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Strongly regular configurations

M. Abreu, M. Funk, V. Krčadinac, D. Labbate, Strongly regular configu-
rations, in preparation

. . . for a very long time.

A configuration with parameters (vr , bk) is a finite incidence structure
such that:

there are v points and b lines,

there are k points on every line and r lines through every point,

there is at most one line through every pair of points.

B. Grünbaum, Configurations of points and lines, American Mathematical
Society, Providence, RI, 2009  combinatorial configuration.

Incidence geometers from Gent  finite partial linear space of order (s, t),
s = k − 1, t = r − 1.
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Strongly regular configurations

The point graph of a configuration has the v points as vertices, with two
vertices being adjacent if the points are collinear. The line graph is defined
dually.

The point and line graphs are regular of degree r(k − 1) and k(r − 1).

A graph is called strongly regular with parameters SRG (n, d , λ, µ) if it
has n vertices, is regular of degree d , and every two vertices have λ
common neighbors if they are adjacent and µ common neighbors if they
are not adjacent.

We are interested in configurations with both the point graph and
the line graph strongly regular.
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Partial geometries

R. C. Bose, Strongly regular graphs, partial geometries and partially
balanced designs, Pacific J. Math. 13 (1963), 389–419.

A partial geometry pg(s, t, α) is a configuration with k = s + 1 and
r = t + 1 such that for every non-incident point-line pair (P, `), there are
exactly α points on ` collinear with P.

The point graph is a

SRG

(
(s + 1)(st + α)

α
, s(t + 1), s − 1 + t(α− 1), α(t + 1)

)
,

and the line graph is a

SRG

(
(t + 1)(st + α)

α
, t(s + 1), t − 1 + s(α− 1), α(s + 1)

)
.
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Other examples of such configurations

There are configurations with both associated graphs strongly regular
that are not partial geometries!

Desargues configuration (103):

 
SRG (10, 6, 3, 4)

(complement of the Petersen graph)

The Desargues configuration is a semipartial geometry spg(2, 2, 2, 4).

V. Krčadinac (PMF-MO) Polarity transformations of LP(4, q) 29.3.2021. 5 / 27



Other examples of such configurations

There are configurations with both associated graphs strongly regular
that are not partial geometries!

Desargues configuration (103):

 
SRG (10, 6, 3, 4)

(complement of the Petersen graph)

The Desargues configuration is a semipartial geometry spg(2, 2, 2, 4).
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I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25
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Other examples of such configurations

Another configuration (103):

 
SRG (10, 6, 3, 4)

(complement of the Petersen graph)

This configuration is not a semipartial geometry and does not belong to
other known generalizations of partial geometries such as strongly regular
(α, β)-geometries.

N. Hamilton, R. Mathon, Strongly regular (α, β)-geometries, J. Combin.
Theory Ser. A 95 (2001), no. 2, 234–250.
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Non-symmetric examples?

Are there non-symmetric examples of such configurations (with v 6= b),
apart from the partial geometries pg(s, t, α) with s 6= t?

A. E. Brouwer, W. H. Haemers, V. D. Tonchev, Embedding partial
geometries in Steiner designs, in: Geometry, combinatorial designs and
related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser.,
245, Cambridge Univ. Press, Cambridge, 1997, pp. 33–41.

Theorem.

If the point graph of a (vr , bk) configuration is strongly regular, then the
configuration is a partial geometry or v ≤ b.

Corollary.

If both associated graphs of a (vr , bk) configuration are strongly regular,
then the configuration is a partial geometry or v = b.
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V. Krčadinac (PMF-MO) Polarity transformations of LP(4, q) 29.3.2021. 8 / 27



Definitions

Definition.

A strongly regular configuration with parameters (vk ;λ, µ) is a symmetric
(vk) configuration with the point graph a SRG (v , k(k − 1), λ, µ).

What about the line graph?

Theorem.

In a (vk ;λ, µ) configuration, the line graph is also a SRG (v , k(k − 1), λ, µ).
If the incidence matrix is singular, the configuration is a partial geometry.

We shall call strongly regular configurations with regular incidence
matrices proper.

Proposition.

A strongly regular (vk ;λ, µ) configuration that is not a projective plane is
proper if and only if (v − k)(λ+ 1) > k(k − 1)3 holds.
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Definitions

Projective planes of order n are partial geometries pg(n, n, n + 1) and
satisfy equality (v − k)(λ+ 1) = k(k − 1)3, but have regular incidence
matrices. The associated point and line graphs are complete.

A (vk ;λ, µ) configuration is imprimitive if µ = 0 or µ = k(k − 1) holds.

First case: µ = 0 ⇐⇒ the graphs are disjoint unions of complete graphs
⇐⇒ collinearity of points is an equivalence relation
⇐⇒ the configuration is a disjoint union of projective planes.

Second case: µ = k(k − 1) ⇐⇒ the graphs are complete multipartite
⇐⇒ non-collinearity of points is an equivalence relation
⇐⇒ the configuration is an elliptic semiplane.

P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 44, Springer-Verlag, 1968.
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A family of semipartial geometries

We focus on strongly regular configurations that are proper and
primitive, i.e. such that neither collinearity nor non-collinearity of points
are equivalence relations. This is equivalent with 0 < µ < k(k − 1).

Our introductory examples with parameters (103; 3, 4) are part of a family
associated with Moore graphs of diameter two, i.e. strongly regular graphs
with λ = 0 and µ = 1.

A. J. Hoffman, R. R. Singleton, On Moore graphs with diameters 2 and 3,
IBM J. Res. Develop. 4 (1960), 497–504.

Moore graphs have parameters SRG (k2 + 1, k , 0, 1) with k ∈ {2, 3, 7, 57}.

k = 2  the pentagon
k = 3  the Petersen graph
k = 7  the Hoffman-Singleton graph
k = 57  ?
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A family of semipartial geometries

I. Debroey, J. A. Thas, On semipartial geometries, J. Comb. Theory A 25
(1978), 242–250.

Family (f):

points are vertices of a Moore graph SRG (k2 + 1, k, 0, 1),

lines are neighborhoods of single vertices.

 semipartial geometry spg(k − 1, k − 1, k − 1, (k − 1)2)

strongly regular ((k2 + 1)k ; k(k − 2), (k − 1)2) configuration

The point graph is the complementary SRG (k2 + 1, k(k − 1), k(k − 2), (k − 1)2).

k = 3  Desargues configuration

semipartial geometry spg(2, 2, 2, 4)

strongly regular (103; 3, 4) configuration
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k = 3  Desargues configuration

semipartial geometry spg(2, 2, 2, 4)

strongly regular (103; 3, 4) configuration
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A family of semipartial geometries

 strongly regular (103; 3, 4) configuration

not a semipartial geometry

k = 7  semipartial geometry spg(6, 6, 6, 36)

strongly regular (507; 35, 36) configuration

Proposition.

There are at least 211 non-isomorphic (507; 35, 36) configurations. Only
one of them is a semipartial geometry.
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Another family of semipartial geometries

Family (g) of Debroey and Thas:

POINTS are lines of the projective space PG (n, q), n ≥ 3,

LINES are 2-planes of PG (n, q) and incidence is inclusion.

Parameters:

v =

[
n + 1

2

]
q

, b =

[
n + 1

3

]
q

, r =

[
n − 1

1

]
q

, k =

[
3

2

]
q

.

Lemma.

Two lines of PG (n, q) are coplanar if and only if they intersect.
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Another family of semipartial geometries

 semipartial geometry spg(k − 1, r − 1, q + 1, (q + 1)2)

α-condition:

α = q + 1

µ-condition:

q + 1

q + 1

This semipartial geometry is denoted by LP(n, q) in:

F. De Clerck, H. Van Maldeghem, Some classes of rank 2 geometries, Handbook
of incidence geometry, 433–475, North-Holland, 1995.

F. De Clerck, Partial and semipartial geometries: an update, Discrete Math. 267

(2003), no. 1–3, 75–86.
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V. Krčadinac (PMF-MO) Polarity transformations of LP(4, q) 29.3.2021. 15 / 27



Another family of semipartial geometries

 semipartial geometry spg(k − 1, r − 1, q + 1, (q + 1)2)

α-condition:

α = q + 1

µ-condition:

q + 1

q + 1

This semipartial geometry is denoted by LP(n, q) in:

F. De Clerck, H. Van Maldeghem, Some classes of rank 2 geometries, Handbook
of incidence geometry, 433–475, North-Holland, 1995.

F. De Clerck, Partial and semipartial geometries: an update, Discrete Math. 267

(2003), no. 1–3, 75–86.
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Another family of semipartial geometries

LP(n, q) is a partial geometry ⇐⇒ n = 3

LP(n, q) is symmetric ⇐⇒ n = 4

LP(4, q)  semipartial geometry spg(q(q + 1), q(q + 1), q + 1, (q + 1)2)

strongly regular (vk ;λ, µ) configuration for

v =

[
5

2

]
q

, k =

[
3

2

]
q

, λ = q3 + 2q2 + q − 1, µ = (q + 1)2.

Are there strongly regular configurations with the same parameters
that are not semipartial geometries?

D. Jungnickel, V. D. Tonchev, Polarities, quasi-symmetric designs, and
Hamada’s conjecture, Des. Codes Cryptogr. 51 (2009), no. 2, 131–140.
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Polarity transformations

Let H0 be a hyperplane of PG (4, q). As a subgeometry, H0 is isomorphic
to PG (3, q) and possesses a polarity π, i.e. an inclusion-reversing
involution. The polarity maps the set of projective lines contained in H0

onto itself.

We modify incidence of the POINTS and LINES of LP(n, q) contained
in H0: a POINT L (projective line contained in H0) is incident with a
LINE p (projective plane contained in H0) if π(L) ⊆ p. For the remaining
pairs (L, p), with L or p not contained in H0, incidence remains unaltered.

Theorem.

The new incidence structure LP(4, q)π is a strongly regular configuration
with the same parameters that is not a semipartial geometry.
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Polarity transformations

Proof.

The POINT and LINE degrees remain the same and there is at most one
LINE through every pair of POINTS.

The POINT graphs of LP(4, q)π and LP(4, q) are identical. This follows
from the Lemma: if L1 and L2 are in H0, π(L1), π(L1) are contained in a
plane p if and only if L1, L2 intersect in the point π(p) and hence are
contained in some plane p′.

The line graph of LP(4, q)π is changed, but remains strongly regular.

The new configuration LP(4, q)π is not a semipartial geometry: take a
plane p in H0 and a projective line L not in H0 intersecting the hyperplane
in the point π(p). Then, (L, p) is a non-incident POINT-LINE pair of
LP(4, q)π. If π(M) ⊆ p, then M contains π(p) and is coplanar with L, i.e.
collinear as a POINT of the configuration. Hence, all q2 + q + 1 POINTS
on p are collinear with L, whereas in a semipartial geometry the number is
always 0 or α = q + 1.
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Polarity transformations

The composition of two polarities is an isomorphism ⇒

configurations
obtained by transforming LP(4, q) with different polarities are isomorphic.

We define a dual transformation of LP(4, q): take a point P0 of PG (4, q)
and consider the quotient geometry of lines, planes and solids containing
P0. It is isomorphic to PG (3, q) and possesses a polarity π′ permuting the
planes through P0 and exchanging the lines and solids through P0.

We modify incidence in LP(4, q) for projective lines L and planes p
through P0: they are incident if L ⊆ π′(p). Other incidences remain
unaltered.

Theorem.

The new incidence structure LP(4, q)π′ is the dual of LP(4, q)π.

The LINE graphs of LP(4, q) and LP(4, q)π′ are identical. The POINT
graph of LP(4, q)π′ is changed.
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Polarity transformations

A fourth strongly regular configuration LP(4, q)ππ′ is obtained if we take a
non-incident point P0 and hyperplane H0 and apply both transformations.
This configuration has the same LINE graph as LP(4, q)π and the same
POINT graph as LP(4, q)π′ and is self-dual.

Theorem.

For every prime power q, there are at least four strongly regular (vk ;λ, µ)
configuration with parameters

v =

[
5

2

]
q

, k =

[
3

2

]
q

, λ = q3 + 2q2 + q − 1, µ = (q + 1)2.

One of them is the semipartial geometry LP(4, q) and the others are not
semipartial geometries.
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Examples with parameters different from spg

Are there strongly regular configurations with parameters different
from semipartial geometries?

Theorem.

Let P be a projective plane of order n ≥ 5 and A, B, C be three non-
collinear points. By deleting all points on the lines AB, AC , BC and all
lines through the points A, B, C , there remains a strongly regular
(vk ;λ, µ) configuration with v = (n − 1)2, k = n − 2, λ = (n − 4)2 + 1,
and µ = (n − 3)(n − 4). This configuration is not an (α, β)-geometry.

Sporadic examples:

Example.

There is a cyclic (133; 2, 3) configuration. It can be obtained from
PG (2, 3) by deleting a point from every line.
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Examples with parameters different from spg

Example.

There are at least four (636; 13, 15) configurations. Two of them are
related to the smallest generalized hexagon GH(2, 2).

Example.

There is a flag-transitive (965; 4, 4) configuration.

Example.

There is a flag-transitive (1208; 28, 24) configuration. Its 120 lines and
the 135 lines of a pg(7, 8, 4) with complementary point graph form a
Steiner 2-(120, 8, 1) design.

A. E. Brouwer, W. H. Haemers, V. D. Tonchev, Embedding partial geometries in

Steiner designs, in: Geometry, combinatorial designs and related structures

(Spetses, 1996), London Math. Soc. Lecture Note Ser., 245, Cambridge Univ.

Press, Cambridge, 1997, pp. 33–41.
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A table of admissible parameters

No. (vk ;λ, µ) #Cf #SCf

1 (103; 3, 4) 2 2

2 (133; 2, 3) 1 1

3 (163; 2, 2) 1 1

4 (254; 5, 6) 0 0

5 (365; 10, 12) 1 1

6 (415; 9, 10) ? ?

7 (454; 3, 3) 0 0

8 (494; 5, 2) 0 0

9 (496; 17, 20) 1 1

10 (507; 35, 36) 211 111

11 (616; 14, 15) ? ?
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A table of admissible parameters

No. (vk ;λ, µ) #Cf #SCf

12 (636; 13, 15) 4 2

13 (647; 26, 30) 29 11

14 (818; 37, 42) ? ?

15 (856; 11, 10) ? ?

16 (857; 20, 21) ? ?

17 (965; 4, 4) 1 1

18 (997; 21, 15) ? ?

19 (1009; 50, 56) 1 1

20 (1059; 51, 45) ? ?

21 (1138; 27, 28) ? ?

22 (1208; 28, 24) 1 1
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A table of admissible parameters

No. (vk ;λ, µ) #Cf #SCf

23 (1215; 9, 2) 0 0

24 (1216; 11, 6) ? ?

25 (1219; 43, 42) ? ?

26 (12110; 65, 72) ? ?

27 (1259; 45, 36) ? ?

28 (1366; 15, 4) ? ?

29 (1369; 36, 40) ? ?

30 (14411; 82, 90) 1 1

31 (1459; 35, 36) ? ?

32 (1538; 19, 21) ? ?

33 (1557; 17, 9) 4 2
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A table of admissible parameters

No. (vk ;λ, µ) #Cf #SCf

34 (1699; 31, 30) ? ?

35 (16912; 101, 110) ? ?

36 (17111; 73, 66) ? ?

37 (1756; 5, 5) ? ?

38 (18110; 44, 45) ? ?

39 (19610; 40, 42) ? ?

40 (19613; 122, 132) ? ?

41 (19613; 125, 120) ? ?

The table is based on A. E. Brouwer’s tables of strongly regular graphs:

https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
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The End

Thanks for your attention!
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