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A Numerical Approach to the Estimation of Search
Effort in a Search for a Moving Object∗

Roža Horvat–Bokor†, Miljenko Huzak‡, and Nedžad Limić§

Abstract. A model of diffusion in a bounded domain, randomly killed at a point x at the

rate c(x, κ, z), is considered as a model of search for a moving target. The search effort κ is a

parameter that should be estimated from data and the searcher’s path z is a control variable.

It is assumed that samples of data are obtained by measuring the minimum detection time and

the first exit time up to some prescribed maximum observation time T , for various values

of z. The search effort is estimated by the minimum χ2-method from obtained data and

an appropriate statistical model is calculated numerically. Sensitivity of the minimum χ2-

estimation method with respect to the applied numerical methods is illustrated numerically

by a realistic example.
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1. Introduction

Search for a moving object is a problem which can be formulated in terms of
mathematical models and analyzed efficiently by mathematical methods. Mangel’s
approach [7] is general enough and therefore chosen for our purposes. This approach
is based on splitting the problem into three independent parts and modelling each
part separately: target (moving object) is modelled by a diffusion process on a two-
dimensional domain, searcher is modelled by a deterministic path, moving velocity
along this path and the maximum observation time, while detection model describes
random detection process. The diffusion is defined by diffusion tensor and drift velocity
(sea current, etc.), the searcher’s path and moving velocity are generalized variables,
and the detection depends on distance between target and searcher, and certain pa-
rameters characterizing detector and its handling. Search effort is the most important
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parameter and the object of our study. Thus the detection model unifies the three
independent models into a single one, a model of search for a moving target. The re-
sulting search model is defined by a diffusion killed randomly depending on searcher’s
variables and detection. This stochastic search model has evidently a deterministic
version in which the target is defined by the initial value problem for diffusion equa-
tion, and detection by the detection probability depending on searcher’s variables and
solution of diffusion equation.

The purpose of our analysis is to evaluate numerically a statistical model for
estimation of detection parameters from data. A statistical model is formulated for
a finite number of detection parameters. Based on numerical stability, the minimum
χ2-estimation method is chosen and analyzed numerically. Efficiency of numerical
evaluation of the chosen method is demonstrated by a nontrivial example of a search
for a moving target.

Two standard estimation methods for the proposed statistical model are consid-
ered in Section 2. Moreover, basic results regarding their asymptotic consistency are
also discussed. A review of numerical methods for data simulation and model evalua-
tion is given in Section 3. A nontrivial example of search in a bounded two-dimensional
domain is defined at the beginning of Section 4. Then data on detection are generated
by Monte Carlo methods and the search effort is estimated numerically by applying the
minimum χ2-estimation. The efficiency of the method is demonstrated by comparison
of estimated search effort and its true value.

2. Statistical model

Let D be an open set in the Euclidean space R
d (d ≥ 2) and let X = (Xt, t ≥ 0)

be a diffusion in R
d represented by stochastic differential equation

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dWs, t ≥ 0, (1)

of Itô type (see [9]). The set D represents the search region and the process X
represents the target. The initial position X0 of X is a random variable of known
distribution with a support in D. The diffusion X is randomly killed with the in-
finitesimal rate function (t, x) 7→ c(t, x, κ, z) (see [9]), which depends on an unknown
parameter κ — search effort, and a control variable z, representing a deterministic
search path. The rate function c defines detection by the random time ζ with the
conditional distribution

P(ζ > t|X) = exp

(
−

∫ t

0

c(s,Xs, κ, z) ds

)
, t ≥ 0.

It has to be pointed out that the conditional distribution of this expression tends
generally to a number less than 1, for large values of t.

The target is lost after leaving the set D. Therefore, the first exit time of X from
D, τD = inf{t ≥ 0 | Xt ∈ R

d \D}, is one of variables describing the process. Let η be
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the minimum of ζ and τD. Then η is the detection time. Obviously, the distribution
of η depends on the parameter κ and variable z.

We assume that value of κ belongs to an open set K of an Euclidean space, called
the parametric space. The problem is to estimate the unknown parameter κ, based
on a sequence of independent observations of random variable η for several (generally
different) values of the control variable z, up to some prescribed deterministic time
T > 0, called the maximum observation time. A realization of η is recorded only if it
has a value less than T . Otherwise, the value T is recorded. Let

F (z)(t |κ) = P
(z)
κ (η ≤ t), t ∈ R,

be the distribution function (CDF) of η. Then CDF of the observation min{η, T } is

F
(z)
T (t |κ) = 1{t<T} F

(z)(t |κ) + 1{t≥T}, t ∈ R.

Let the observations be taken for l different values z1, z2, . . . , zl, of the control vari-
able z. Then the statistical model is defined by the following family of probability
distribution functions:

{
F

(zi)
T ( · |κ)

∣∣ i = 1, 2, . . . , l; κ ∈ K
}
. (2)

If CDF F (z)( · |κ) has a density function (PDF) f (z)( · |κ) for all κ ∈ K and
z = zi, i = 1, 2, . . . , l, then the maximum likelihood estimation method provides a
consistent and asymptotically efficient estimator of the parameter κ under some general
conditions (see [5]). Except in a few cases, it is not possible to obtain PDF in a closed
form. So one has to apply numerical methods, including numerical differentiation
which is numerically unstable. To avoid unstable numerical procedures we rather
choose the minimum χ2-estimation method as described in the following.

For any of l values zi, i = 1, . . . , l, of the control variable, we consider a random

sample of length n, n ∈ N, from CDF F
(zi)
T ( · |κ). For any of these samples, let X

(zi)
n

be the sample mean of data strictly less than T , and let Y
(zi)
n be the relative frequency

of data equal to T . For any z = zi, let E
(z)
κ [η | η < T ] be the conditional mean of η,

given {η < T }, and let P
(z)
κ (η ≥ T ) be the probability that η is at least equal to T .

The χ2-function is defined by

Qn(κ) := n

l∑

i=1

(
P
(zi)
κ (η < T )

(
X

(zi)
n − E

(zi)
κ [η | η < T ]

)2

Var(zi)κ [η | η < T ]

+

(
Y

(zi)
n − P

(zi)
κ (η ≥ T )

)2

Var(zi)κ [1{η≥T}]

)
(3)

for any κ ∈ K. The minimum χ2-estimator of κ is any value κ̂n ∈ K which minimizes
the function κ 7→ Qn(κ) over K. If K is a relatively compact set and some identifiable
and regularity assumptions are satisfied, then κ̂n exists for sufficiently large n, and it
is consistent and asymptotically normally distributed estimator of κ (see [3, 2]).
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3. Numerical methods

The estimation procedure of parameter κ in the statistical model (2) consists of
three basic steps:

(i) calculation of the model functionals which are used in the definition of χ2-
function (3),

(ii) minimization of (3), and

(iii) simulation of random samples from (2) to obtain an approximate distribution of
the estimator.

A diffusion process considered on a bounded domain D up to its first exit time
τD from D, has a family of one-dimensional PDFs p(t, ·), t ≥ 0. For calculations of the

functionals E
(zi)
κ [η | η < T ], Var(zi)κ [η | η < T ] and P

(zi)
κ (η ≥ T ), κ ∈ K, i = 1, 2, . . . , l,

from (3), it is sufficient to determine this family.

The function (t, x) 7→ p(t, x) is a solution of an initial value problem for the second-
order parabolic system. In our case the elliptic differential operator of the parabolic
system has the form A = 1

2

∑
i,j ∂iaij∂j +

∑
i ∂i(ai − bi), where aij =

∑
k σikσkj , and

the functions σij and bi are defined in (1), while ai =
1
2

∑
k ∂kaik. The corresponding

initial value problem for PDFs is defined by the following parabolic system (p(t) ≡
p(t, ·)):

∂

∂t
p(t)−A(t)p(t) = 0, p(t)

∣∣
∂D

= 0, t ≥ 0, p(0) is given. (4)

In the case when diffusion is killed with the infinitesimal rate function c, the differential
operator has an additional term, so that its form is given by

A(t) =
1

2

∑

i,j

∂iaij∂j +
∑

i

∂i(ai − bi) + c(t). (5)

The initial value problem (4) with the elliptic operator (5) has solutions t 7→ p(t),
representing one-dimensional PDFs of the diffusion (1), which is killed with the in-
finitesimal rate c.

A numerical procedure to be used to approximate numerically the solution p(t)
of (4) consists of two main steps.

3.1. Space discretization

The orthogonal coordinate system in R
2 is determined by unit vectors ei. For

each n ∈ N, points x = h
∑2

l=1 klel, h = 2−n, kl ∈ Z, define a numerical grid Gn

on R
2. Elements of Gn are called grid knots. The operator (5) is approximated on

Gn(D) = Gn ∩D by finite-dimensional matrices An(t). In this way, the initial value
problem (4) is replaced by a sequence of ODE:

d

dt
pn(t)−An(t)pn(t) = 0, pn(0) is given, (6)
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where pn(t) is a column with card(Gn(D)) elements, representing a numerical approxi-
mation of the PDF p(t). The matrix valued functions An(t) must have compartmental
structure [6]. This ensures that the columns pn(t) are nonnegative, and ‖pn(t)‖1 = 1
when c = 0.

3.2. Time discretization

To solve ODE (6), one has to define points tk = τk, k = 0, 1, . . . , and calculate
numerically solutions pn(t) at the discrete set of times tk. Let pkn be a numerical
approximation of pn(tk) obtained by a method for ODE. The chosen numerical method
must fulfill certain conditions:

(i) the columns pkn must have nonnegative elements,

(ii) ‖pk+1
n ‖1 = ‖pkn‖1 when c = 0,

(iii) there exist L ∈ N and a positive function t 7→ ρ(t), such that for each T > 0,
K ∈ N and τ = T/K:

sup
k≤K

‖pkn − pn(tk)‖1 ≤ ρ(T )τL.

In this case one says that the method converges with the order equal to L.

Among linear one-step methods only the implicit Euler’s method has all the
needed properties (i)–(iii), unconditionally with respect to τ . We rather use a class
of newly developed methods [6]. Methods are explicit, of any order of convergence,
and unconditionally stable. When applied to the example described in the next sec-
tion, our third-order method happens to be 700 times faster than the implicit Euler’s
method.

Simulation of random samples from (2) consists of obtaining realizations of the
random variable

ηT = ζ ∧ τD ∧ T

by using Monte Carlo methods. Realizations of both random variables, ζ and τD,
depend on sample paths of the diffusion X until the observation time T . Moreover,
for ζ, we use the fact that the random variable

ξ =

∫ ζ

0

c(s,Xs, κ, z) ds

is exponentially distributed with expectation 1 and independent of X (see, e.g., [1]).

3.3. Numerical approximation of diffusion

Let the interval [0, T ] be partitioned by points tk = k∆, k = 0, 1, . . . ,K, where
K ∈ N and ∆ = T/K. The stochastic differential equation (1) on [0, T ] is approx-
imated with a system of finite differences, obtained by applying the Euler’s scheme
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to (1) with the time increment ∆. The corresponding sequence of solutions is de-
noted by Y ∆

k , k = 0, 1, . . . ,K. Random variables Y ∆
k define an approximation of the

diffusion process X(·) at times tk.

We say that a discrete time process (Y ∆
k , k = 0, 1, . . . ,K) is a pathwise approxi-

mation of (Xt, t ∈ [0, T ]) at time T , if (see [4])

lim
∆→0

E[ |XT − Y ∆
K | ] = 0.

We say that a discrete time approximation (Y ∆
k , k = 0, 1, . . . ,K) converges strongly

to X at time T , with the order γ > 0 at T , if there exists a positive constant C,
independent of ∆, such that

E[ |XT − Y ∆
K | ] ≤ C∆γ ,

for each ∆ > 0. In our case the Euler’s scheme is used. Therefore, the order of
convergence is equal to 0.5 (see [4, 10]). Numerical approximations of (Xt, t ∈ [0, T ])
are obtained by simulating the discrete time process (Y ∆

k , k = 0, 1, . . . ,K).

3.4. Simulation of sample from (2)

Having a discrete time approximation (Y ∆
k , k = 0, 1, . . . ,K) of X , we simulate

an exponentially distributed value ξ with expectation 1 independently from (Y ∆
k , k =

0, 1, . . . ,K). The approximate value of ζ is the first time point tl of the interval [0, T ],
which satisfies

∆

l∑

i=0

c(ti, Y
∆
i , κ, z) ≥ ξ,

and the approximate value of τD is the first time point tl of the interval [0, T ], which
satisfies Y ∆

l /∈ D.

4. An example

For the sake of model simplicity, we assume that the target moves as a two-
dimensional scaled Brownian motion

Xt = X0 + σWt, t ≥ 0, (σ2 = 0.5),

with initial position X0 = (0.5, 0.5), the center of the square D = 〈0, 1〉 × 〈0, 1〉 where
the search is taking place. The searcher tries to detect the target by using one of ten
different paths zi, i = 1, 2, . . . , 10, over D, defined by

zi(t) =





xi0 + tv
(1)
i , 0 ≤ t ≤

13

24
T ,

zi

(
13

24
T

)
+

(
t−

13

24
T

)
v
(2)
i ,

13

24
T < t ≤ T ,

T ≥ 0.
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The initial positions xi0 and the velocities v
(1)
i , v

(2)
i , for i = 1, 2, . . . , 10, are presented

in Figure 1. The rate function of detection, c, is

c(t, x, κ, z) = 10κ 1{|x−z(t)|<1/
√
40},

where the search effort κ is one-dimensional parameter. The maximum observation
(search) time is T = 1.2.
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Figure 1. The initial positions and velocity directions of zi, i = 1, 2, . . . , 10.

To test sensitivity of the minimum χ2-estimation method of Section 2 with respect
to the applied numerical methods of Section 3, we simulated M = 1001 random
samples of length 10n = 10000 from the statistical model (2) (n = 1000 data per each
path zi, i = 1, 2, . . . , 10). We assumed that the true value of the search effort κ is 1.
For each sample we calculated the minimum χ2-estimate κ̂n over presumed parameter
space K = 〈0.75, 1.25〉. In this way, we obtained the sample of M realizations of κ̂n.
From the so simulated data, we estimated the mean E[κ̂n], and the standard deviation
std[κ̂n] of the estimator κ̂n.
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We repeated the whole procedure three times, each time using a different combi-
nation of discretization parameters in numerical calculations of the model functionals
in (3). We chose combinations of the space discretization parameter h and the time dis-
cretization parameter τ (see Table 1 below), yielding relative errors not larger than 3%.
In all cases we simulated random samples by using the Euler’s scheme for pathwise
approximations of X with time discretization parameter ∆ = 1/200 (see Section 3).
The summary data are shown in Table 1.

(h, τ) (1/40, 1/400) (1/60, 1/1000) (1/80, 1/2400)

Ê[κ̂n] 1.04025 1.02078 1.004845

ŝtd[κ̂n] 2.7539e−02 2.6978e−02 2.6515e−02

Table 1.

We notice from the table that the component of bias due to the numerical meth-
ods, decreases when both discretization parameters h and τ decrease. On the other
hand, it seems that the standard deviation is not significantly sensitive to the same
parameters.
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