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Abstract. Form finding as the first phase of design of fabric structures is considered, with

a minimal surface as a plausible mathematical model. Analysis is restricted to structures

with fixed edges. A comparison is made of the two discretizations of the differential equation

of minimal surface and the pertaining functional, namely, the finite difference and the finite

element discretizations. Resulting system of nonlinear algebraic equations is solved by a

variant of the full multilevel method with full approximation storage scheme. Numerical

studies confirm that the multilevel method can be used as a robust and a stable solver with

a fast convergence for both types of discretizations.
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1. Introduction: on tensile fabric structures

Tentatively, we can define fabric structures as building structures that are pri-
marily used for enclosure of large spaces, particularly those with wide spans clear
between supports, and whose basic building material is (structural) fabric, acting as a
membrane. Fabric is thus used both as a load bearing structure and as an enclosure [1].

Conventional massive and rigid structures can, by means of internal distribu-
tion of stresses, resist different kinds of stresses: tension, compression, shear. Stress
distributions lead to complex stress patterns that can be observed in photoelastic ex-
periments. Flexible ropes and fabric, on the other hand, can transmit only tension.
They are, however, very efficient since they carry applied load by direct route, along
their center line or middle surface, while the distribution of tensile stress is uniform
(and they cannot “avoid” carrying load by buckling, as compressive members do).

Single rope or flimsy membrane will noticeably alter its shape when load changes
its position or direction. Other means are therefore needed to give stability and stiff-
ness to a structural system which is made up of flexible components or material. Cables
must be arranged in a net; in a simple case there are two orthogonal families of cables:
load bearing, concave cables in one direction, and stabilizing, convex cables in another.
Similarly, fabric membrane must form an anticlastic surface. At the same time, cables
and fabric must be subjected to a particular pattern of prestress, since tension should
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be retained even under unfavorable combinations of external loads. Anticlastic shape
and, specially, prestress give so-called geometric stiffness to the tensile structure.

Thus, the form of a tensile fabric structure is critical to its structural behaviour.
And conversely, structural laws of equilibrium govern the form: geometric form di-
rectly reflects the complex field of surface forces in equilibrium. Arbitrary geometric
shapes cannot satisfy equilibrium conditions. There is a kind of a paradox: seemingly
free, organic forms of tensile structures, “roofscapes”, are in fact determined by strict
physical laws.

Under the laws of equilibrium, the form of the tensile structure originates from the
shape of the supporting structure: boundary beams, arches or cables, sometimes inner
high (masts) or low points and sometimes inner ridge and valley cables. By varying
the geometry of the boundary or inner supports, architect or structural engineer can
influence the form of the fabric structure.

J. Dvornik and D. Lazarević initiated development of an interactive computer
program that will help architects and structural engineers in designing tensile struc-
tures [5]. Design of tensile structures can be divided into three phases: definition of
the form of the structure loaded only with prestressing forces (form finding), analysis
of structure’s behaviour under varying loads, and definition of the cutting patterns of
the fabric. In this article we describe one approach to the first phase.

J. Douglas wrote in [4]: “The spirit of this paper being entirely numerical, we do
not concern ourselves with theoretical questions of convergence, which are besides too
difficult for us to deal with. Whether convergence occurs or not is indicated practically
in each particular case by the behavior of the numbers obtained in the course of the
computation.” These words can be taken as a motto of the present paper.

2. Minimal surface problem

As already said, structural fabric has very low shear and no compressive stiff-
ness. Therefore, to avoid wrinkles caused by compressive or shear stresses, it is highly
desirable to establish a uniform state of tensile (pre)stress in the fabric structure:
throughout the surface and, at each point, in all directions of the tangential plane,
tensile stresses should be (approximately) equal. (With pretension high enough, we
can neglect the weight of the fabric.) In isostress state fabric membrane will behave
essentially like a soap film, and the form finding problem can be reduced to the well
known minimal surface or Plateau’s problem.

We will describe here the so-called restricted, or nonparametric, form of the mini-
mal surface problem which suffices for most structural applications when the boundary
consists of rigid beams or arcs.

Suppose that the system of straight or curved supporting beams can be described
by a non-self-intersecting, closed, piecewise smooth curve k in R

3, whose orthogonal
projection onto the (x, y)–plane is a boundary ∂Ω of a simply connected domain Ω.
Curve k can be defined as a graph of some function g : ∂Ω → R.
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Let σ be the soap film tension; under certain conditions it is independent of the
area of the soap film [10]. The energy of the soap film is therefore proportional to
the surface area. Since energy is minimized when the film is in stable equilibrium,
equilibrium configuration is the configuration with the least possible area. Hence, the
problem is to find the function u : Ω → R which minimizes area functional

F [u] =

∫∫

Ω

√

1 + (∂xu)2 + (∂yu)2 dx dy (1)

and satisfies boundary condition

u(x, y) = g(x, y) on ∂Ω.

The condition for a minimum of F [u] is

∂

∂x

(

∂xu
√

1 + (∂xu)2 + (∂yy)2

)

+
∂

∂y

(

∂yu
√

1 + (∂xu)2 + (∂yy)2

)

= 0, (2)

which, after differentiation and some simple manipulations, gives

[

1 + (∂yu)
2
]

∂xxu− 2 ∂xu ∂yu ∂xyu+
[

1 + (∂xu)
2
]

∂yyu = 0. (3)

If the surface is shallow, then ∂xu ≪ 1 and ∂yu ≪ 1 and equation (3) can be
approximated by Laplace equation

∆u = ∂xxu+ ∂yyu = 0. (4)

3. Finite difference discretizations

The first method for the numerical solution of the minimal surface equation was
proposed in 1928 by J. Douglas [4]: by using a nine-point difference star he derived a
system of nonlinear algebraic equations1.

By approximating partial derivatives ∂xu and ∂yu in surface area functional (1)
alternately by forward and backward differences and applying the conditions for a min-
imum of discretized functional, D. Greenspan obtained first order accurate difference
equations [7].

P. Concus modified his previously developed scheme for the numerical solution of
the two-dimensional nonlinear magnetostatic field equation and developed finite dif-
ference equations that approximate differential equation (2) at interior points (ih, jh)
of the finite difference mesh with second order accuracy [3].

By approximating ∂xu and ∂yu in F [u] at auxiliary points
(

(i + 1
2 )h, (j +

1
2 )h
)

by
central differences, T. Meis derived similar, though simpler, difference equations [11].

1In 1931 Douglas proved the existence of the solution to the Plateau’s problem for disk-type
surfaces. Another proof was given in 1930 by T. Rado.
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Systems of nonlinear difference equations were iteratively solved in [3, 7, 11] by
one-step successive overrelaxation–Newton (SOR–Newton) method:

u
(k)
i = u

(k−1)
i − ω ·

fi
(

u
(k)
1 , . . . , u

(k)
i−1, u

(k−1)
i , u

(k−1)
i+1 , . . . , u

(k−1)
n

)

∂fi
∂ui

(

u
(k)
1 , . . . , u

(k)
i−1, u

(k−1)
i , u

(k−1)
i+1 , . . . , u

(k−1)
n

)

, (5)

while in [13] D. O’Leary analysed and compared several variants of (preconditioned)
nonlinear conjugate gradient algorithms applied to Concus’ equations.

4. Finite element discretization

For practical, engineering applications, finite element method is of wider applica-
bility than finite difference method. Finite difference discretizations are usually con-
fined to rectangular domains as the approximation near the boundary of an irregular
domain may be less accurate than in the interior. To restore accuracy, some spe-
cial tricks (e.g., higher order discretization) are needed. Finite elements more readily,
with equal accuracy on uniform and nonuniform meshes, adapt to complex, irregular
domains.

We approximate the closure Ω of the given domain Ω by admissible, shape regular
triangulation T h =

⋃t

i=1 Ti, where h is the “mesh size”: h = maxTi
diamTi.

Set N h of all n vertices Nk in T h can be divided into two disjoint subsets: the
set N h

I of nI interior vertices and the set N h
B of nB vertices that lie on ∂Ω.

Let Sh be the linear space of continuous, piecewise linear functions defined on
T h: Sh =

{

v ∈ C0(T h) | v̄i linear
}

, where v̄i = v|Ti
; let Sh

0 ⊂ Sh be the linear space
of functions in Sh which are zero on the vertices in N h

B and let Sh
g ⊂ Sh be the affine

space of functions in Sh which assume the same values as g on the vertices in N h
B .

Function v ∈ Sh can be written as a linear combination of the nodal basis func-
tions ϕh

k , where coefficients (denoted here by uk) are the values of the function v on
the vertices Nk ∈ N h. Functional F [v] can thus be transformed into function of n
variables uk (or, shorter, of vector variable u ∈ R

n):

F (u1, . . . , un) = F (u) =
∑

Ti∈T

∫∫

Ti

√

1 + (∂xv̄i)2 + (∂y v̄i)2 dx dy,

and, if we denote the area of triangle Ti by A(Ti):

F (u) =
∑

Ti∈T

A(Ti)
√

1 + (∂xv̄i)2 + (∂y v̄i)2. (6)

Conditions for a minimum of the function F (u), that is, for a minimal approximate
area, lead to the system of nI algebraic equations

fk(u) =
∂F(u)

∂uk

=
1

2

∑

Ti∋Nk

αik ∂xv̄i + βik ∂y v̄i
√

1 + (∂xv̄i)2 + (∂y v̄i)2
= 0, (7)
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where k is such that Nk ∈ N h
I , while αik = yiccw − yicw and βik = xicw − xiccw , with

indices ‘cw’ and ‘ccw’ denoting vertices that lie clockwise and counter-clockwise with
respect to the vertex Nk in the triangle Ti. This system is supplemented with nB

discretized boundary conditions for nodes Nk ∈ N h
B .

The first application of finite element method to minimal surface problem was de-
scribed in [9]. Hinata et al. pointed out that it is not necessary to fix the triangulation
of Ω, but only to minimize functional (6) and that, therefore, nodes may be treated
as unknown points in R

3. That observation enabled them to solve a free boundary
form of Plateau’s problem. H.–J. Wagner devised an approximation of parametric
minimal surfaces [15]. As a direction in which unknown point Pi in R

3 could be varied
in the minimization process he proposed the resultant of vectors normal to the trian-
gles with vertex Pi. Nonlinear algebraic systems resulting from discretization were in
both papers solved by SOR–Newton method (5). H. Mittelmann proposed a modified
relaxation scheme less dependent on correct choice of ω, accelerated with conjugate
gradients [12].

In [9, 15] discretization and solution methods were described and verified on sev-
eral numerical examples, but no convergence proofs were given. H. Mittelmann gave
several error estimates for approximations of minimal and capillary surfaces with lin-
ear finite elements and a convergence proof for modified relaxation method, see [12]
and references therein.

5. Multigrid method

The basic “multigrid philosophy” was stated by A. Brandt in his fundamental
paper [2]: “. . . the algebraic system to be solved does not stand by itself, but is
actually an approximation to continuous equations, and therefore can itself be similarly
approximated by other (much simpler) algebraic systems.” This relation between
discretizations of a differential or a variational equation on grids of different coarseness
can be used in two related ways: as a multigrid cycle and as a nested iteration.

For nonlinear systems it is crucial to start iteration with a good initial guess;
otherwise, the process (not only multigrid, but other “classical” methods as well) may
diverge. Simple and obvious way of obtaining first approximation of the solution on a
given grid was devised long ago: in those old days when computers were (groups of)
people, common approach was to approximately solve the problem on an auxiliary grid
with about one tenth of the final number of nodes, and then to interpolate the solution
onto the finer grid [14]. Immediate generalization is to introduce several progressively
finer grids. When the (approximate) solution on each level, except on the coarsest one,
is computed by multigrid algorithm, method is called full multigrid or, more often,
picturesquely: nested iteration.

Another procedure that strongly influenced the development of multigrid method
was also described in Southwell’s book [14]: “block” and, more generally, “group relax-
ation” in which several nodes were simultaneously relaxed, “the aim being to reduce
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the total energy by as great an amount as possible”. But, those techniques were derived
from and for specific engineering problems and were tailored for “hand” calculations
(e.g., in each step nodes with greatest residual were relaxed); therefore, they were
unsuitable for development of abstract algorithms that can be mechanically executed.
It is considered that the origin of the modern multigrid method(s) was A. Brandt’s pa-
per [2] in which the precise descriptions of linear (CS) and nonlinear (FAS) algorithms
were given2. Brandt’s starting point was the observation that “classical” relaxation
schemes, like linear or nonlinear Gauß–Seidel sweeps, rapidly decrease the residual as
long as it strongly oscillates on the scale of the grid. In the multigrid cycle, therefore,
relaxation on the given grid is used to reduce the high-frequency components of the
residual, while the lower frequencies are reduced on coarser grids where they again
appear oscillatory.

Thus, both for nested iteration and for multigrid cycle, we need a hierarchy of
increasingly finer grids. In finite difference method we construct consecutive meshes
with steps h, h/2, h/4, . . . , h/2m, while the simplest way to construct the hierarchy of
finite element triangulations is to subdivide each triangle in coarser triangulation T hℓ

into four congruent triangles by bisecting its edges, which results in a triangulation
T hℓ+1 . Let Sℓ be the finite element space associated with the triangulation T hℓ ; then
Sℓ ⊂ Sℓ+1. If the boundary ∂Ω is curved, new vertices on level ℓ + 1, which would
otherwise lie at the midpoints of the level ℓ edges with two vertices on ∂Ω, can be
“moved” to the boundary. Shapes of the triangles near the boundary are then dis-
torted, and the inclusion Sℓ ⊂ Sℓ+1 is violated there, but it still holds for most of the
elements.

We can write system (7), or a similar system of difference equations (sec. 3),
in shorter form as Fℓ(uℓ) = 0ℓ, where nonlinear operator Fℓ : Rnℓ → R

nℓ results
from discretization on the mesh on level ℓ. In the course of the multigrid cycle some
additional (constant) terms are generated on all levels except the highest, see eq. (9);
the previous equation should, therefore, be generalized to

Fℓ(uℓ) = bℓ, Fℓ : R
nℓ → R

nℓ , (8)

with bm = 0m on the finest mesh (level m).

For a transfer between levels we will need two (linear) operators: a projection
operator I

ℓ−1
ℓ : Rnℓ → R

nℓ−1 and an interpolation operator I
ℓ
ℓ−1 : Rnℓ−1 → R

nℓ . In
finite element setting, canonical interpolation and projection operators are frequently
used. Let uℓ−1 ∈ R

nℓ−1 and uℓ ∈ R
nℓ be the coefficient vectors of v ∈ Sℓ−1 and

v̄ ∈ Sℓ, respectively. We set v̄ = v using the inclusion Sℓ−1 ⊂ Sℓ. Requirement that
I
ℓ
ℓ−1uℓ−1 be the coefficient vector of v̄ = v with respect to the basis of Sℓ defines canon-

ical interpolation operator Iℓℓ−1 (for linear finite elements this is linear interpolation).

Canonical projection operator is then defined by I
ℓ−1
ℓ = c(Iℓℓ−1)

T, where constant c

2Independently, W. Hackbusch discovered multigrid procedure in 1976. His nonlinear multigrid
algorithm [8] is a generalization of Brand’s FAS.



Some Numerical Models of Fabric Structures 229

depends on “mesh sizes” hℓ and hℓ−1. Straight injection, where v and v̄ have the same
values on common vertices, can also be used for projection.

Let the symbol ũℓ denote some approximate solution to the system (8). The
residual is defined by

rℓ = bℓ − Fℓ(ũℓ),

and, since Fℓ(u
∗
ℓ ) ≡ bℓ for the (exact) solution u

∗
ℓ , this equation can be written as

Fℓ(u
∗
ℓ )− Fℓ(ũℓ) = rℓ.

If fluctuating components of the residual rℓ are damped by the so-called presmoothing
relaxation sweeps, we can write an approximation on the lower level:

Fℓ−1(uℓ−1)− Fℓ−1(I
ℓ−1
ℓ ũℓ) = I

ℓ−1
ℓ rℓ;

here we treat uℓ−1 as the unknown. If we introduce the notation

bℓ−1 = Fℓ−1(I
ℓ−1
ℓ ũℓ) + I

ℓ−1
ℓ rℓ, (9)

the previous equation becomes

Fℓ−1(uℓ−1) = bℓ−1, Fℓ−1 : Rnℓ−1 → R
nℓ−1 , (10)

and this equation is of the same form as the equation (8). Let u
∗
ℓ−1 be the solution

to the equation (10); we can interpolate it back to the level ℓ to correct the previous
approximate solution:

˜̃uℓ = ũℓ + I
ℓ
ℓ−1(u

∗
ℓ−1 − I

ℓ−1
ℓ ũℓ).

This new approximation can be improved by further, the so-called postsmoothing,
relaxation sweeps.

One important observation is that each ũℓ is the projection of the (approximate)
solution ũm on the finest mesh, ũℓ = I

ℓ
mũm. This scheme is, therefore, called the full

approximation storage (FAS) algorithm3. Various orders of visiting consecutive levels
are called V-, W-, sawtooth-, etc., multigrid cycles.

6. Numerical results

We tuned and tested our multigrid computer program on Concus’ and Meis’ finite
difference discretizations4 and on finite element discretization (7). Results of numerical
experiments with Concus’ equations on square domain were described in [6]; Meis’

3In linear version, systems Aℓeℓ = rℓ, where eℓ is the error, are solved on coarser grids; therefore,
linear version is called the correction storage (CS) algorithm.

4Unrelated to the minimal surface problem, we also tested our program on FD discretizations of
linear Laplace and nonlinear Bratu’s differential equations, because precise numerical data can be
found in literature about the behaviour of some MG programs when applied to them.
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equations gave similar results. Here we will mention some examples and applications
of finite element discretization.

One test example was Scherk’s minimal surface

u(x, y) = ln(cosx/cos y).

This surface is suitable for thorough numerical testing and for tuning of various pa-
rameters of (abstract) multigrid algorithm to get robust and efficient solver, because,
depending on the choice of Ω, it can exhibit well-behaved or pathological behaviour.
It is defined (that is, real-valued) on the set {(u, v) | cosu cos v > 0}, for example, on

the square
(

−π
2 ,

π
2

)2
. Planes x = ±π

2 and y = ±π
2 are asymptotic planes and surface

steeply tends to ±∞ while approaching them.

For pre- and postsmoothing sweeps one-step Gauß–Seidel–Newton algorithm, i.e.,
(5) with ω = 1, was chosen. Overrelaxation (ω > 1) didn’t accelerate convergence rate
significantly and sometimes led to divergence. It seems that the optimal number of
pre- and postsmoothing sweeps for our problem is four to six.

Coarse finite element mesh, which is used both as an initial mesh in nested itera-
tion and as a lowest level in multigrid cycle, must be (in current version of the program)
manually defined. Initial approximation is the solution of the Laplace equation (4)
with the same boundary conditions, because it was observed that for arbitrary first
approximation (e.g., common choice u0 = 0) nonlinear iteration sometimes, specially
when boundary conditions were not in some sense symmetric, diverged even on the
very coarse grid. (We also experimented with nonlinear underrelaxation, i.e., ω < 1
in (5), but it seems that the proper choice of ω depends on the concrete form of the
boundary and, therefore, it is difficult to propose a robust algorithm.)

As the stopping criterion for the multigrid iteration on level ℓ we use

‖rℓ‖ ≤ 0.1 ‖τ ℓ−1
ℓ ‖,

where
τ
ℓ−1
ℓ = Fℓ−1(I

ℓ−1
ℓ u

∗
ℓ )− I

ℓ−1
ℓ Fℓu

∗
ℓ = bℓ−1 − I

ℓ−1
ℓ bℓ

is the relative (local) truncation error.

Convergence history for Scherk’s surface on Ω = [−1, 1]2 is shown in Table 1,

where r
(k)
ℓ denotes residual on level ℓ after k-th cycle and ε = ‖r

(k)
ℓ ‖∞/‖r

(k−1)
ℓ ‖∞.

Domain was divided into regular mesh with 32 triangles and 25 nodes, 9 of which were
interior. Mesh on level 3 had 2048 elements, 833 interior and 128 boundary nodes. As
can be seen from Table 1, on the finest mesh 5 multigrid cycles were needed to satisfy
the given convergence criterion. In Table 2, numbers of cycles needed for convergence
on the third level are shown for different choices of Ω. Triangulations were as in the
first example.

Similar results were obtained on hexagonal and irregular polygonal domains, and
on domains with curved boundaries which were defined as cubic splines with chord-
length parametrization.
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ℓ k ‖r
(k)
ℓ

‖∞ ε

0 − 1.72390 · 10−15 −

1
1

2

6.97805 · 10−4

1.48455 · 10−4

−

0.212746

1 3.86230 · 10−4 −

2 2 6.82710 · 10−5 0.176762

3 2.09598 · 10−5 0.307009

1 1.10594 · 10−4 −

2 2.57059 · 10−5 0.232435

3 3 1.10082 · 10−5 0.428236

4 5.13117 · 10−6 0.466123

5 2.72290 · 10−6 0.530659

Table 1.

Ω kmax ‖r
(kmax)
3 ‖∞

[−1.2, 1.2]× [−1.2, 1.2] 5 1.00602 · 10−5

[−1.4, 1.4]× [−1.4, 1.4] 5 7.81262 · 10−5

[−1.5, 1.5]× [−1.5, 1.5] 7 1.98717 · 10−4

[0, 1]× [0, 1] 7 1.57329 · 10−7

[0, 1.2]× [0, 1.2] 6 8.26654 · 10−7

[0, 1.5]× [0, 1.5] 8 3.10647 · 10−5

[−0.6, 0.6]× [0, 1.2] 8 8.67581 · 10−7

Table 2.

As a final example we show one practical application. Architect A. Kuzmanić
proposed fabric roofs for the new bus terminal at Dubrovnik airport. J. Dvornik
and D. Lazarević made the preliminary design. Each roof will be assembled of six
modules. Three modules are depicted in Figure 1, with the other three being mirror
images (bounding-box side on the right is the plane of symmetry).

Figure 1. Figure 2.

Two edges of each module are rigid arcs, while the other two are flexible cables;
adjacent modules share a common arc and cables run along the longer sides of the roof.
Rigid arcs are inclined parabolic arcs. Flexible edges, whose shape can’t be determined
a priori , but through the same form finding process, are not included in the current
version of our program. Their shape is, therefore, determined approximately by the
procedure described in [1]. Cubic spline is interpolated through the calculated discrete
points so that the nodes of refined finite element meshes can be placed on the boundary.

The roof surface of each module will be the minimal surface spanned between the
previously defined boundary curves.
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Initial, manually created mesh (level 0) for each module had 9 nodes, with only
1 interior node, and 8 triangles. Meshes were refined up to the fifth level, with 4225
nodes (3969 interior nodes, i.e., unknowns) and 8192 elements. In Figure 1, meshes
on the third level are shown and Figure 2 depicts the mesh of the leftmost module on
the fourth level.

Because all three surfaces are relatively shallow, convergence was rather fast. On
levels 1 and 2 in each case only one multigrid cycle was needed to satisfy the given
criterion, while on levels 3, 4 and 5 two cycles were needed. Norms of the residuals on

the fourth level were r
(2)
4 ≈ 1 · 10−4 and on the fifth level r

(2)
5 ≈ 2.5 · 10−5.
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