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Hadamard matrices

A matrix H € M, ({—1,1}) is a Hadamard matrix if H-H™ = v/
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Hadamard matrices

A matrix H € M, ({—1,1}) is a Hadamard matrix if H-H™ = v/

1 1 1 1

1 1 1 -1 1 -1

Examples. [ 1 }, [ 1 _1 ] , 1 1 -1 1
1 -1 -1
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A matrix H € M, ({—1,1}) is a Hadamard matrix if H-H™ = v/

1 1 1 1

1 1 1 -1 1 -1

Examples. [ 1 }, [ 1 _1 ] , 1 1 -1 1
1 -1 -1 1

J. J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous
sign successions and tesselated pavements in two or more colours, with
applications to Newton's rule, ornamental tile work and the theory of
numbers, Phil. Mag. 34 (1867), 461-475.
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Hadamard matrices

A matrix H € M, ({—1,1}) is a Hadamard matrix if H-H'=v/

1 1 1 1

1 1 1 -1 1 -1

Examples. [ 1 }, [ 1 _1 ] , 1 1 -1 1
1 -1 -1 1

J. J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous
sign successions and tesselated pavements in two or more colours, with
applications to Newton's rule, ornamental tile work and the theory of
numbers, Phil. Mag. 34 (1867), 461-475.

Proposition.
Hadamard matrices exist for all orders of the form v = 2™
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Hadamard matrices

J. Hadamard, Résolution d’une question relative aux déterminants, Bull.
Sciences Math. (2) 17 (1893), 240-246.
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Hadamard matrices

J. Hadamard, Résolution d’une question relative aux déterminants, Bull.
Sciences Math. (2) 17 (1893), 240-246.

v v
\detA\2 < HZ ]a,-j|2

i=1j=1
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Hadamard matrices

J. Hadamard, Résolution d’une question relative aux déterminants, Bull.
Sciences Math. (2) 17 (1893), 240-246.

v v
det AP < [Ty

i=1j=1

Hadamard matrices exist for orders v = 12 and v = 20
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Hadamard matrices

J. Hadamard, Résolution d’une question relative aux déterminants, Bull.
Sciences Math. (2) 17 (1893), 240-246.

v v
det AP < [Ty

i=1j=1

Hadamard matrices exist for orders v = 12 and v = 20

Proposition.

If a Hadamard matrix of order v exists, then v=1, v=2or v =4m
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Hadamard matrices

J. Hadamard, Résolution d’une question relative aux déterminants, Bull.
Sciences Math. (2) 17 (1893), 240-246.

v v
det AP < [Ty

i=1j=1

Hadamard matrices exist for orders v = 12 and v = 20

Proposition.

If a Hadamard matrix of order v exists, then v=1, v=2or v =4m

Hadamard conjecture:

Hadamard matrices exits for all orders of the form v = 4m
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Hadamard matrices

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and
Physics 12 (1933), 311-320.
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Hadamard matrices

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and
Physics 12 (1933), 311-320.

Let g be a prime power. If ¢ =3 (mod 4), then there exists a Hadamard
matrix of order v =g+ 1. If ¢ =1 (mod 4), then there exists a
Hadamard matrix of order v = 2(q + 1).
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Hadamard matrices

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and
Physics 12 (1933), 311-320.

Let g be a prime power. If ¢ =3 (mod 4), then there exists a Hadamard
matrix of order v =g+ 1. If ¢ =1 (mod 4), then there exists a
Hadamard matrix of order v = 2(q + 1).

The smallest order for which a Hadamard matrix is unknown:

v =668 =4 167
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Hadamard matrices

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and
Physics 12 (1933), 311-320.

Let g be a prime power. If ¢ =3 (mod 4), then there exists a Hadamard
matrix of order v =g+ 1. If ¢ =1 (mod 4), then there exists a
Hadamard matrix of order v = 2(q + 1).

The smallest order for which a Hadamard matrix is unknown:

v=668=4-167 (g=v—1=667=23-29)
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Hadamard matrices

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and
Physics 12 (1933), 311-320.

Let g be a prime power. If ¢ =3 (mod 4), then there exists a Hadamard
matrix of order v =g+ 1. If ¢ =1 (mod 4), then there exists a
Hadamard matrix of order v = 2(q + 1).

The smallest order for which a Hadamard matrix is unknown:

v=668=4-167 (g=%—1=333=32.37)
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Hadamard matrices

R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and
Physics 12 (1933), 311-320.

Let g be a prime power. If ¢ =3 (mod 4), then there exists a Hadamard
matrix of order v =g+ 1. If ¢ =1 (mod 4), then there exists a
Hadamard matrix of order v = 2(q + 1).

The smallest order for which a Hadamard matrix is unknown:

v=668=4-167 (g=%—1=333=32.37)

I. S. Kotsireas, 130+ years of the Hadamard conjecture, Combinatorial
Designs and Codes (CODESCQ'24), July 8-12, 2024, Sevilla, Spain.
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull.
Amer. Phys. Soc. 16 (8) (1971), 825-826.
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull.
Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566-572.
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull.
Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with {—1, 1}-entries is a function

H:{1,...,v}"— {-1,1}
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull.
Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with {—1, 1}-entries is a function
H:{1,...,v}"— {-1,1}
It is Hadamard if all (n — 1)-dimensional parallel slices are orthogonal:
> H(it, ... a, ... i) H(i, .. by in) = v L6,

. ~
1<it,eenijyeeyin<v
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Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull.
Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with {—1, 1}-entries is a function
H:{1,...,v}"— {-1,1}
It is Hadamard if all (n — 1)-dimensional parallel slices are orthogonal:
> H(it, ... a, ... i) H(i, .. by in) = v L6,

. ~
1<it,eenijyeeyin<v

It is proper Hadamard if all 2-dimensional slices are Hadamard matrices.
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull.
Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with {—1, 1}-entries is a function
H:{1,...,v}"— {-1,1}
It is Hadamard if all (n — 1)-dimensional parallel slices are orthogonal:
> H(it, ... a, ... i) H(i, .. by in) = v L6,

1< yeeljyensin<V
It is proper Hadamard if all 2-dimensional slices are Hadamard matrices.

Parallel slices of dimension k are obtained by varying some k variables and
fixing the remaining n — k variables so that they agree in all but one of the
fixed variables.
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Higher-dimensional Hadamard matrices

The degree of propriety of an n-dimensional Hadamard matrix is the least
d such that all parallel (d — 1)-dimensional slices are orthogonal. This
implies orthogonality of parallel (k — 1)-dimensional slices for all k > d.
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Higher-dimensional Hadamard matrices

The degree of propriety of an n-dimensional Hadamard matrix is the least
d such that all parallel (d — 1)-dimensional slices are orthogonal. This
implies orthogonality of parallel (k — 1)-dimensional slices for all k > d.

Ordinary n-dimensional Hadamard matrices: degree d = n

Proper n-dimensional Hadamard matrices: degree d = 2
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Ordinary n-dimensional Hadamard matrices: degree d = n

Proper n-dimensional Hadamard matrices: degree d = 2

Proposition.

o If a proper n-dimensional Hadamard matrix of order v exists,
thenv=1 v=2o0orv=4m
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Higher-dimensional Hadamard matrices

The degree of propriety of an n-dimensional Hadamard matrix is the least
d such that all parallel (d — 1)-dimensional slices are orthogonal. This
implies orthogonality of parallel (k — 1)-dimensional slices for all k > d.

Ordinary n-dimensional Hadamard matrices: degree d = n

Proper n-dimensional Hadamard matrices: degree d = 2

Proposition.

o If a proper n-dimensional Hadamard matrix of order v exists,
thenv=1 v=2o0orv=4m

@ If an ordinary n-dimensional Hadamard matrix of order v existis,
thenv=1orv=2m
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Higher-dimensional Hadamard matrices

The degree of propriety of an n-dimensional Hadamard matrix is the least
d such that all parallel (d — 1)-dimensional slices are orthogonal. This
implies orthogonality of parallel (k — 1)-dimensional slices for all k > d.

Ordinary n-dimensional Hadamard matrices: degree d = n

Proper n-dimensional Hadamard matrices: degree d = 2

Proposition.

o If a proper n-dimensional Hadamard matrix of order v exists,
thenv=1 v=2o0orv=4m

@ If an ordinary n-dimensional Hadamard matrix of order v existis,
thenv=1orv=2m

Proposition.

| A\

For any dimension n > 2, there exist proper n-dimensional Hadamard
matrices of orders v = 2.
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Proper n-dimensional Hadamard matrices

Yi Xian Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The
University of Sidney, 1987.
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Proper n-dimensional Hadamard matrices

Yi Xian Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The
University of Sidney, 1987.

Theorem (Product construction)

If h:{1,...,v}2 — {—1,1} is a 2-dimensional Hadamard matrix of
order v, then _ _ o
H(i,y ... in) = H h(ij, ix)
1< j<k<n

is a proper n-dimensional Hadamard matrix of order v, for all n > 3.
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Proper n-dimensional Hadamard matrices

Yi Xian Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The
University of Sidney, 1987.

Theorem (Product construction)

If h:{1,...,v}2 — {—1,1} is a 2-dimensional Hadamard matrix of
order v, then _ _ o
H(i,y ... in) = H h(ij, ix)
1< j<k<n

is a proper n-dimensional Hadamard matrix of order v, for all n > 3.

W. de Launey, R. M. Stafford, Automorphisms of higher-dimensional
Hadamard matrices, J. Combin. Des. 16 (2008), no. 6, 507-544.
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Proper n-dimensional Hadamard matrices

Yi Xian Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The
University of Sidney, 1987.

Theorem (Product construction)

If h:{1,...,v}2 — {—1,1} is a 2-dimensional Hadamard matrix of
order v, then _ _ o
H(i,y ... in) = H h(ij, ix)
1< j<k<n

is a proper n-dimensional Hadamard matrix of order v, for all n > 3.

W. de Launey, R. M. Stafford, Automorphisms of higher-dimensional
Hadamard matrices, J. Combin. Des. 16 (2008), no. 6, 507-544.

Question: Are there examples with inequivalent 2-dimensional slices?
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Ordinary n-dimensional Hadamard matrices

Ordinary n-dimensional Hadamard matrices exist for some v =2 (mod 4)!
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Y. X. Yang, X. X. Niu, C. Q. Xu, Theory and applications of higher-

dimensional Hadamard matrices, Second edition, Chapman and Hall /

Ordinary n-dimensional Hadamard matrices exist for some v
CRC Press, 2010.
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Ordinary n-dimensional Hadamard matrices

Theorem (Dimension++)

If his an n-dimensional Hadamard matrix of order v, then

H(il, R in+1) = h(il, ceeyin—1, in + int1 mod V)

is an (n + 1)-dimensional Hadamard matrix of order v.
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Ordinary n-dimensional Hadamard matrices

Theorem (Dimension++)

If his an n-dimensional Hadamard matrix of order v, then

H(il, R in+1) = h(il, wevyin—1, in + iny1 mod V)

is an (n + 1)-dimensional Hadamard matrix of order v.

Theorem (Digit construction)

If his a 2-dimensional Hadamard matrix of order v = (2t)°, s > 1, then

H(io, 2o a =l @y o o - a.jsfl) =
= h(io + (2t)i1 +...+ (2t)s_1i5,1, Jo+ (2t)_j1 +...+ (2t)s_1_js,1)

is a (2s)-dimensional Hadamard matrix of order 2t.
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Ordinary n-dimensional Hadamard matrices

If the Hadamard conjecture is true, then n-dimensional Hadamard matrices
exist for all even orders v and all dimensions n > 4.
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Ordinary n-dimensional Hadamard matrices

If the Hadamard conjecture is true, then n-dimensional Hadamard matrices
exist for all even orders v and all dimensions n > 4.

What about dimension n =37
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Ordinary n-dimensional Hadamard matrices

If the Hadamard conjecture is true, then n-dimensional Hadamard matrices
exist for all even orders v and all dimensions n > 4.

What about dimension n =37

There exist 3-dimensional Hadamard matrices of orders v =2 -3 m > 1. I
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Ordinary n-dimensional Hadamard matrices

If the Hadamard conjecture is true, then n-dimensional Hadamard matrices
exist for all even orders v and all dimensions n > 4.

What about dimension n =37

There exist 3-dimensional Hadamard matrices of orders v =2 -3 m > 1. I

Existence: v = 2,6,10, 14, 18,22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . ..

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 13/93



Ordinary n-dimensional Hadamard matrices

If the Hadamard conjecture is true, then n-dimensional Hadamard matrices
exist for all even orders v and all dimensions n > 4.

What about dimension n =37

There exist 3-dimensional Hadamard matrices of orders v =2 -3 m > 1. I

Existence: v = 2,6,10, 14, 18,22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . ..

Questions: (from Y. X. Yang's book)

@ Prove or disprove the existence of 3-dimensional Hadamard matrices
of orders 4k +2 # 2-3™M.

@ Construct more 3-dimensional Hadamard matrices of orders 4k + 2.
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Ordinary n-dimensional Hadamard matrices

If the Hadamard conjecture is true, then n-dimensional Hadamard matrices
exist for all even orders v and all dimensions n > 4.

What about dimension n =37

There exist 3-dimensional Hadamard matrices of orders v =2 -3 m > 1.

Existence: v = 2,6,10, 14, 18,22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . ..

P. J Shlichta: VI. FUTURE RESEARCH AND APPLICATIONS

The present exposition suggests a number of unsolved
problems and unproven conjectures. Some examples
follow.

a) The algebraic approach to the derivation of two-di-
mensional Hadamard matrices [2}-[7] suggests that a
similar procedure may be feasible for three- or
higher dimensional matrices.
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Ordinary n-dimensional Hadamard matrices

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Three-dimensional Hadamard
matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.
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Ordinary n-dimensional Hadamard matrices

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Three-dimensional Hadamard
matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.

H: (Fqu{oo})® — {1,-1}, q odd prime power

-1, ifx=y=z
1, fx=y+#z
orx=z#y
ory =z #x,
Hx,y:2) = x(z - y), if x = oo,
X(x — 2), if y = oo,
X(y _X)7 if z= 00,
X((x = y)(y —z)(z — x)), otherwise.
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Ordinary n-dimensional Hadamard matrices

Hadamard matrices of dimension n = 3 and order v = g + 1 exist for all
odd prime powers g. The Paley-type construction gives proper Hadamard
matrices if ¢ = 3 (mod 4), and ordinary H. matrices if ¢ =1 (mod 4).
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Ordinary n-dimensional Hadamard matrices

Hadamard matrices of dimension n = 3 and order v = g + 1 exist for all
odd prime powers g. The Paley-type construction gives proper Hadamard
matrices if ¢ = 3 (mod 4), and ordinary H. matrices if ¢ =1 (mod 4).

Existence: v = 2,6, 10, 14,18,22, 26, 30,34, 38, 42, 46, 50, 54,58, 62, . ..
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Ordinary n-dimensional Hadamard matrices

Hadamard matrices of dimension n = 3 and order v = g + 1 exist for all
odd prime powers g. The Paley-type construction gives proper Hadamard
matrices if ¢ = 3 (mod 4), and ordinary H. matrices if ¢ =1 (mod 4).

Existence: v = 2,6, 10, 14,18,22, 26, 30,34, 38, 42, 46, 50, 54,58, 62, . ..

Questions:

©@ What about dimension n = 3 and orders v = 22, 34, 46, 58,...7
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Ordinary n-dimensional Hadamard matrices

Hadamard matrices of dimension n = 3 and order v = g + 1 exist for all
odd prime powers g. The Paley-type construction gives proper Hadamard
matrices if ¢ = 3 (mod 4), and ordinary H. matrices if ¢ =1 (mod 4).

Existence: v = 2,6, 10, 14,18, 22, 26,30, 34,38,42,46,50,54,58,62, ...
Questions:
©@ What about dimension n = 3 and orders v = 22, 34, 46, 58,...7

@ Can other known construction techniques for 2-dimensional
Hadamard matrices be generalized to higher dimensions?
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Ordinary n-dimensional Hadamard matrices

Hadamard matrices of dimension n = 3 and order v = g + 1 exist for all
odd prime powers g. The Paley-type construction gives proper Hadamard
matrices if ¢ = 3 (mod 4), and ordinary H. matrices if ¢ =1 (mod 4).

Existence: v = 2,6, 10, 14,18, 22, 26,30, 34,38,42,46,50,54,58,62, ...
Questions:
@ What about dimension n = 3 and orders v = 22, 34, 46, 58,...7

@ Can other known construction techniques for 2-dimensional
Hadamard matrices be generalized to higher dimensions?

© Can existence be proved for even orders v and dimensions n > 4
without referring to the Hadamard conjecture?

. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024.



At the CODESCO conference. ..

N

Combinatorial Designs and Codes, July 8-12, 2024, Sevilla, Spain
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At the CODESCO conference. ..

Combinatorial Designs and Codes, July 8-12, 2024, Sevilla, Spain
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A variation on n-dimensional Hadamard matrices

Edinah K. Gnang, A. Elgammal, V. Retakh, A spectral theory for tensors,
Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), no. 4, 801-841.

Edinah K. Gnang, Y. Filmus, On the spectra of hypermatrix direct sum
and Kronecker products constructions, Linear Algebra Appl. 519 (2017),
238-277.
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A variation on n-dimensional Hadamard matrices

Edinah K. Gnang, A. Elgammal, V. Retakh, A spectral theory for tensors,
Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), no. 4, 801-841.

Edinah K. Gnang, Y. Filmus, On the spectra of hypermatrix direct sum
and Kronecker products constructions, Linear Algebra Appl. 519 (2017),
238-277.

The Bhattacharya-Mesner product of hypermatrices. . .
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A variation on n-dimensional Hadamard matrices

Edinah K. Gnang, A. Elgammal, V. Retakh, A spectral theory for tensors,
Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), no. 4, 801-841.

Edinah K. Gnang, Y. Filmus, On the spectra of hypermatrix direct sum
and Kronecker products constructions, Linear Algebra Appl. 519 (2017),
238-277.

The Bhattacharya-Mesner product of hypermatrices. . .

D. M. Mesner, P. Bhattacharya, Association schemes on triples and a
ternary algebra, J. Combin. Theory Ser. A 55 (1990), no. 2, 204-234.

D. M. Mesner, P. Bhattacharya, A ternary algebra arising from association
schemes on triples, J. Algebra 164 (1994), no. 3, 595-613.
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A variation on n-dimensional Hadamard matrices

Let A(l), A(Z), AB) be 3-dimensional matrices of order v
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A variation on n-dimensional Hadamard matrices

Let A(l), A(Z), AB) be 3-dimensional matrices of order v

[Prod(A®™, A®), AR))| JRCORIRCH )

,1’,2’,3 ll,J i3 11712,1 J 2,03
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A variation on n-dimensional Hadamard matrices

Let A(l), A(2), AB) be 3-dimensional matrices of order v

[Prod(A(l),A(2),A(3))} :Za(l) 2?0
j=1

i1,J,i3 S i1,i2,J 902,03

i1,02,03
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A variation on n-dimensional Hadamard matrices

Let A(l), A(2), AB) be 3-dimensional matrices of order v

[Prod(A®, A® A®)) = D) @) 0

i1,02,03

i1,J,i3 S i1,i2,J 902,03

Let A(l), A(2), A(3), A®) be 4-dimensional matrices of order v

. 1 2 3
[Prod(AD, A®, AG) A®)] =37l ) Al
bl I’ bl J:l
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A variation on n-dimensional Hadamard matrices

More operations for n-dimensional matrices of order v:

"] = [A]
[ 11,125-+5In—1,1In InyI1y-ee5ln—2,In—1
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A variation on n-dimensional Hadamard matrices

More operations for n-dimensional matrices of order v:

"] = [A]
[ 11,125-+5In—1,1In InyI1y-ee5ln—2,In—1

AT = (AT), AT = (A7), ..., AT =A
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A variation on n-dimensional Hadamard matrices

More operations for n-dimensional matrices of order v:

"] = [A]
[ 11,125-+5In—1,1In InyI1y-ee5ln—2,In—1

AT = (AT), AT = (A7), ..., AT =A

Prod (A, A®, . AM)" = Prod ((A®@)",..., (a®)", (D))
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A variation on n-dimensional Hadamard matrices

More operations for n-dimensional matrices of order v:
T —
[ ]ihiz,-.-,in—l,in o [A]in7i1,~~~7in—2,in—1

AT = (AT), AT = (A7), ..., AT =A

Prod (A, A®, . AM)" = Prod ((A®@)",..., (a®)", (D))

[A] L ifihi=...=in
fyesin 0, otherwise

17.10.2024. 24 /93
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A variation on n-dimensional Hadamard matrices

More operations for n-dimensional matrices of order v:

"] = [A]
[ 11,125-+5In—1,1In InyI1y-ee5ln—2,In—1

AT = (AT, AT = (A7), ..., AT =A
Prod (A, A®, . AM)" = Prod ((A®@)",..., (a®)", (D))

1, ifii=...=i,
[A]il,...,i,, =

0, otherwise

n=3: [=Prod(J,J,A), Prod (/,A, /TZ) = A, VA
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if
Prod (H, H ' HT, HT) —A

Example for Shlichta’s definition:
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Example for Gnang’s definition:
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Example for Gnang’s definition:

(1,1,1) ~» -1 1 1 1 1 1 1 1
(1,1,2) ~» 1 -1 1 1 1 1 1 1
(1,2,1) —» 1 1 -1 1 1 1 1 1
o 022 - 11 1 -1 1 1 1 1
21,1) ~» 1 1 1 1 -1 1 1 1
21,2) ~» 1 1 1 1 1 -1 1 1
22,1) ~» 1 1 1 1 1 1 -1 1
(2,2,2) —» 1 1 1 1 1 1 -1
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Example for Gnang’s definition:

(1,1,1) ~» -1 1 1 1 1 1 1 1
(1,1,2) ~» 1 -1 1 1 1 1 1 1
(1,2,1) —» 1 1 -1 1 1 1 1 1
o 022 - 11 1 -1 1 1 1 1
21,1) ~» 1 1 1 1 -1 1 1 1
21,2) ~» 1 1 1 1 1 -1 1 1
22,1) ~» 1 1 1 1 1 1 -1 1
(222 —» 1 1 1 1 1 1 1 -1
Hadamard: X v X v v X V X
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 X 4 X 4 x 4 matrix?
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 x 4 x 4 x 4 matrix? 2% = 2256 ~ 1.16 - 1077
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 x 4 x 4 x 4 matrix? 2% = 2256 ~ 1.16 - 1077

Proposition.

Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2™,
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 x 4 x 4 x 4 matrix? 2% = 2256 ~ 1.16 - 1077

Proposition.

Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2™,

Questions: (for odd dimensions n > 3)
@ Does the order v have to be divisible by 47
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 x 4 x 4 x 4 matrix? 2% = 2256 ~ 1.16 - 1077

Proposition.

Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2™,

Questions: (for odd dimensions n > 3)
@ Does the order v have to be divisible by 47

@ Are there examples with v not of the form 2™7
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A variation on n-dimensional Hadamard matrices

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ' HT, HT) —A

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 x 4 x 4 x 4 matrix? 2% = 2256 ~ 1.16- 1077

Proposition.

Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2.

Questions: (for odd dimensions n > 3)

© Apart from the Kronecker product construction, can other known
constructions for n = 2 be generalized to odd dimensions?
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A conference on Hadamard matrices

8th Workshop on Design Theory,
Hadamard Matrices and
Applications (Hadamard 2025)

26-30 May, 2025, Sevilla

The purpose of the workshop is to bring together researchers and students interested in
design theory, especially as it relates to Hadamard matrices and their applications, as well
as in related areas in coding theory, association schemes, sequences, finite geometry,
difference sets, quantum information theory, theoretical physics and computer security. The
audiences would learn about the latest developments in these areas, discuss the latest
findings, take stock of what remains to be done on classical problems and explore different
visions for setting the direction for future work.

https://gestioneventos.us.es/hadamard2025

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 31/93


https://gestioneventos.us.es/hadamard2025

Another conference

5TH PYTHAGOREAN CONFERENCE

KALAMATA, GREECE, JUNE 1-6, 2025
AN ADVANCED RESEARCH WORKSHOP IN FINITE GEOMETRY, COMBINATORIAL DESIGNS,
ALGEBRAIC COMBINATORICS, CODING THEORY, CRYPTOGRAPHY & CRYPTOLOGY

Organizing Committee

Arrigo Bonisoli, Universita di Modena e Reggio Emilia, Italy

Marco Buratti, Sapienza Universita di Roma, Italy

Cafer Galigkan, Antalya Bilim University, Turkey

Otokar Grosek, Slovak Technical University, Bratislava, Slovakia
Gabor Korchmaros, Universita della Basilicata, Italy

llias S. Kotsireas, Wilfrid Laurier University, Waterloo, ON, Canada
Spyros S. Magliveras, Florida Atlantic University, Boca Raton, FL, USA
Alfred Wassermann, Universitat Bayreuth, Germany

https://cargo.wlu.ca/5thPythagorean/
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Symmetric designs

A symmetric (v, k, A) design is a v x v matrix with {0, 1}-entries such that
A-AT =(k—X)I+XJ holds. The order of the design is m =k — A.
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Symmetric designs

A symmetric (v, k, A) design is a v x v matrix with {0, 1}-entries such that
A-AT =(k—X)I+XJ holds. The order of the design is m =k — A.

Example:

1101000
(7,3,1) 1010001
0100011
m =2 1000110
0001101
0011010
0110100
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Symmetric designs

A symmetric (v, k, A) design is a v x v matrix with {0, 1}-entries such that
A-AT =(k—X)I+XJ holds. The order of the design is m =k — A.

Example:

1101000
(7,3,1) 1010001
0100011
m =2 1000110
0001101
0011010
0110100
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Symmetric designs

A symmetric (v, k, A) design is a v x v matrix with {0, 1}-entries such that
A-AT =(k—X)I+XJ holds. The order of the design is m =k — A.

Example:

1101000
(7,3,1) 1010001
0100011
m =2 1000110
0001101
0011010
0110100

Proposition.

If a symmetric (v, k, \) design exists, then A(v — 1) = k(k — 1).
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Symmetric designs

A Hadamard matrix of order v = 4m exists if and only if there exists a
symmetric (4m —1,2m — 1, m — 1) design.
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Symmetric designs

A Hadamard matrix of order v = 4m exists if and only if there exists a
symmetric (4m —1,2m — 1, m — 1) design.

A projective plane of order m is a symmeric (m? + m+1,m+1,1) design.
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Symmetric designs

A Hadamard matrix of order v = 4m exists if and only if there exists a
symmetric (4m —1,2m — 1, m — 1) design.

A projective plane of order m is a symmeric (m? + m+1,m+1,1) design.

Question: Are there projective planes of non-prime power order m?
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Symmetric designs

A Hadamard matrix of order v = 4m exists if and only if there exists a
symmetric (4m —1,2m — 1, m — 1) design.

A projective plane of order m is a symmeric (m? + m+1,m+1,1) design.

Question: Are there projective planes of non-prime power order m?

A (v, k, \) difference set is a k-subset D C G of a group of order v such
that the “differences” x 1y, x,y € D cover G\ {1} exactly A times.
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Symmetric designs

A Hadamard matrix of order v = 4m exists if and only if there exists a
symmetric (4m —1,2m — 1, m — 1) design.

A projective plane of order m is a symmeric (m? + m+1,m+1,1) design.

Question: Are there projective planes of non-prime power order m?

A (v, k, \) difference set is a k-subset D C G of a group of order v such
that the “differences” x 1y, x,y € D cover G\ {1} exactly A times.

Theorem.

If Dis a (v, k, \) difference set in G = {g1,...,8,}, then the v x v matrix
A with entries

].7 ifg,--ngD,
aij[gf-ngDIZ{

0, otherwise

is a symmetric (v, k, ) design with G as a regular automorphism group.

v
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Symmetric designs

A Hadamard matrix of order v = 4m exists if and only if there exists a
symmetric (4m —1,2m — 1, m — 1) design.

A projective plane of order m is a symmeric (m? + m+1,m+1,1) design.

Question: Are there projective planes of non-prime power order m?

A (v, k,\) difference set is a k-subset D C G of a group of order v such
that the “differences” x 1y, x,y € D cover G\ {1} exactly A times.

Example:

D =1{0,1,3} is a (7,3,1) difference set in G =Z7 = {0,...,6}
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Symmetric designs

A Hadamard matrix of order v = 4m exists if and only if there exists a
symmetric (4m —1,2m — 1, m — 1) design.

A projective plane of order m is a symmeric (m? + m+1,m+1,1) design.

Question: Are there projective planes of non-prime power order m?

A (v, k,\) difference set is a k-subset D C G of a group of order v such
that the “differences” x 1y, x,y € D cover G\ {1} exactly A times.
Example:

D =1{0,1,3} is a (7,3,1) difference set in G =Z7 = {0,...,6}

Symmetric (25,9, 3) designs exist, but there are no (25,9, 3) difference
sets in any group of order 25.
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Cubes of symmetric designs

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446
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Cubes of symmetric designs

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An n-dimensional cube of symmetric (v, k, \) designs is a function
A:{1,...,v}"—={0,1}

such that all 2-dimensional slices are symmetric (v, k, \) designs.
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https://arxiv.org/abs/2304.05446

Cubes of symmetric designs

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An n-dimensional cube of symmetric (v, k, \) designs is a function
A:{1,...,v}"—={0,1}
such that all 2-dimensional slices are symmetric (v, k, \) designs.

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67-81.

“Proper n-dimensional transposable designs”

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 36/93


https://arxiv.org/abs/2304.05446

Cubes of symmetric designs

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (to appear). https://arxiv.org/abs/2304.05446

An n-dimensional cube of symmetric (v, k, \) designs is a function
A:{1,...,v}"—={0,1}

such that all 2-dimensional slices are symmetric (v, k, \) designs.

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67-81.

“Proper n-dimensional transposable designs”

W. de Launey, D. Flannery, Algebraic design theory, American Mathe-
matical Society, 2011.
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Cubes of symmetric designs

Theorem (Difference cubes)
If Dis a (v, k, A) difference set in G = {g1,...,8,}, then

A(il,...,i,,) = [g,-l‘--g,-n = D]

is an n-dimensional cube of symmetric (v, k, \) designs.
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Cubes of symmetric designs

Theorem (Difference cubes)
If Dis a (v, k, A) difference set in G = {g1,...,8,}, then

A(il,...,i,,) = [g,-l‘--g,-n = D]

is an n-dimensional cube of symmetric (v, k, \) designs.

Example: {0,1,3} C Z;
is a (7,3,1) difference set
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Cubes of symmetric designs

Theorem (Difference cubes)
If Dis a (v, k, A) difference set in G = {g1,...,8,}, then

A(il,...,i,,) = [g,-l‘--g,-n = D]

is an n-dimensional cube of symmetric (v, k, \) designs.

Example: {0,1,3} C Z;
is a (7,3,1) difference set

A 3-cube of symmetric
(7,3,1) designs

~ “Fano cube”
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Cubes of symmetric designs

Theorem (Difference cubes)

If Dis a (v, k, A) difference set in G = {g1,...,8,}, then

A(il,...,i,,) = [g,-l‘--g,-n = D]

is an n-dimensional cube of symmetric (v, k, \) designs.

Questions:

© Are there cubes of symmetric designs not coming from
this theorem? (“non-difference cubes”)
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Cubes of symmetric designs

Theorem (Difference cubes)
If Dis a (v, k, A) difference set in G = {g1,...,8,}, then

A(il,...,i,,) = [g,-l‘--g,-n = D]

is an n-dimensional cube of symmetric (v, k, \) designs.

Questions:

© Are there cubes of symmetric designs not coming from
this theorem? (“non-difference cubes”)

@ Are there cubes of symmetric designs with inequivalent
2-dimensional slices?

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024.



Cubes of symmetric designs

Theorem (Group cubes)

If {D1,...,D,} is a family of (v, k, \) difference sets in G = {gi,

-, 8v}
that are blocks of a symmetric (v, k, ) design, then

A(ilﬂ"'vin): [giz"'gin S Dil]

is an n-dimensional cube of symmetric (v, k, \) designs.

V. Kréadinac (PMF-MO)

Variations on higher-dimensional designs
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Cubes of symmetric designs

Theorem (Group cubes)

If {D1,...,D,} is a family of (v, k, \) difference sets in G = {gi,

-, 8v}
that are blocks of a symmetric (v, k, ) design, then

A(ilﬂ"'vin): [giz"'gin S Dil]

is an n-dimensional cube of symmetric (v, k, \) designs.

Usually: D; = g;- D, i.e. the family is the development of a single D
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Cubes of symmetric designs

Theorem (Group cubes)

If {D1,...,D,} is a family of (v, k, A) difference sets in G = {g1,...,8/}
that are blocks of a symmetric (v, k, ) design, then

A(ilﬂ"'vin): [giz"'gin S Dil]

is an n-dimensional cube of symmetric (v, k, \) designs.

Usually: D; = g;- D, i.e. the family is the development of a single D

D ={0,1,4,14,16} C Zn
Di=i+D,i=0,...,20

V. Kréadinac (PMF-MO)
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Cubes of symmetric designs

Theorem (Group cubes)

If {D1,...,D,} is a family of (v, k, A) difference sets in G = {g1,...,8/}
that are blocks of a symmetric (v, k, ) design, then

A(ir,.--,in) =8, - &i, € Diy ]

is an n-dimensional cube of symmetric (v, k, \) designs.

Usually: D; = g;- D, i.e. the family is the development of a single D

D=1{0,1,4,14,16} C Zn
Di=i+D,i=0,...,20
A 3-cube of (21,5,1) designs

(projective planes of order 4)
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Cubes of symmetric designs

Theorem (Group cubes)

If {D1,...,D,} is a family of (v, k, A) difference sets in G = {g1,...,8/}
that are blocks of a symmetric (v, k, ) design, then

A(iry .- yin) = [ 8- & € Diy |

is an n-dimensional cube of symmetric (v, k, \) designs.

G=(ab|a®=b" =1, ba= ab?)
D; = {1, a, b, b3, a2b2}

Dy = {2265, b5, 223, 2 b*, a}
D3 = {1, a? 7ab,b2,b6}

Dy1 = {a?b?, ab3, ab, b®, ab®}

V. Kréadinac (PMF-MO)

Variations on higher-dimensional designs

17.10.2024. 40/93



. 7gv}
40/93

<
N
o
<
o
i
~
—

{e, ..

0O S 5
X T S
dmaalh (ST n o= v
v %L OB LRI
V»‘»!!O

O
= )
— n
mn .o Wo
e 4 3 )
o * W © g
O - —~~ i
c c s < S
o m & 2
o w0 . g s
) . - 8
= T o > S
T ~ S £
\\M\A 20 (6] w
L — 2 :
x - S £
(g - — IS Ra) S
a0 > £ | « - a
B =L T ) S s
0 - A S
o ._n_l.w o Y [0 < IS &
> -~ o Na) Q © >
%) ™l = € - e L % Q
M El:: < 2| $ % o
=)
) =g - O o I & & X =
OR T — ~ T o n/_b - =
£ o e 2 9 L T " & g
£ =] © S| || = < g a :
O}S — ~ O ) . - w
> > 21 . Q - - ~ 2
n O Q © S| © - © o« Q e
~ O _ T O T 3V v
S 0 = IS -~ o - o] 2
(@] .o = Q@ —~= «© -~ —_— =
- o 9 . o k)
0 =9 | I &
0 g ® o -
o] o = I o o o q >
S = = Q Q Q Q
(@) ol = S w QO




Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 41/93



Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Example: m =2, (16,6, 2)
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Example: m =2, (16,6, 2)

There are three such designs:
| Aut(D;)| = 11520, |Aut(D»)| =768, |Aut(Ds)| = 384

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024.



Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Example: m =2, (16,6, 2)

There are three such designs:
| Aut(D;)| = 11520, |Aut(D»)| =768, |Aut(Ds)| = 384

Red design, Green design, Blue design

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024.



Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G:Zg Dlz{Dl,...,Dw}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G:Zg Dlz{Dl,...,Dw}

Ladl
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m, 2m—1(2m . 1)’ 2m—1(2m—1 . 1))

designs that are group cubes, but not difference cubes.

G=Z2XZSZ D2={D1,...,D16}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

G:ZQXQSZ D3:{D1,...,D16}

000
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G:Zg DQZ{D]_,...7D]_6}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m, 2m—1(2m . 1)’ 2m—1(2m—1 . 1))

designs that are group cubes, but not difference cubes.

G=Zg D2={D1,...,D16}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

G:ZLQ1 D3:{D1,...,D16}

o0
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

G= ZQXZg D3—{D1,...,D,
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G=Z2XQSI Dg={D1,...,D8,Dg,...,D16}

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024.



Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Non-group cubes?
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Non-group cubes?
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Non-group cubes?
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

Proposition.

Up to equivalence, the set C3(16,6,2) contains exactly 27 difference
cubes and 946 non-difference group cubes. Furthermore, it contains
at least 1423 inequivalent non-group cubes.
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

Proposition.

Up to equivalence, the set C3(16,6,2) contains exactly 27 difference
cubes and 946 non-difference group cubes. Furthermore, it contains
at least 1423 inequivalent non-group cubes.

The parameters are of Menon type: (4u?,2u? — u, u?> — u). By exchanging
0 — —1, the cubes are transformed to n-dimensional Hadamard matrices
with inequivalent slices!
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Cubes of symmetric designs

Questions:

@ There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37
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Cubes of symmetric designs

Questions:

@ There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37

@ Are there non-group cubes of (15,7, 3) designs? Are there any
non-group cubes for (v, k, \) # (16,6, 2)?
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Cubes of symmetric designs

Questions:

@ There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37

@ Are there non-group cubes of (15,7, 3) designs? Are there any
non-group cubes for (v, k, \) # (16,6, 2)?

© Is there a product construction for cubes of symmetric designs?

. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 52/93



Cubes of symmetric designs

Questions:

@ There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37

@ Are there non-group cubes of (15,7, 3) designs? Are there any
non-group cubes for (v, k, \) # (16,6, 2)?

© Is there a product construction for cubes of symmetric designs?
© Hadamard matrices coming from Menon designs are of square orders.

Are there n-dimensional Hadamard matrices with inequivalent slices
of non-square orders?

. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 52/93



Room squares
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Room squares

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.

Thomas Gerald Room

Article  Talk

From Wikipedia, the free encyclopedia

Thomas Gerald Room FRS FAA (10 November 1902 — 2 April 1986) was an
Australian mathematician who is best known for Room squares. He was a
Foundation Fellow of the Australian Academy of Science.['ll2]
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Room squares

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.
Let S be a set of v + 1 elements, say S = {o0,1,2,...,v}.

A Room square of order v is a v X v matrix M such that:

@ the entries of M are empty or 2-element subsets of S
@ each 2-subset of S appears once in M

@ elements of S appear once in every row and column of M

V. Kréadinac (PMF-MO)
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Room squares

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.
Let S be a set of v + 1 elements, say S = {o0,1,2,...,v}.
A Room square of order v is a v X v matrix M such that:

@ the entries of M are empty or 2-element subsets of S
@ each 2-subset of S appears once in M

@ elements of S appear once in every row and column of M

Example.
ool 26 57 | 34
v=7 45 | 002 37 16
27 | 56 | o3 14
13 | 67 | co4 25
36 24 | 17 | o0b
47 35 | 12 | 06
15 46 | 23 | oo7

V. Kréadinac (PMF-MO)
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Room squares

Equivalent objects:

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.
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Room squares
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Room squares

ool 26 57 34
45 | o02 16
27 56 | oo3 14
13 67 | oo4 25
36 24 17
47 35 006
15 23 | oo7

V. Kréadinac (PMF-MO)
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Room squares

Equivalent objects:

Theorem.

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v.

| A\

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 58/93



Room squares

1 2 3 4 5 6 7

1] ool 26 57 | 34

2|1 45 | 002 37 16

3127 | 56 | 003 14

4 13 | 67 | co4 25

51 36 24 | 17 | oob

6 47 35 | 12 | o0b

7 15 46 | 23 | oo7
116[4]3|7|2]|5 1152|6374
6(2|7|5/4|1|3 5126|3741
417|13|1]6|5|2 216(3|7(4|1|5
3/5(1|4]2|7|6 6374|152
7146|2531 3/7(4|1(5[2|6
2|1|5|7(3]|6]|4 714(1|5/2|6|3
513(2|6|1|4|7 411|5|12(6|3|7
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Room squares

Equivalent objects:

Theorem.

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.

| A\

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v.

Existence:

A Room square of order v exists if and only if v is odd and v # 3,5.
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Room squares

Equivalent objects:

Theorem.

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.

| A\

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v.

Existence:

A Room square of order v exists if and only if v is odd and v # 3,5.

Proof: 1955-1973.
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

V. Kréadinac (PMF-MO)
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

VAl

7 i
1
1

+
T
| Wival

100/
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

Front view:
1156|124 37
8 002 67|35 14
5 od17[46] |25
36 04| 12|57
3 47 005 23|16
27 15 oo} 34
45]13 26 oo/
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

Top view:
oo 1] 36 27145
S 56|02 47 13
i 24]67[003 15
R 35]1704 26
: 37| |46[12[c5
; 14| [57[23c06
25 16|34 |0
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

Side view:
26[34] |57 ool
- 45 |16 00237
25 27 003 14|56
13 ool 25/67
: oo536[17] |24
of47]12] [35
071523 |46
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v

V. Kréadinac (PMF-MO)
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v

Let 1(v) be the largest possible dimension of a Room cube of order v

V. Kréadinac (PMF-MO)
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v

Let 1(v) be the largest possible dimension of a Room cube of order v

Proposition.

V. Kréadinac (PMF-MO)
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v

Let 1(v) be the largest possible dimension of a Room cube of order v

Proposition.

Conjecture (W. D. Wallis):  pu(v) < 3(v—1)

V. Kréadinac (PMF-MO)
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A variation on cubes of symmetric designs
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A variation on cubes of symmetric designs

Front view: Top view: Side view:
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A variation on cubes of symmetric designs

Front view: Top view: Side view:
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A variation on cubes of symmetric designs

Front view: Top view: Side view:
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A variation on cubes of symmetric designs

Front view: Top view: Side view:
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A variation on cubes of symmetric designs

An n-dimensional projection cube of (v, k, \) designs is a function
A:{l,...,v}"—={0,1}

such that every 2-dimensional projection is a symmetric (v, k, \) design.
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A variation on cubes of symmetric designs

An n-dimensional projection cube of (v, k, \) designs is a function
A:{l,...,v}"—={0,1}
such that every 2-dimensional projection is a symmetric (v, k, \) design.

n12(A)X,y = Z A(X7y7 i37'--7in)

1<is,...,in<v
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A variation on cubes of symmetric designs

An n-dimensional projection cube of (v, k, \) designs is a function
A:{l,...,v}"—={0,1}
such that every 2-dimensional projection is a symmetric (v, k, \) design.
n12(A)X,y = Z A(X7y7 i37'--7in)
1<iz,..0,in<v

The sum is taken over Z, so at most one l-entry can appear for each
choice of x and y. The total number of 1's in the cube is then vk.
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A variation on cubes of symmetric designs

An n-dimensional projection cube of (v, k, \) designs is a function
A:{l,...,v}"—={0,1}
such that every 2-dimensional projection is a symmetric (v, k, \) design.
n12(A)X,y = Z A(X7y7 i37'--7in)
1<iz,..0,in<v

The sum is taken over Z, so at most one l-entry can appear for each
choice of x and y. The total number of 1's in the cube is then vk.

More incidences can appear if we take sums in the binary
semifield B. In this case we can make 22! examples out
of the second (7,3, 1) projection cube.
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A variation on cubes of symmetric designs

An n-dimensional projection cube of (v, k, \) designs is a function
A:{l,...,v}"—={0,1}
such that every 2-dimensional projection is a symmetric (v, k, \) design.
n12(A)X,y = Z A(X7y7 i37'--7in)
1<iz,..0,in<v

The sum is taken over Z, so at most one l-entry can appear for each
choice of x and y. The total number of 1's in the cube is then vk.

More incidences can appear if we take sums in the binary
semifield B. In this case we can make 22! examples out
of the second (7,3, 1) projection cube.

— ol+
= OO
O |

If we work in the binary field F,, XORing with any cube
with an even number of 1's in every direction does not
affect the sums. This would produce many more examples.
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A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37
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A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37

(1,1) (4,7)
(1,2) (5,5)
(1,4) (5,6)
(2,2) (5,1)
(2,3) (6,6)
(2,5) (6,7)
(3,3) (6,2)
(3,4) (7,7)
(3,6) (7,1)
(4,4) (7,3)
(4,5)
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A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37

(1,1,1) (4,7,3)
(1,2,3) (5,5,5)
(1,4,7) (5,6,7)
(2,2,2) (5,1,4)
(2,3,4) (6,6,6)
(2,5,1) (6,7,1)
(3,3,3) (6,2,5)
(3,4,5) (7,7,7)
(3,6,2) (7,1,2)
(4,4,4) (7,3,6)
(4,5,6)
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A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37

(1,1,1,1) (4,7,3,6)
(1,2,3,4) (5,5,5,5)
(1,4,7,3) (5,6,7,1)
(2,2,2,2) (5,1,4,7)
(2,3,4,5) (6,6,6,6)
(2,5,1,4) (6,7,1,2)
(3,3,3,3) (6,2,5,1)
(3,4,5,6) (7,7,7,7)
(3,6,2,5) (7,1,2,3)
(4,4,4,4) (7,3,6,2)
(4,5,6,7)

V. Kréadinac (PMF-MO) Variations on higher-dimensional designs 17.10.2024. 73/93



A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37

(1,1,1,1,4) (4,7,3,6,5)
(1,2,3,4,1) (5,5,5,5,1)
(1,4,7,3,2) (5,6,7,1,5)
(2,2,2,2,5) (5,1,4,7,6)
(2,3,4,5,2) (6,6,6,6,2)
(2,5,1,4,3) (6,7,1,2,6)
(3,3,3,3,6) (6,2,5,1,7)
(3,4,5,6,3) (7,7,7,7,3)
(3,6,2,5,4) (7,1,2,3,7)
(4,4,4,4,7) (7,3,6,2,1)
(4,5,6,7,4)
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A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37

V. Kréadinac (PMF-MO)

(1,1,1,1,4,1)
(1,2,3,4,1,6)
(1,4,7,3,2,2)
(2,2,2,2,5,2)
(2,3,4,5,2,7)
(2,5,1,4,3,3)
(3,3,3,3,6,3)
(3,4,5,6,3,1)
(3,6,2,5,4,4)
(4,4,4,4,7,4)
(4,5,6,7,4,2)

Variations on higher-dimensional designs

(4,7,3,6,5,5)
(5,5,5,5,1,5)
(5,6,7,1,5,3)
(5,1,4,7,6,6)
(6,6,6,6,2,06)
(6,7,1,2,6,4)
(6,2,5,1,7,7)
(7,7,7,7,3,7)
(7,1,2,3,7,5)
(7,3,6,2,1,1)
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A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37

V. Kréadinac (PMF-MO)

(1,1,1,1,4,1,2)
(1,2,3,4,1,6,1)
(1,4,7,3,2,2,6)
(2,2,2,2,5,2,3)
(2,3,4,5,2,7,2)
(2,5,1,4,3,3,7)
(3,3,3,3,6,3,4)
(3,4,5,6,3,1,3)
(3,6,2,5,4,4,1)
(4,4,4,4,7,4,5)
(4,5,6,7,4,2,4)

Variations on higher-dimensional designs

(4,7,3,6,5,5,2)
(5,5,5,5,1,5,6)
(5,6,7,1,5,3,5)
(5,1,4,7,6,6,3)
(6,6,6,6,2,6,7)
(6,7,1,2,6,4,6)
(6,2,5,1,7,7,4)
(7,7,7,7,3,7,1)
(7,1,2,3,7,5,7)
(7,3,6,2,1,1,5)
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A variation on cubes of symmetric designs

Question: Are there projection cubes of dimension n > 37

Question:

Other combinatorial
objects equivalent to

projection cubes?

V. Kréadinac (PMF-MO)

(1,1,1,1,4,1,2)
(1,2,3,4,1,6,1)
(1,4,7,3,2,2,6)
(2,2,2,2,5,2,3)
(2,3,4,5,2,7,2)
(2,5,1,4,3,3,7)
(3,3,3,3,6,3,4)
(3,4,5,6,3,1,3)
(3,6,2,5,4,4,1)
(4,4,4,4,7,4,5)
(4,5,6,7,4,2,4)

Variations on higher-dimensional designs

(4,7,3,6,5,5,2)
(5,5,5,5,1,5,6)
(5,6,7,1,5,3,5)
(5,1,4,7,6,6,3)
(6,6,6,6,2,6,7)
(6,7,1,2,6,4,6)
(6,2,5,1,7,7,4)
(7,7,7,7,3,7,1)
(7,1,2,3,7,5,7)
(7,3,6,2,1,1,5)
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A variation on cubes of symmetric designs

Question: Are there projection cubes with (v, k, \) # (7,3,1)?
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A variation on cubes of symmetric designs

Question: Are there projection cubes with (v, k, \) # (7,3,1)?

w(v, k,\) = largest possible dimension of a (v, k, \) projection cube
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A variation on cubes of symmetric designs

Question: Are there projection cubes with (v, k, \) # (7,3,1)7?
w(v, k,\) = largest possible dimension of a (v, k, \) projection cube

Some computational results:

o 1(3,2,1)=5 o 11(13,4,1) > 13 o 11(19,9,4) > 4
o 1(7,3,1)>7 o 11(15,7,3) >3 o 1(21,5,1) >3
o 1(11,5,2) > 11 o 11(16,6,2) > 4 o 11(31,6,1)>6
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A variation on cubes of symmetric designs

Question: Are there projection cubes with (v, k, \) # (7,3,1)7?
w(v, k,\) = largest possible dimension of a (v, k, \) projection cube

Some computational results:

e 1(3,2,1)=5 o 1(13,4,1) > 13 e 11(19,9,4) > 4

o u(7,3,1)>7 o u(15,7,3) >3 o 1(21,5,1) >3

e 1(11,5,2) > 11 e 1(16,6,2) > 4 e 1(31,6,1) >6
Questions:

© Is there an upper bound on pu(v, k, A)?
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A variation on cubes of symmetric designs

Question: Are there projection cubes with (v, k, \) # (7,3,1)7?
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Some computational results:

e 1(3,2,1)=5 o 1(13,4,1) > 13 e 11(19,9,4) > 4

o u(7,3,1)>7 o u(15,7,3) >3 o 1(21,5,1) >3

e 1(11,5,2) > 11 e 1(16,6,2) > 4 e 1(31,6,1) >6
Questions:

© Is there an upper bound on pu(v, k, A)?

@ Difference sets for projection cubes?
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A variation on cubes of symmetric designs

Question: Are there projection cubes with (v, k, \) # (7,3,1)7?
w(v, k,\) = largest possible dimension of a (v, k, \) projection cube

Some computational results:

e 1(3,2,1)=5 o 1(13,4,1) > 13 e 11(19,9,4) > 4

o u(7,3,1)>7 o u(15,7,3) >3 o 1(21,5,1) >3

e 1(11,5,2) > 11 e 1(16,6,2) > 4 e 1(31,6,1) >6
Questions:

© Is there an upper bound on pu(v, k, A)?
@ Difference sets for projection cubes?

o ...
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A variation on cubes of symmetric designs

Question: Are there projection cubes with inequivalent projections?
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A variation on cubes of symmetric designs

Question: Are there projection cubes with inequivalent projections?

(16,6,2)

Side view:
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A variation on cubes of symmetric designs

Question: Are there projection cubes with inequivalent projections?

(16,6,2)

Side view:
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A variation on cubes of symmetric designs

Question: Are there projection cubes with inequivalent projections?

(16,6,2)

Side view:
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A variation on cubes of symmetric designs

Question: Are there projection cubes with inequivalent projections?

(16,6,2)

Front view: Top view: Side view:
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A variation on cubes of symmetric designs

Question: Are there projection cubes with inequivalent projections?

(16,6,2)

Question: Is there an example with all three colors?
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Mosaics of combinatorial designs

O. W. Gnilke, M. Greferath, M. O. Pavéevi¢, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85-95.
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Mosaics of combinatorial designs

O. W. Gnilke, M. Greferath, M. O. Pavéevi¢, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85-95.

V. Kréadinac, Small examples of mosaics of combinatorial designs, to appear
in Examples and Counterexamples. https://arxiv.org/abs/2405.12672
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V. Kréadinac, Small examples of mosaics of combinatorial designs, to appear
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A. Custié, V. Krcadinac, Y. Zhou, Tiling groups with difference sets,
Electron. J. Combin. 22 (2015), no. 2, Paper 2.56, 13 pp.
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A. Custié, V. Krcadinac, Y. Zhou, Tiling groups with difference sets,
Electron. J. Combin. 22 (2015), no. 2, Paper 2.56, 13 pp.
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Mosaics of combinatorial designs
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Two classic films

The terrifying motion picture
from the terrifying No.1 best seller.

ROBERT
ROY SHAW RICHARD
SCHEIDER DREYFUSS

Co-starng LORRAIE G
TER BEACHLEY o CARL
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Two classic films

The terrifying motion picture From the Producers of “JURASSIC PARK” and the Dircctor of “SPEED”
from the terrifying No.1 best seller.

Don't breathe. Don't look back.

N

ROBE|
ROY SHAW RICHARD
SCHEIDER DREYFUSS

Co-iarng [ORRAINE GARY - MURRAY HAVION - A ZANUCK/BROWN PRODLCTION
mPTEHE!\CHLEYanEEARLG[] B - Based o e ove by PETER BENCHLEY - Musec by J ﬂHI\
i by STEVEN SPELBERG - i by RCHARD . ZANUCK and DAVD BROW
ICOL0R® PANAVSON® (B M.‘,‘uémé@gmmmmi
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What could go wrong if we take both ideas. ..
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What could go wrong if we take both ideas. ..

TARAREID.  IANZIERING kD JOHN HEARD
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Two ideas to combine designs
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Cubes of mosaics of designs?
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Sharknado designs!
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Thanks for your attention!
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