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Abstract. We give an overview of our recent work on accurate computation of generalized

eigenvalue and singular value decompositions of matrix pairs and triplets. Our goal is to

develop efficient and highly accurate algorithms and to produce high quality mathematical

software. Using error analysis and perturbation theory, we develop templates for accurate

floating point computation of the product and quotient induced singular value decomposi-

tions, canonical correlations and diagonalization of symmetric pencils H − λM , HM − λI ,

with positive definite H , M . The new algorithms are numerically robust. For instance, the

eigenvalues of H − λM and HM − λI are computed with optimal relative error bound: each

eigenvalue λ is computed with relative error |δλ|/λ of order (up to a factor of the dimension)

u{min∆∈D κ2(∆H∆) + min∆∈D κ2(∆M∆)}, where u is the roundoff unit and D is the set

of nonsingular diagonal matrices. Moreover, the backward error is elementwise small in the

sense that finite precision computation corresponds to an exact computation with H + δH ,

M + δM , where for all i, j and some moderate functions f and g, |δHij | ≤ f(n)u
√

HiiHjj ,

|δMij | ≤ g(n)u
√

MiiMjj .
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1. Introduction

Various forms of decompositions of matrices, matrix pairs and triplets are powerful
tools in theoretical and numerical treatment of problems in applied sciences (see,
e.g., [10, 9, 8, 1]).

In this paper, we are particularly interested in decompositions related to gener-
alized singular value and generalized symmetric eigenvalue problems. These include
the ordinary singular value decomposition (SVD), the product induced SVD of matrix
pairs (PSVD), the quotient SVD of matrix pairs (QSVD), the SVD with respect to
pairs of elliptic norms ((H,K)–SVD), and spectral decomposition of symmetric pencils
H − λM , HM − λI, with positive definite matrices H and M .

Our goal is to compute these decompositions with high accuracy whenever nu-
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merically feasible. We consider high accuracy numerically feasible if small initial un-
certainties in the data induce small relative uncertainties in the target values. In that
case we say that those values are well determined by the data. So, for instance, the
eigenvalues of HMx = λx are well determined if changing n × n matrices H and M
to H+ δH and M + δM , where |δHij | ≤ ε|Hij |, |δMij | ≤ ε|Mij |, 1 ≤ i, j ≤ n, changes
any eigenvalue λ by δλ, |δλ| ≤ c(H,M)f(n)ε|λ|, where c(H,M) is a moderate condi-
tion number and f(n) is a moderate polynomial. Analogously, with properly chosen
metric and proper condition numbers, we can define well determined eigenvectors and
eigenspaces. For the sake of simplicity, in this paper we consider only the singular
value and eigenvalue computations.

A desirable property of an algorithm is that it approximates the well determined
eigenvalues (and singular values) with high relative accuracy independent of their
magnitudes. This is an important issue, because the smallest eigenvalues are in ap-
plications usually the most interesting ones and, unfortunately, the most sensitive
ones in presence of numerical errors. To design such an algorithm, we need detailed
knowledge of the structure of errors produced by finite precision implementation of
the algorithm, as well as deep understanding of the sensitivity to perturbations of the
original problem.

Consider, for simplicity, the ordinary symmetric eigenvalue problem Hx = λx.
The matrix H is diagonalized by an infinite number of orthogonal similarity trans-
formations, · · ·U τ

2 (U
τ
1HU1)U2 · · · −→ Λ, and in the limit U τHU = Λ, where U =

U1U2 · · · and Λ is the diagonal matrix of H ’s eigenvalues. In finite precision compu-
tation, each transformation Ui is approximated by some Ũi, and applied with some
error Ei. Moreover only a finite number of transformations is used:

H̃k = Ũ τ
k ( · · · (Ũ τ

2 (Ũ
τ
1 HŨ1 + E1)Ũ2 + E2) · · · )Ũk + Ek.

The index k is chosen so that H̃k is sufficiently close to diagonal matrix and its
diagonals are taken as approximative eigenvalues λ̃1, . . . , λ̃n of H . Let Û = Ũ1 · · · Ũk,
and let Ũ denote the computed matrix Û . The columns of Ũ are the computed
approximations of the eigenvectors of H . To assess the error in the computed values,
we prove the existence of symmetric perturbation δH such that Û τ (H + δH)Û =

H̃k exactly. The matrix δH is called backward error. Different algorithms produce
backward errors of different structures and different sizes.

The problem of assessing the error is thus transformed into a perturbation prob-
lem: If H is changed to H + δH , estimate |δλ|. By the classical Weyl’s theorem
|δλ| ≤ ‖δH‖2, where ‖H‖2 = max‖x‖2=1 ‖Hx‖2. The error in the output is not larger
than the error in the input. Are we satisfied with this rather strong result?

Consider the following symmetric matrix and its eigenvalues computed by using
MATLAB’s function eig.

H =



1040 1029 1019

1029 1020 109

1019 109 1


, eig(H) =




1.000000000000000 · 1040
0

−8.100009764062724 · 1019


. (1)
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Thus, the matrix H is indefinite and numerically singular.

How reliable is this conclusion? Let us for the sake of the experiment try to
compute the Cholesky factorization H = LτL, which is essentially unique for positive
definite matrices. In that case, the eigenvalues of H are the squared singular values
of L. So, let us try to compute L and its squared singular values. By using MATLAB’s
functions L = chol(H) and svd(L), we obtain1

L ≈



1020 109 10−1

0 9.94 · 109 9.04 · 10−2

0 0 9.90 · 10−1


, svd(L).2 =



1.000000000000000 · 1040
9.900000000000002 · 1019
9.818181818181819 · 10−1


. (2)

The function chol declares the matrixH positive definite and different numbers appear
as possible candidates for the two smallest eigenvalues of H . Does this mean that the
two eigenvalues are not well determined byH? Are the two sets of values just computed
merely random?

Let us experiment. Let us invert H numerically, compute the spectrum of the
numerical inverse and take the reciprocals of the computed eigenvalues. Numerical
inversion is done by using MATLAB’s function inv. The computed eigenvalues are

eig(inv(H)).−1 =



1.000000000000000 · 1040
9.900000000000002 · 1019
9.818181818181817 · 10−1


. (3)

Now consider this rather odd algorithm to compute the spectrum of H : Invert H nu-
merically, then invert the computed inverse and then use the function eig to compute
the eigenvalues of inv(inv(H)). We obtain

eig(inv(inv(H))) =



1.000000000000000 · 1040
9.900000000000000 · 1019
9.818181818181817 · 10−1


. (4)

Our final experiment goes as follows. Write H as H = DAD with

A =




1 0.1 0.1
0.1 1 0.1
0.1 0.1 1


, D =



1020 0 0
0 1010 0
0 0 1


.

The pencils H−λI and A−λD−2 are equivalent, and the spectrum of H can be com-
puted as generalized eigenvalues of A− λD−2. The latter are computed in MATLAB
as

eig(A,D−2) =



1.000000000000000 · 1040
9.900000000000002 · 1019
9.818181818181818 · 10−1


. (5)

1For simplicity, the matrix L is given only with few decimal places.
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Comparing (1), (2), (3), (4) and (5), we see that the results of eig(H) are considerably
different from others. In fact, one can show that only eig(H) failed to compute the
two smallest eigenvalues to full machine precision!

An analysis of eig gives for the backward error ‖δH‖2 ≤ α · eps · ‖H‖2, where
eps ≈ 2.22 · 10−16, α ≈ O(1). Thus, in the eigenvalues computed by eig(H) each
eigenvalue has an uncertainty up to ‖δH‖2 ≤ α · 2.22 · 1024. We have

|δλ|
|λ| ≤ ‖δH‖2

|λ| ≤ ‖δH‖2
‖H‖2

‖H‖2‖H−1‖2.

Here the quantity κ2(H) = ‖H‖2‖H−1‖2 is the condition number. In our 3×3 example
κ2(H) ≈ 1040. This certainly means bad news for small eigenvalues. But the fact that
several different algorithms in our example produce almost identical approximations
of the eigenvalues indicates that the condition number κ2(H) is artificial and only a
consequence of specific δH . For a detailed analysis see [3, 11, 2].

Similar difficulties occur in generalized eigenvalue and singular value problems
where two or more matrices are involved. We use perturbation theory to identify
classes of matrices with well determined decompositions. In such an analysis, we also
determine the form of perturbation that yields smaller condition numbers. Finally,
we try to design an algorithm capable of achieving optimal accuracy in previously
defined classes. In the next section we briefly describe our approach, strategy, goals,
and some recent results in algorithmic development. We avoid technical details and
refer the reader to [4, 5, 6, 7, 2]. Also, for brevity, we only describe the PSVD and the
HMx = λx problems.

2. Accurate computation of the PSVD

Our approach to numerical computation of the SVD of the product BτC is based
on the following theorem.

Theorem 1. Let p × m matrix B and p × n matrix C be of full row rank, and let

B̃ = B+δB, C̃ = C+δC be perturbed matrices such that ‖B†δB‖2 < 1, ‖C†δC‖2 < 1.
If σ1 ≥ · · · ≥ σmin{m,n} and σ̃1 ≥ · · · ≥ σ̃min{m,n} are the singular values of BτC

and B̃τ C̃, respectively, then, for all i, either σi = σ̃i = 0, or

|σ̃i − σi|
σi

≤ ‖B†δB‖2 + ‖C†δC‖2 + ‖B†δB‖2‖C† δC‖2.

The crucial observation is the invariance of B†δB and C†δC under certain row
scalings. That fact motivates the set of requirements listed below. With each require-
ment we briefly comment how our algorithm from [5] behaves with respect to that
requirement.

(i) The backward error matrices δB, δC should be small not only in the sense2

‖δB‖/‖B‖ ≪ 1, ‖δC‖/‖C‖ ≪ 1, but also in the following stronger sense: for each row

2Here the symbol ‖ · ‖ denotes some matrix norm. On vectors, it denotes the Euclidean norm.
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index i,

‖δB(i, :)‖ ≤ fB(p,m)u‖B(i, :)‖, ‖δC(i, :)‖ ≤ fC(p, n)u‖C(i, :)‖,

where fB, fC are modest functions of matrix dimensions. This means that the back-
ward error in small rows is correspondingly small — small rows are preserved.

The proposed algorithm satisfies the row-wise backward error requirement, inde-
pendent of any rank assumptions.

(ii) The computed results should be accurate in the class of row-wise well scaled
problems . Let us explain: The current theory (cf., e.g., [2]) states that with the
row-wise small backward errors δB, δC, and with full row rank B and C, the loss

of accuracy is determined by the condition numbers ‖B†
r ‖, ‖C†

r ‖, where B = DBBr,

C = DCCr, DB = diag(‖B(i, :)‖), DC = diag(‖C(i, :)‖). If ‖B†
r ‖ and ‖C†

r ‖ are
moderate, we say that the PSVD of BτC is row-wise well scaled. Note that Br and
Cr have unit rows, and that the class of row-wise well scaled problems is closed under
diagonal scalings — as long as the backward error is row-wise small, the accuracy of
the algorithm is the same for all matrices (D1B)τ (D2C), where D1, D2 are arbitrary
diagonal matrices .

The proposed algorithm is accurate on row-wise well scaled problems. The singular
values are computed with relative error bound

max
i

|δσi|
σi

≤ fB,C(m,n, p)u(‖B†
r ‖+ ‖C†

r ‖).

Note that
‖B†

r ‖ ≤ √
p min
D=diag

κ(DB),

that is, the algorithm computes as if B and C were optimally scaled! The code is
equipped with a condition estimator and it optionally returns both the results and error
estimates. Note: the algorithm can be modified to work well on wider class of input ma-
trices. If, for example, the matrix C is structured as (diagonal )×(well–conditioned )×
(diagonal ), the modification requires only one sorting of the rows of C.

(iii) The algorithm should be simple and efficient, based on only a few building
blocks which are common in singular value computation. These include, for exam-
ple, the QR factorization (with column or complete pivoting), matrix multiplication,
and an ordinary SVD procedure. Numerical analysis of the complete algorithm gives
specific requirements on each building block. So, for instance, we require the classi-
cal matrix multiplication and avoid Strassen–like fast procedures. The Householder
or Givens QR factorization with column pivoting (the best one is BLAS 3 based
SGEQP3) satisfies all requirements. For numerically optimal results, the ordinary
SVD procedure should have the accuracy of the Jacobi SVD algorithm. The modular
structure of the algorithm makes it possible always to use the best currently available
codes. This also opens possibilities for straightforward parallelizations in PBLAS and
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ScaLAPACK styles. (We are currently working on a parallel implementation of the
code.)

The proposed algorithm satisfies the simplicity and efficiency requirements. It
uses two diagonal scalings, one QR factorization with column pivoting, one matrix
multiplication [dense]× [triangular ] (STRMM), and one SVD computation (by Jacobi
SVD algorithm to enhance numerical precision).

3. Accurate eigenvalues of HM − λI

The behaviour of the eigenvalues of HM − λI under symmetric elementwise per-
turbations |δH | ≤ ε|H |, |δM | ≤ ε|M | is well understood. In the following two theo-
rems the relevant condition numbers are related to the matrices Hs and Ms, where
H = DHHsDH , M = DMMsDM , and DH = diag(Hii)

−1/2, DM = diag(Mii)
−1/2.

Theorem 2. Let H and M be n × n real symmetric and positive definite matrices,
and let δH, δM be symmetric perturbations such that |δH | ≤ ε|H |, |δM | ≤ ε|M |.
Furthermore, let

2nεmax{‖H−1
s ‖2, ‖M−1

s ‖2} < 1.

If λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n are the eigenvalues of HM and (H + δH)(M +
δM), respectively, then

max
1≤i≤n

|λ̃i − λi|
λi

≤ 6
√
2n

(
‖H−1

s ‖2max
i,j

|δHij |√
HiiHjj

+ ‖M−1
s ‖2 max

i,j

|δMij |√
MiiMjj

)
.

Theorem 3. Let H and M be as in Theorem 2, and let κ > 1. If for all ε < 1/κ
and all symmetric perturbations as in Theorem 2, the eigenvalues λ1 ≥ · · · ≥ λn and
λ̃1 ≥ · · · ≥ λ̃n of HM and (H + δH)(M + δM), respectively, satisfy

max
1≤i≤n

|λ̃i − λi|
λi

≤ κε,

then

max{‖H−1
s ‖2, ‖M−1

s ‖2} ≤ 1 + κ

2
.

Since the elementwise rounding errors in H and M are generally unavoidable, we
can hope to approximate the spectrum of HM − λI with high relative accuracy only
if the matrices Hs and Ms are well conditioned. This and some other considerations
yield the following road map for the algorithmic development (see [5]):

(i) The backward error should be elementwise small: the computed eigenval-
ues λi + δλi correspond to the exact eigenvalues of (H + δH)(M + δM), where
maxi,j |δHij |/

√
HiiHjj and maxi,j |δMij |/

√
MiiMjj are, up to certain factors of the

dimension, of the order of the roundoff u. In other words, the backward perturbed
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matrix can be represented as

H + δH = DH(Hs + δHs)DH , |(δHs)ij | ≤ fH(n)u,

M + δM = DM (Ms + δMs)DM , |(δMs)ij | ≤ fM (n)u.

The proposed algorithm satisfies the elementwise backward error requirement. The
only condition is that floating point Cholesky factorizations of H and M complete
without breakdown. Note: if floating point Cholesky factorization fails, then the ma-
trix is elementwise close to a symmetric nondefinite matrix and a different approach
(natural factor formulation, implicit solution of Lyapunov equations) to the whole prob-
lem is strongly advised, because the accuracy is very likely lost at the very moment of
storing H and M (and even exact computation wouldn’t produce useful results).

(ii) The computed results should be as accurate as the data warrants. This is
ensured by strong requirements on the backward error, and by the perturbation theory
which precisely identifies matrices for which high accuracy is possible: symmetric
positive definite matrix pencil HM−λI determines its eigenvalues well in the presence
of rounding errors if and only if the condition numbers of the matrices Hs and Ms

are moderate.

The proposed algorithm satisfies this high accuracy requirement. Once the ma-
trices H and M are stored, the algorithm computes the eigenvalues with condition
number of order of κ(Hs) + κ(Ms), where κ(X) = ‖X‖ ‖X−1‖. That is,

max
1≤i≤n

|δλi|
λi

≤ fH,M (n)u(κ(Hs) + κ(Ms)).

This means that this sharp error bound is the same for all pencils

(D1HD1)(D2MD2)− λI,

where D1, D2 are arbitrary diagonal nonsingular matrices. Note that

κ(Hs) ≤ n min
D=diag

κ(DHD),

that is, the algorithm computes as if H and M were nearly optimally scaled! The
code is equipped with a condition number estimator, and it optionally returns both the
result and error estimates.

(iii) The algorithm should be simple and efficient, based on only a few building
blocks which are common in symmetric matrix computation and for which reliable and
optimized implementations already exist. These include, for instance, the Cholesky
factorization (with pivoting), matrix multiplication with triangular matrices, ordinary
eigenvalue (or singular value) solver.

The proposed algorithm satisfies the simplicity and efficiency requirements. It
uses two symmetric diagonal scalings (multiplications with diagonal matrices), one
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Cholesky factorization (pure), one Cholesky factorization with pivoting, one matrix
multiplication [square dense]× [square triangular ] (STRMM), and one ordinary SVD
(by Jacobi method to enhance numerical accuracy).

Almost identical description applies to the QSVD and the Hx = λMx problems,
as well as to the (H,K)–SVD and SVD of matrix triplets (including canonical cor-
relations problem). Our algorithms are implemented in an efficient, rigorously tested
software.
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