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Abstract. The quasilinear second order differential equation

y
′′ + P (y, t)y′ +Q(y, t)y = F (y, t)

where P , Q, F ∈ C(R × I), I = (a,∞), a ∈ R, is under consideration. This paper deals

with the behaviour, approximation and stability of solutions of this equation. Behaviour of

integral curves in neighbourhoods of an arbitrary integral curve is considered. The qualitative

analysis theory and topological retraction method are used. The general results and a several

appropriate examples are considered and discussed.
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1. Introduction

Let us consider the quasilinear second order differential equation

y′′ + P (y, t)y′ +Q(y, t)y = F (y, t), (1)

where P , Q, F ∈ C(R× I), I = (a,∞), a ∈ R. Let

Γ = {(y, t) ∈ R× I | y = ψ(t), t ∈ I},

where ψ(t) ∈ C2(I) is an arbitrary integral curve.

In this paper the behaviour of the solutions of equation (1) in the neighbourhood
of curve Γ is considered. The notations ψ0 = ψ(t0), y0 = y(t0), y

′

0 = y′(t0), t0 ∈ I are
going to be used.

Let r1, r2 ∈ C1(I), r1(t) > 0, r2(t) > 0 on I. Let us consider the solutions y(t) of
equation (1) which satisfy on I, either the conditions

|y0 − ψ0| ≤ r2(t0), |y′0 − ψ′

0| ≤ r1(t0), (2)

or
(y0 − ψ0)

2

r22(t0)
+

(y′0 − ψ′

0)
2

r21(t0)
≤ 1. (3)

∗Faculty of Mechanical Engineering in Zenica, University of Sarajevo, Fakultetska 1, 72000 Zenica,
Bosnia and Herzegovina, e–mail: aomerspahic@mf-ze.unsa.ba



166 A. Omerspahić

2. Preliminaries

Let
y′ = x, (4)

where x = x(t) is a new unknown function. Equation (1) is transformed into a
quasilinear system of equations











x′ = −P (y, t)x−Q(y, t)y + F (y, t),

y′ = x,

t′ = 1.

(5)

Let (ϕ(t), ψ(t), t), t ∈ I, where ϕ(t) = ψ′(t), be an arbitrary integral curve of the
system (5), and let Ω = R

2 × I.

We shall consider the behaviour of the integral curve (x(t), y(t), t) of (5) with
respect to the sets

σ =
{

(x, y, t) ∈ Ω
∣

∣ |x− ϕ(t)| < r1(t), |y − ψ(t)| < r2(t)
}

and

ω =

{

(x, y, t) ∈ Ω

∣

∣

∣

∣

(x − ϕ(t))2

r21(t)
+

(y − ψ(t))2

r22(t)
≤ 1

}

.

The boundary surfaces of σ and ω are, respectively,

Xi =
{

(x, y, t) ∈ Clσ
∣

∣ H1
i (x, y, t) ≡ (−1)i(x− ϕ(t)) − r1(t) = 0

}

, i = 1, 2,

Yi =
{

(x, y, t) ∈ Clσ
∣

∣ H2
i (x, y, t) ≡ (−1)i(y − ψ(t)) − r2(t) = 0

}

, i = 1, 2,

W =

{

(x, y, t) ∈ Clω

∣

∣

∣

∣

H(x, y, t) ≡
(x − ϕ(t))2

r21(t)
+

(y − ψ(t))2

r22(t)
− 1 = 0

}

.

To prove our results we need the following results concerning the applicability of
the qualitative analysis theory and topological retraction method of T. Waževski [6].

Let us denote the tangent vector field to an integral curve (x(t), y(t), t) of (5) by
T . The vectors ∇H1

i , ∇H
2
i and ∇H are the outer normals on surfaces Xi, Yi and W ,

respectively. We have

T (x, y, t) =
(

−P (y, t)x−Q(y, t)y + F (y, t), x, 1
)

,

∇H1
i (t) =

(

(−1)i, 0, (−1)i−1ϕ′ − r′1
)

, i = 1, 2,

∇H2
i (t) =

(

0, (−1)i, (−1)i−1ψ′ − r′2
)

, i = 1, 2,

1

2
∇H(x, y, t) =

(

x− ϕ

r21
,
y − ψ

r22
,

−
(x− ϕ)2r′1

r31
−

(y − ψ)2r′2
r32

−
(x− ϕ)ϕ′

r21
−

(y − ψ)ψ′

r22

)

.
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By means of scalar products π1
i (x, y, t) = (∇H1

i , T ) on Xi, π
2
i (x, y, t) = (∇H2

i , T )
on Yi, and π(x, y, t) = (1

2
∇H,T ) onW , we shall establish the existence and behaviour

of integral curves of (5) with respect to the sets σ and ω, respectively.

Let us denote by Sp(I), p ∈ {0, 1, 2}, a class of solutions (x(t), y(t), t) of the
system (5) defined on I, which depends on p parameters. We shall simply say that the
class of solutions Sp(I) belongs to the set η (η = ω or η = σ) if graphs of functions in
Sp(I) are contained in η. In that case we shall write Sp(I) ⊂ η. For p = 0 we have
the notation S0(I), which means that there exists at least one solution (x(t), y(t), t)
on I of the system (5), whose graph belongs to the set η.

The results of this paper are based on the following Lemmas (see [4, 5]).

Lemma 1. If, for the system (5), the scalar product π < 0 on W (πk
i < 0 on ∂σ =

X1 ∪ X2 ∪ Y1 ∪ Y2, i = 1, 2, k = 1, 2), then the system (5) has a class of solutions
S2(I) belonging to the set ω for all t ∈ I, i.e., S2(I) ⊂ ω (S2(I) ⊂ σ).

Lemma 2. If, for the system (5), the scalar product π > 0 on W (πk
i > 0 on ∂σ =

X1 ∪X2 ∪ Y1 ∪ Y2, i = 1, 2, k = 1, 2), then the system (5) has at least one solution on
I whose graph belongs to the set ω for all t ∈ I, i.e., S0(I) ⊂ ω (S0(I) ⊂ σ).

Lemma 3. If, for the system (5), the scalar product π1
i < 0 on X1 ∪X2, and π

2
i > 0

on Y1 ∪ Y2 (or reversely), then the system (5) has a class of solutions S1(I) belonging
to the set σ for all t ∈ I, i.e., S1(I) ⊂ σ.

3. Main results

Theorem 1. Let P (y, t), Q(y, t), F (y, t) ∈ C(R× I) satisfy the conditions:

|P (y1, t)− P (y2, t)| < L1|y1 − y2|, (y1, t), (y2, t) ∈ R× I, (6)

|Q(y1, t)−Q(y2, t)| < L2|y1 − y2|, (y1, t), (y2, t) ∈ R× I, (7)

|F (y1, t)− F (y2, t)| < L3|y1 − y2|, (y1, t), (y2, t) ∈ R× I, (8)

and let r1, r2 ∈ C1(I), r1(t) > 0, r2(t) > 0. Then:

(i) If the conditions
(

L1|ϕ|+ L2|ψ|+ L3 + |Q(y, t)|
)

r2 < r′1 + P (y, t)r1, (9)

r1 < r′2, (10)

are satisfied on Clσ, then all solutions y(t) of the problem (1), (2) satisfy the conditions

|y(t)− ψ(t)| < r2(t), |y′(t)− ψ′(t)| < r1(t), for t > t0. (11)

(ii) If the conditions
(

L1|ϕ|+ L2|ψ|+ L3 + |Q(y, t)|
)

r2 < −r′1 − P (y, t)r1, (12)

r1 < −r′2, (13)
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are satisfied on Clσ, then at least one solution of the problem (1), (2) satisfies the
conditions (11).

(iii) If the conditions (9) and (13), or (10) and (12) are satisfied on Clσ, then the
problem (1), (2) has one-parameter class of solutions satisfying the conditions (11).

Proof. We shall consider the equation (1) through the equivalent system (5). Let us
consider the integral curves of the system (5) with respect to the set σ. For the scalar
products π1

i (x, y, t) on Xi and π
2
i (x, y, t) on Yi, we have:

π1
i (x, y, t) = (−1)i

[

−P (y, t)x−Q(y, t)y + F (y, t)
]

+ (−1)i−1ϕ′ − r′1

= (−1)i
[

−P (y, t)(x− ϕ)−Q(y, t)(y − ψ) + F (y, t)

− P (y, t)ϕ−Q(y, t)ψ − ϕ′
]

− r′1

= −P (y, t)r1 + (−1)i
[

−Q(y, t)(y − ψ) + F (y, t)

− P (y, t)ϕ−Q(y, t)ψ − ϕ′
]

− r′1,

π2
i (x, y, t) = (−1)ix+ (−1)i−1ψ′ − r′2 = (−1)i(x − ϕ)− r′2.

(i) According to the conditions (6)–(8), (9) and (10), the following estimates for
π1
i on Xi and π

2
i on Yi are valid, respectively:

π1
i (x, y, t) ≤ −P (y, t)r1 + |Q(y, t)|r2

+ |F (y, t)− P (y, t)ϕ−Q(y, t)ψ − ϕ′| − r′1

≤ −P (y, t)r1 + |Q(y, t)|r2 + |F (y, t)− F (ψ, t)|

+ |P (ψ, t)− P (y, t)| |ϕ|+ |Q(ψ, t)−Q(y, t)| |ψ| − r′1

≤ −P (y, t)r1 + |Q(y, t)|r2 +
(

L3 + L1|ϕ|+ L2|ψ|
)

r2 − r′1 < 0,

π2
i (x, y, t) ≤ r1 − r′2 < 0.

Accordingly, set ∂σ = X1 ∪ X2 ∪ Y1 ∪ Y2 is a set of points of strict entrance of
integral curves of the system (5) with respect to the sets σ and Ω. Hence, all solutions
of the system (5) which satisfy the conditions

|x0 − ϕ0| ≤ r1(t0), |y0 − ψ0| ≤ r2(t0), (x0 = x(t0)),

also satisfy conditions

|x(t)− ϕ(t)| < r1(t), |y(t)− ψ(t)| < r2(t), for t > t0.

Since, in view of (4),

x0 − ϕ0 = y′0 − ψ′

0,

all solutions of the problem (1), (2) satisfy the conditions (11).
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(ii) According to the conditions (6)–(8), (12) and (13), the following estimates
for π1

i on Xi and π
2
i on Yi are valid, respectively:

π1
i (x, y, t) ≥ −P (y, t)r1 + |Q(y, t)| (−r2)

− |F (y, t)− P (y, t)ϕ−Q(y, t)ψ − ϕ′| − r′1

≥ −P (y, t)r1 − |Q(y, t)|r2 − |F (y, t)− F (ψ, t)|

− |P (ψ, t)− P (y, t)| |ϕ| − |Q(ψ, t)−Q(y, t)| |ψ| − r′1

≥ −P (y, t)r1 − |Q(y, t)|r2 −
(

L3 + L1|ϕ|+ L2|ψ|
)

r2 − r′1 > 0,

π2
i (x, y, t) ≥ −r1 − r′2 > 0.

Accordingly, set ∂σ is a set of points of strict exit of integral curves of the sys-
tem (5) with respect to sets σ and Ω. Hence, according to T .Wažewski’s retraction
method [6], the system (5) has at least one solution belonging to the set σ for all
t ∈ I. Consequently, the problem (1), (2) has at least one solution satisfying the
conditions (11).

(iii) In this caseX1∪X2 is a set of points of strict exit, and Y1∪Y2 is a set of points
of strict entrance (or reversely) of integral curves of the system (5) with respect to the
sets σ and Ω. According to the retraction method, the system (5) has one-parameter
class of solutions belonging to the set σ for all t ∈ I. Hence, the problem (1), (2) also
has one-parameter class of solutions satisfying the conditions (11).

Let us consider now the solutions y(t) of equation (1) which satisfy the condi-
tion (3).

Theorem 2. Let P (y, t), Q(y, t), F (y, t) ∈ C(R × I), and let the conditions (6), (7)
and (8) be satisfied. Let r1, r2 ∈ C1(I), r1(t) > 0, r2(t) > 0, and

(

(

L1|ϕ|+ L2|ψ|+ L3

)

r22 +
∣

∣r21 −Q(y, t)r22
∣

∣

)2

< 4r1r2
(

P (y, t)r1 + r′1
)

r′2. (14)

Then:

(i) If

r′2 > 0, (15)

then all solutions y(t) of the problem (1), (3) satisfy the condition

(y(t)− ψ(t))2

r22(t)
+

(y′(t)− ψ′(t))2

r21(t)
< 1, for t > t0. (16)

(ii) If

r′2 < 0, (17)

then at least one solution of the problem (1), (3) satisfies the condition (16).
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Proof. We shall consider the equation (1) through the equivalent system (5). Let us
consider the integral curves of the system (5) with respect to the set ω. For the scalar
product π(x, y, t) = (1

2
∇H,T ) on the surface W , we have:

π(x, y, t) =
[

−P (y, t)x−Q(y, t)y + F (y, t)
]x− ϕ

r21
+ x

y − ψ

r22

−
(x− ϕ)2r′1

r31
−

(y − ψ)2r′2
r32

−
(x− ϕ)ϕ′

r21
−

(y − ψ)ψ′

r22
.

If we introduce the notation

X =
x− ϕ

r1
, Y =

y − ψ

r2
,

we have:

π(x, y, t) =

[

−P (y, t)−
r′1
r1

]

X2 +

[

−Q(y, t)
r2

r1
+
r1

r2

]

X Y −
r′2
r2
Y 2

+
[

−P (y, t)ϕ−Q(y, t)ψ + F (y, t)− ϕ′
]X

r1

=

[

−P (y, t)−
r′1
r1

]

X2 +

[

−Q(y, t)
r2

r1
+
r1

r2

]

X Y −
r′2
r2
Y 2

+
[

(

P (ψ, t)− P (y, t)
)

ϕ+
(

Q(ψ, t)−Q(y, t)
)

ψ + F (y, t)− F (ψ, t)
]X

r1
.

In view of (6)–(8), the following estimates for π(x, y, t) on W are valid:

π(x, y, t) ≤

[

−P (y, t)−
r′1
r1

]

X2 +

∣

∣

∣

∣

−Q(y, t)
r2

r1
+
r1

r2

∣

∣

∣

∣

|X | |Y |+

[

−
r′2
r2

]

Y 2

+
(

L1|ϕ|+ L2|ψ|+ L3

) r2

r1
|X | |Y |

=

[

−P (y, t)−
r′1
r1

]

X2 +

[

(

L1|ϕ|+ L2|ψ|+ L3

) r2

r1

+

∣

∣

∣

∣

r1

r2
−Q(y, t)

r2

r1

∣

∣

∣

∣

]

|X | |Y |+

[

−
r′2
r2

]

Y 2,

π(x, y, t) ≥

[

−P (y, t)−
r′1
r1

]

X2 −

∣

∣

∣

∣

−Q(y, t)
r2

r1
+
r1

r2

∣

∣

∣

∣

|X | |Y |+

[

−
r′2
r2

]

Y 2

−
(

L1|ϕ|+ L2|ψ|+ L3

) r2

r1
|X | |Y |

=

[

−P (y, t)−
r′1
r1

]

X2 −

[

(

L1|ϕ|+ L2|ψ|+ L3

) r2

r1

+

∣

∣

∣

∣

r1

r2
−Q(y, t)

r2

r1

∣

∣

∣

∣

]

|X | |Y |+

[

−
r′2
r2

]

Y 2.
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The right-hand sides of the above inequalities are the quadratic symmetric forms

a11X
2 ± 2a12|X | |Y |+ a22Y

2,

where corresponding coefficients a11, a12, a22 are introduced.

(i) Conditions (14) and (15) imply

a22 < 0, a11a22 − a212 > 0,

which, according to Sylvester’s criterion, means that π(x, y, t) < 0 on W . Conse-
quently, set W is a set of points of strict entrance of integral curves of the system (5)
with respect to the sets ω and Ω. Hence, all solutions of the system (5) which satisfy
the condition

(x0 − ϕ0)
2

r21(t0)
+

(y0 − ψ0)
2

r22(t0)
< 1, (18)

satisfy the inequality

(x(t) − ϕ(t))2

r21(t)
+

(y(t)− ψ(t))2

r22(t)
< 1, for t > t0. (19)

Since x0−ϕ0 = y′0−ψ
′

0, then all solutions of the problem (1), (3) satisfy condition (16).

(ii) Conditions (14), (17) imply

a22 > 0, a11a22 − a212 > 0,

which, according to Sylvester’s criterion, means that π(x, y, t) > 0 on W . Conse-
quently, W is a set of points of strict exit of integral curves of the system (5) with
respect to the sets ω and Ω. Hence, according to retraction method, the problem (5),
(18) has at least one solution satisfying condition (19). Consequently, the problem (1),
(3) has at least one solution satisfying condition (16).

Now let us consider solutions of equation (1) which satisfy the condition

y20 + (y′0)
2 ≤ r2(t0). (20)

Theorem 3. Let r ∈ C1(I), r(t) > 0. Then:

(i) If the conditions

F 2(y, t) < 2P (y, t)
(

2rr′ −
∣

∣1−Q(y, t)
∣

∣r2
)

, (21)

P (y, t) > 0, (22)

are satisfied, then all solutions y(t) of the problem (1), (20) satisfy the condition

y2(t) + y′
2
(t) < r2(t), for t > t0. (23)
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(ii) If the conditions

F 2(y, t) < 2P (y, t)
(

2rr′ +
∣

∣1−Q(y, t)
∣

∣r2
)

, (24)

P (y, t) < 0, (25)

are satisfied, then at least one solution of the problem (1), (20) satisfies the condi-
tion (23).

Proof. We consider the system (5). Let (ϕ(t), ψ(t), t), t ∈ I, where ϕ ∈ C1(I), be an
integral curve of the system (5), and consider the set

ω0 =
{

(x, y, t) ∈ Ω
∣

∣ x2 + y2 ≤ r2(t)
}

.

The boundary surface of ω0 is

W0 =
{

(x, y, t) ∈ Clω0

∣

∣ H0(x, y, t) ≡ x2 + y2 − r2(t) = 0
}

.

Let ν(x, y, t) = 1
2
∇H0(x, y, t) be a vector of the outer normal on the surface W0. For

the scalar product π0(x, y, t) = (ν, T ) on the surface W0, we have:

π0(x, y, t) =
[

−P (y, t)x−Q(y, t)y + F (y, t)
]

x+ xy − rr′

= −P (y, t)x2 +
[

1−Q(y, t)
]

xy + F (y, t)x− rr′.

According to the conditions (21), (22), and (24), (25), and by using the inequality
ab ≤ 1

2
(a2 + b2), for a, b ∈ R, the following estimates for π0(x, y, t) on W0 are valid in

the cases (i) and (ii), respectively:

π0(x, y, t) ≤ −P (y, t)x2 + F (y, t)x+
1

2

∣

∣1−Q(y, t)
∣

∣(x2 + y2)− rr′

= −P (y, t)x2 + F (y, t)x+
1

2

∣

∣1−Q(y, t)
∣

∣r2 − rr′ < 0,

π0(x, y, t) ≥ −P (y, t)x2 + F (y, t)x−
1

2

∣

∣1−Q(y, t)
∣

∣(x2 + y2)− rr′

= −P (y, t)x2 + F (y, t)x−
1

2

∣

∣1−Q(y, t)
∣

∣r2 − rr′ > 0.

According to Lemma 1 and Lemma 2, the above estimates for π0 imply the statement
of the theorem.

Example 1. For the problem

y′′ + f(y, t)y′ − f(y, t) sin 2t− 2 cos 2t = 0, (26)

with
∣

∣y0 − sin2 t0
∣

∣ ≤ β exp(−st0),
∣

∣y′0 − sin 2t0
∣

∣ ≤ α exp(−st0), (27)
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where α, β, s ∈ R, α > 0, β > 0, s ≥ 0, α < βs, we have:

If function f(y, t) satisfies the Lipschitz’s condition with respect to the variable y,
with Lipschitz’s constant L, and the condition

f(y, t) > s+
2β

α
L on R× I,

for all y, then the problem (26), (27) has one-parameter class of solutions satisfying
the condition

∣

∣y(t)− sin2 t
∣

∣ ≤ β exp(−st),
∣

∣y′(t)− sin 2t
∣

∣ ≤ α exp(−st), for t > t0.

This result follows from Theorem 1, with r1(t) = α exp(−st), r2(t) = β exp(−st).

Example 2. For the Van der Pol equation

y′′ − µ(1− Φ(y))y′ + y = 0, µ > 0, (28)

and the condition
y2(t0) + y′

2
(t0) ≤ ln2 t0, (29)

we can prove the following:

If function Φ(y) > 1, then all solutions of the problem (28), (29) satisfy the
condition

y2(t) + y′
2
(t) ≤ ln2 t, for t ∈ (t0,∞), t0 > 1.

This result follows from Theorem 3, with r(t) = ln t.
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