
Proceedings of the 1. Conference on
Applied Mathematics and Computation
Dubrovnik, Croatia, September 13–18, 1999
pp. 185–196

Complexity Analysis of Nelder–Mead Search

Iterations∗

Sanja Singer† and Saša Singer‡

Abstract. We investigate potential computational bottlenecks in the Nelder–Mead search

(NMS) algorithm. Many implementations of the algorithm exist, differing mainly in the selec-

tion of convergence or termination criteria and some minor computational details. Therefore,

a fairly general complexity analysis of a single NMS iteration step is presented, which leads to

a simple efficiency measure. Efficiency analysis of the most common NMS implementations

clearly identifies a computational bottleneck in domain convergence criterion. This seriously

affects the performance of the method, at least for discontinuous functions.

AMS subject classification: 65K10, 65Y20, 90C56

Key words: optimization, direct search methods, Nelder–Mead simplex algorithm, com-
plexity, termination criteria

1. Introduction

The classical unconstrained optimization problem is to locate a point of minimum
(or maximum) x∗ of a given function f : Rn → R. There is a wide variety of methods
at our disposal for the solution of this problem, depending on how much information
about f is available.

In some applications, regardless of the particular choice of f , we can expect in
advance that

• f is continuous, but not smooth, or

• f is not even continuous,

at least at some points in R
n. This information imposes a fundamental restriction.

To find x∗, the optimization method should use only the function values of f , without
using or estimating the derivatives of f , as they may not exist at a particular point.
Methods of this type are usually called Direct Search Methods (DSM).

∗This work was supported by the Grant No. 037011 from the Ministry of Science and Technology
of the Republic of Croatia.

†Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, I. Lučića 5,
10000 Zagreb, Croatia, e–mail: ssinger@math.hr

‡Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia,
e–mail: singer@math.hr

186 S. Singer and S. Singer

Nelder–Mead search (NMS) or simplex search is one of the best known and most
widely used methods in this class. Originally published in 1965. [5], the method is
nowadays a standard member of all major libraries and has many different implemen-
tations.

There is a widespread belief, based mainly on extensive numerical evidence, that
NMS becomes inefficient as n increases, even for moderate space dimensions (like
n ≥ 10). This believed inefficiency of the NMS is hard to substantiate, at least
mathematically, due to the lack of convergence theory. But, in a recent work [10] we
have compared several DSMs on series of problems with discontinuous functions f .
Contrary to all our expectations, NMS turned out to be (by far) the slowest method!

This result clearly indicated that there must be a computational bottleneck in
our implementation of the NMS. Furthermore, the incriminated block of code that
degrades the NMS, is either not present in the other methods, or it does not affect
their performance. So we started to search for the bottleneck.

To present the results, we first give a brief description of the NMS algorithm in
the next section, followed by the general complexity analysis of a single iteration. As
a result, if everything else is implemented efficiently, we can identify the bottleneck in
the domain convergence (or termination) criterion. And for discontinuous functions
such a criterion becomes a necessity.

Efficiency analysis of the most common NMS implementations reveals that none
of them is immune for discontinuous functions and some of them are unable to handle
such functions at all. Finally, we illustrate the efficiency by a few typical examples.

2. Nelder–Mead search algorithm

The algorithm will be presented in “minimize” form, as in all standard imple-
mentations. We begin by specifying the “endpoints” of the algorithm. Any DSM
minimizer requires the following input data

f : Rn → R — function to be minimized,

and returns

xfinal ∈ R
n — computed approximation for x∗.

In practice, we can always specify an additional input

xinit ∈ R
n — initial (starting) point,

to be used as an initial approximation for x∗. This makes it easy to restart the
algorithm by using the previously computed xfinal as an input for the next run.

A simplex S ⊂ R
n is determined by n+ 1 points or vertices x0, . . . , xn ∈ R

n and
will be denoted as S = S(x0, . . . , xn). Recall that S is defined as the convex hull of the
vertices x0, . . . , xn. Simplex based DSM algorithms (including NMS) perform certain
transformations of the working simplex S, based on the function values fj := f(xj),
for j = 0, . . . , n. The general algorithm is

Complexity Analysis of Nelder–Mead Search Iterations 187

Algorithm Simplex DSM

INIT: construct an initial working simplex Sinit;

repeat the following steps: { next iteration }
TERM: calculate termination test information;
if the termination test is not satisfied then

TRANSF: transform the working simplex;
until the termination test is satisfied;

xfinal := the best vertex of the current simplex S;

where the best vertex is, obviously, the one with the smallest function value.

Algorithm INIT constructs the initial simplex Sinit = S(x0, . . . , xn) around (or
near) the initial point xinit, and computes the function values at all the vertices

fj := f(xj), j = 0, . . . , n.

The most frequent choice is x0 = xinit to allow proper restarts. Usually, Sinit is chosen
to be right–angled at x0, based on coordinate axes, or

xj := x0 + hjej, j = 1, . . . , n,

with stepsizes hj in directions of unit vectors ej in R
n. In some implementations, Sinit

can be a regular simplex, where all edges have the same length.

The inner loop algorithm TRANSF determines the type of the simplex based
DSM. There are many implementations of the NMS and, surprisingly, almost as
many implementations (or variants) of TRANSF. The one presented here is based
on [9]. It consists of the following 3 steps.

1. Determine indices h, s, l of the worst, second–worst and the best point, respec-
tively

fh = max
j

fj , fs = max
j 6=h

fj , fl = min
j 6=h

fj.

2. Calculate the centroid c of the best side (this is the one opposite to the worst
point)

c :=
1

n

n
∑

j=0
j 6=h

xj .

3. Compute the new working simplex S from the old one. First, try to replace
the worst point xh with a better point xnew, by using reflection, expansion or
contraction. If this fails, shrink the simplex towards the best point xl.

Simplex transformations in the NMS are controlled by 4 parameters (or coefficients):
α for reflection, β for contraction, γ for expansion and δ for shrinkage (or massive
contraction). They should satisfy the following constraints

α > 0, 0 < β < 1, γ > 1, 0 < δ < 1.

188 S. Singer and S. Singer

The following algorithm then shows the details of step 3.

{ Try to REFLECT the simplex }
xr := c+ α(c − xh); fr := f(xr);

if fr < fs then { Accept REFLECT }
xh := xr ; fh := fr;
if fr < fl then { Try to EXPAND }

xe := c+ γ(xr − c); fe := f(xe);
if fe < fl then { Accept EXPAND }

xh := xe; fh := fe;

else { We have fr ≥ fs. REFLECT if it helps, and try to CONTRACT }
if fr < fh then xc := c+ β(xr − c) else xc := c+ β(xh − c);
fc := f(xc);
if fc < min{fr, fh} then { Accept CONTRACT }

xh := xc; fh := fc;

else { SHRINK the simplex towards the best point }
for j := 0 to n do

if j 6= l then
xj := xl + δ(xj − xl); fj := f(xj);

The simplex transformation coefficients have the following standard values

α = 1, β = 0.5, γ = 2, δ = 0.5

and they are used in most implementations. A slightly different choice has been
suggested in [7].

Algorithm Simplex DSM must terminate in a finite number of steps or iterations.
For simplicity, assume that the algorithm TERM computes the logical (boolean) value
term which becomes true when it is time to finish — stop the iterations. Quite
generally, term is composed of 3 different parts

term := term x or term f or fail ;

where

• term x is a “domain convergence or termination test”, which becomes true when
the working simplex S is sufficiently small in some sense (some or all vertices xj

are close enough),

• term f is a “function value convergence test”, which becomes true when (some
or all) function values fj are close enough in some sense,

• fail is a “no convergence in time” test.

There are many ways to define term x and term f tests and some examples will be
given in the following sections. But, regardless of the exact definition of term, two
simple facts should be observed.

Complexity Analysis of Nelder–Mead Search Iterations 189

The fail test must be present in any numerical algorithm. Even if there is a
convergence theory, the method may fail to converge in practice due to many reasons,
such as inexact computation.

Without a term x test, the algorithm will obviously not work for discontinuous
functions. But, if we want to find a reasonable approximation for x∗, a term x test
is necessary for continuous functions, as well. In such cases, term f test is only a
safeguard for “flat” functions.

3. Complexity analysis of a single iteration

A truly general complexity analysis of the NMS algorithm is impossible at the
present time. There is no convergence theory to support such an analysis by providing
an estimate for the number of iterations required to satisfy any reasonable accuracy
constraint given in the termination test.

Therefore, we limit ourselves to the complexity analysis of a single NMS iteration.
Besides, this is enough to identify the bottleneck we are searching for.

Definition 1. The complexity of algorithm ALG is the number of “flops” — machine
floating point arithmetic operations needed to execute the algorithm for a given input.
This number will be denoted as Talg(input).

This definition of complexity is the best suited one for numerical algorithms,
where most of the time is spent in floating point calculations. Before we can use it, we
have to clarify what will be counted as a flop. The answer is simple — everything that
takes at most constant time to compute, for all representable floating point numbers.
This includes the four standard arithmetic operations, as well as a number of functions
(such as

√

, exp, log). A comparison of floating point numbers will also be counted
as a flop, since it is performed via subtraction and comparison to zero.

By definition, all complexity results should be expressed in terms of input data,
and for any DSM algorithm, this is f . But, in practice, f is always given as an
algorithm F which computes f(x) for a given x ∈ R

n. Therefore, it has its own
complexity Tf to be expressed in terms of the input point x. Thus, we can use
Tf = Tf(x), instead of f , to express complexity. Of course, Tf implicitly depends on
n — the flops required to compute f(x) operate on coordinates x(i), i = 1, . . . , n, not
on the whole x.

To study the effects of the space dimension n on complexity, we have to make
n the parameter of the problem. This effectively means that we have a sequence
of functions fn : Rn → R, n ∈ N, each of them to be minimized. In practice, we
can simply assume that the algorithm F has an additional input parameter n, and
computes the value fn(x). The complexity Tf = Tf(x, n) now explicitly depends on
n. The particular function minimized by DSM will continue to be denoted by f , to
simplify the notation, as n will be obvious from the domain of f .

190 S. Singer and S. Singer

To simplify the presentation, the standard asymptotic notation (o, O, Θ, Ω, ω)
will be used, but in a somewhat extended sense, customary in complexity analysis
of algorithms. The flops count will be correct for all functions f , all points x and all
space dimensions n ∈ N. Asymptotic notation will be used just to hide the unnecessary
details of this count, but the result will remain valid for all arguments, no restriction
to sufficiently large arguments being imposed.

With this notation, our definition of complexity can be simply related to the usual
time complexity. For sequential execution of numerical algorithms we have

Execution time of ALG(input) = Θ(Talg(input)).

In practice, these two quantities are often almost proportional.

Note that any DSM algorithm uses F many times to compute f(x) for various
points x throughout the iterations. In order to obtain simple and useful complexity
results, we have to make one more important assumption — eliminate (or neglect) the
dependence of Tf(x, n) on x.

Assumption 1. The complexity of computing the function value f(x), for a given
point x, is (more or less) independent of x, and (essentially) depends only on n.

More precisely, we assume that there exist c1, c2 ∈ R, with 0 < c1 ≤ 1 ≤ c2, and
a function Tf : N → N, such that

c1Tf (n) ≤ Tf (x, n) ≤ c2Tf (n), ∀x ∈ R
n, ∀n ∈ N.

This assumption is valid in many practical applications and a few examples will be
given later on. The same type of assumption can be stated in the probabilistic sense,
as the average complexity on x. From now on, we assume that Tf = Tf(n) holds for
the complexity of the algorithm F, but it is easy to see that all the results remain valid
in the general case c1 6= c2.

As a consequence, our complexity results will be stated in terms of n and Tf(n).
Before proceeding, we have to ensure that n is not artificially large.

Definition 2. Function f : Rn → R is said to be sensibly defined if all n coordinates
of x influence the function value f(x).

If this is not so, f can be sensibly redefined with a smaller n. So, we assume that f is
already sensibly defined on input.

The following trivial lower bound will be useful later.

Lemma 1. For any sensibly defined function f : Rn → R, the complexity of function
value computation satisfies

Tf (n) = Ω(n),

or Tf (n) is at least linear in n.

Complexity Analysis of Nelder–Mead Search Iterations 191

Proof. By assumption, f(x) depends on all n coordinates of x. Each coordinate x(i)
has to be used at least once as an operand in a flop. Since flops take at most 2
operands, at least n/2 flops are needed to compute f(x).

Having done all the preliminary hard work, the rest of the analysis is quite easy.

Let Titer(n) denote the complexity of a single iteration (inner loop) of the algo-
rithm Simplex DSM. Each complete iteration consists of two successive steps: TERM
and TRANSF. Therefore, the complexity of a single iteration is

Titer(n) = Ttransf(n) + Tterm(n). (1)

As TRANSF is the effective part of the inner loop, we want to spend as much time
as possible in TRANSF doing useful work, and not wasting too much time in TERM.
This motivates the following definition of efficiency.

Definition 3. The efficiency of a single iteration of the Simplex DSM algorithm is

Eiter(n) :=
Ttransf(n)

Titer(n)
.

The algorithm is efficient if Eiter(n) ≈ 1 holds for most of the iterations.

For the NMS simplex transformation algorithm TRANSF we have the following
complexity result.

Theorem 1. Assume that every step of the NMS algorithm TRANSF is implemented
as efficiently as possible. For all iterations, except the first one, the complexity of
TRANSF is

Ttransf(n) =

{

Θ(n) + Θ(Tf (n)), if no “shrink” is used,

Θ(n2) + Θ(nTf(n)), if “shrink” is used
(2)

in step 3 of TRANSF.

Proof. Let Tk(n) denote the complexity of step k in TRANSF, for k = 1, 2, 3. Then

Ttransf(n) = T1(n) + T2(n) + T3(n). (3)

Efficient implementation of step 1 requires O(n) (or, roughly, at most 3n) com-
parisons to find the new indices h, s, l. Sorting is neither required, nor necessary, so
we have

T1(n) = O(n). (4)

At first glance it seems that Θ(n2) flops are required to compute the centroid c
in step 2

c :=
1

n

n
∑

j=0
j 6=h

xj .

192 S. Singer and S. Singer

This is true only for the initial centroid cinit, in the first iteration. Later on, the
centroids can be efficiently updated, according to the simplex transformation in the
previous iteration. Let primes denote the values of objects in the previous iteration.
It is easy to see that

c =











c′ +
1

n
(xh′ − xh), if no “shrink”,

xl′ + δ(c′ − xl′) +
1

n
(xh′ − xh), if “shrink”

(5)

has been used in the previous step 3 to obtain S from S′. Note that all points refer
to the current simplex S. Only indices h′ and l′ have to be saved, and no additional
storage is required. As it can happen that h = h′, from (5) it is obvious that

T2(n) = O(n), (6)

except for the first iteration, when T2(n) = Θ(n2).

Most of the work in step 3 is spent to compute a certain number of new points,
including the function value for each point. Each new point x requires Θ(n) flops to
compute and Tf(n) flops for f(x), or the complexity per point is Θ(n) + Tf (n). At
least one new point xr is always computed. Without shrinkage, at most one additional
point xe or xc is computed. Finally, if shrinkage is used, n+ 2 points are computed.
Thus

T3(n) =

{

Θ(n) + Θ(Tf(n)), if no “shrink” is used,

Θ(n2) + Θ(nTf(n)), if “shrink” is used.
(7)

Substitution of (4), (6) and (7) in (3) completes the proof.

Note that Tf(n) = Ω(n) from Lemma 1, so we can eliminate the first term Θ(n)
or Θ(n2) in (2) and (7).

The efficiency Eiter(n) of a single NMS iteration follows directly from (1) and (2).
Of course, it crucially depends on Tterm(n). But, if TRANSF is implemented efficiently
we can immediately recognize and pinpoint the possible bottleneck in TERM. There
simply is no other place where it can be. But is it a real danger? And, if so, how to
avoid it?

The following argument relies heavily on the fact that shrinkages are extremely
rare in practice. Therefore, the first relation in (2) can be used to judge the effi-
ciency, as it is true for most of the iterations. The same results can be obtained by
a probabilistic argument, as soon as P (shrink) = O(1/n) holds for the probability
of “shrink” iterations. This is certainly true in practice, but such a fact would be
extremely difficult to prove.

Theorem 2. Assume that the NMS algorithm TRANSF is implemented as efficiently
as possible and that shrinkages are rare. If, for a given function f ,

Tterm(n) = ω(Tf (n)), (8)

Complexity Analysis of Nelder–Mead Search Iterations 193

then the NMS algorithm is inefficient for f , or the termination test TERM will be a
bottleneck. To avoid it for all functions, the complexity of TERM must satisfy

Tterm(n) = o(n), (9)

or the NMS algorithm is efficient for all functions f .

Proof. If there are no shrinkages in TRANSF, from (1), (2) and Lemma 1, we have

Titer(n) = Θ(Tf(n)) + Tterm(n),

or the efficiency is

Eiter(n) :=
Ttransf(n)

Titer(n)
=

Θ(Tf(n))

Θ(Tf (n)) + Tterm(n)
.

If (8) holds, it follows that Eiter(n) = o(1), or the efficiency becomes negligible. On
the other hand, if (9) is true, we have

Eiter(n) = 1−
Tterm(n)

Θ(Tf (n)) + Tterm(n)

and Eiter(n) = 1− o(1), so the algorithm is efficient for all f .

It is interesting to take a look at the limiting cases of (8) and (9). If

Tterm(n) = Θ(Tf(n)) (10)

then Eiter(n) = O(1), but is certainly less than 1. As the hidden constant in Θ in (2)
is small (at most 2 function evaluations), we cannot expect high efficiency even if the
hidden constant in (10) is small.

Now suppose that we have a linear TERM test

Tterm(n) = Θ(n). (11)

This will certainly be efficient for all functions f such that Tf (n) = ω(n). But, if
Tf (n) = Θ(n) with a small hidden constant in Θ, then again Eiter(n) = O(1) and the
overall efficiency will be low.

4. Efficiency of some implementations

Having identified the possible computational bottleneck, it is an interesting ques-
tion whether it occurs in some of the most common implementations of the NMS. Let
tol x and tol f be the prescribed tolerances for term x and term f tests, respectively.
For each implementation we state the definition of tests used in that implementation.
Unused tests should be interpreted as true in our notation.

194 S. Singer and S. Singer

IMSL — subroutines UMPOL/DUMPOL [11]:

term f := fh − fl ≤ tol f · (1 + |fl|) or

n
∑

j=0

(fj − fmean)
2 ≤ tol f ,

where fmean :=
1

n+ 1

n
∑

j=0

fj .

NAG — subroutine E04CCF [6]:

term f :=

√

√

√

√

1

n+ 1

n
∑

j=0

(fj − fmean)2 ≤ tol f , with fmean as above.

Numerical Recipes — subroutine amoeba [8]:

term f := 2 ·
|fh − fl|

|fh|+ |fl|
≤ tol f .

Compact Numerical Methods — Algorithm 19, procedure nmmin [4]:

term f := fh ≤ fl + tol f · (|finit|+ tol f), where finit = f(xinit).

MATLAB — file fmins.m [3]:

term f := max
j 6=l

|fj − fl| ≤ tol f , (equivalent to term f := fh − fl ≤ tol f),

term x := max
j 6=l

‖xj − xl‖∞ ≤ tol x .

Note: ‖ ‖1 has been used instead of ‖ ‖∞ in version 3.5g.

Higham — file nmsmax.m [1]:

term x :=

max
j 6=l

‖xj − xl‖1

max{1, ‖xl‖1}
≤ tol x .

Rowan — file simplx.f [9]:

term x := ‖xh − xl‖2 ≤ tol x · ‖x
(0)
h − x

(0)
l ‖2,

where x
(0)
l , x

(0)
h denote the best and the worst point in the initial simplex Sinit.

The fail test just checks the number of iterations or function evaluations against
the prescribed maximum allowed value. The complexity is O(1) and it is always
efficient.

Complexity Analysis of Nelder–Mead Search Iterations 195

The term f test complexity is Θ(1) when only 2 or 3 function values are used to
compute it, or Θ(n), if it is based on all n+1 function values. Even without a term x
test, the latter case may be inefficient according to (11).

The term x test is the real bottleneck. Only Rowan’s term x test complexity is
Θ(n), and all the other (when present) require Θ(n2) operations.

We can conclude that none of these implementations can handle discontinuous
functions efficiently!

5. Some typical examples

The efficiency of the NMS depends on how fast the termination test is with respect
to the function evaluation. This is clearly illustrated by the following examples.

Example 1. Let ai, bi ∈ R, for i ∈ N, be given numbers and define f : Rn → R as

f(x) =

n
∑

i=1

ai(x(i)− bi)
2, x ∈ R

n.

Tf (x, n) obviously depends only on n, and we have Tf (n) = Θ(n). From Lemma 1,
this is (almost) the fastest possible function evaluation. Even a linear TERM test
affects the efficiency, and a Θ(n2) test seriously degrades it.

Example 2. For each n ∈ N, we have m(n) ∈ N measured data points (yk, gk) ∈ R
2.

Measured values gk at yk have to be well approximated by a function g : Rn+1 → R,
which depends on n unknown parameters x(i), i = 1, . . . , n, and y ∈ R. To determine
the parameter vector x ∈ R

n, we can use the discrete least squares approximation and
minimize f : Rn → R defined by

f(x) =

m(n)
∑

k=1

(g(x, yk)− gk)
2, x ∈ R

n.

Suppose that g is a “simple” function to compute, such that Tg(x, y) = Θ(n), regardless
of x or y. To compute the value of f , we have to evaluate g at all m(n) points yk, for
a given x. Again, Tf does not depend on x and Tf (n) = Θ(m(n)n). In all applications
we have m(n) ≥ n, or m(n) = Ω(n), so Tf (n) = Ω(n2). The evaluation of f is so
slow that even a Θ(n2) termination test barely affects the efficiency.

Our final example is from [10] and lies between these two “extremes”.

Example 3. Let m ∈ N and let A ∈ R
m×m be a real matrix of order m. Consider

the LU factorization (or the Gaussian elimination) of A with a prescribed pivoting
strategy P. Numerical stability of this process can be expressed in terms of the pivotal
growth factor [2]. The “worst” cases for P are described by the maximal values of

f(A) = pivotal growth in the LU–P factorization of A, A ∈ R
m×m.

196 S. Singer and S. Singer

Note that f is discontinuous at some points in R
n, with n = m2. For all reasonable

pivoting strategies, Tf only slightly depends on A and we have

Tf(m) = Θ(m3) or Tf(n) = Θ(n3/2).

In this case, a linear term x is admissible, as it is Θ(m2). Unfortunately, Rowan’s
test performance is quite poor in practice. Obviously, a Θ(n2) = Θ(m4) test is out of
question, as the evaluation of f is slow enough by itself.

6. Conclusion

As we have seen, none of the current termination tests satisfies (9). Consequently,
none of them is efficient for all functions f .

The question remains, whether we can design a simple and efficient domain conver-
gence test. Indeed, such a test has been constructed, but the description and analysis
of this test is beyond the scope of this paper. The new test is currently undergoing
an extensive numerical testing and verification. These results will be published in a
future report.

References

[1] N. J. Higham, The Test Matrix Toolbox for Matlab (version 3.0), Numerical Analysis Report
276, Manchester Centre for Computational Mathematics, Manchester, England, Sept. 1995.

[2] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

[3] The MathWorks, Inc., MATLAB Language Reference Manual, Version 5, Natick, Mas-
sachusetts, 1996.

[4] J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Min-
imisation, second ed., Adam Hilger, Bristol, 1990. (with Errata and Related Notes, 23 Jan
1995.).

[5] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7
(1965), pp. 308–313.

[6] The Numerical Algorithms Group, Ltd., NAG Fortran Library Manual, Mark 18, Oxford,
England, 1997.

[7] J. M. Parkinson and D. Hutchinson, An investigation into the efficiency of variants on the
simplex method, in Numerical Methods for Nonlinear Optimization, F. A. Lootsma, ed.,
Academic Press, New York, 1972, pp. 115–135.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in FORTRAN: The Art of Scientific Computing, second ed., Cambridge University Press,
Cambridge, New York, 1992. Reprinted with corrections 1994., corrected to software version
2.04.

[9] T. H. Rowan, Functional Stability Analysis of Numerical Algorithms, Ph.D. thesis, University
of Texas, Austin, May 1990.

[10] S. Singer and S. Singer, Some applications of direct search methods, in Proceedings of the
7th International Conference on Operational Research — KOI’98, Rovinj, Croatia, Sep 30
– Oct 2, 1998., I. Aganović, T. Hunjak, and R. Scitovski, eds., Osijek, 1999, Croatian
Operational Research Society, pp. 169–176.

[11] Visual Numerics, Inc., IMSL MATH/LIBRARY User’s Manual, Version 3.0, Houston, Texas,
1994.

