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Seminar je održan u sklopu HRZZ projekata 6732 i 9752

(joint work with M.O. Pavčević)
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x, A
j
y, A

m
z are incidence matrices of (v, k, λ) symmetric

design for all i, j,m ∈ [v], where
(Ai

x)jm = aijm, j,m ∈ [v], (Aj
y)im = aijm, i,m ∈ [v] and (Am

z )ij =

aijm, i, j ∈ [v].
The class of all cubes of a (v, k, λ) symmetric design is denoted by

C(v, k, λ).
matrices Ai

x, A
j
y, A

m
z do not have to be incidence matrices of isomorphic

designs

write group G in a group ring Z[G] as G =
v∑
s=1

gs where g1 = 1 (unit

in a group G)
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If A ∈Mv×v is a matrix then t-th row shall be denoted by [At]

where [A]t = [At1 At2 · · · Atv].

represents [A]t using group ring notation as [A]t =
v∑
s=1

Atsgs.

A set D ⊆ G is a (v, k, λ) difference set in a group G

if a multiset {d1d−12 | d1, d2 ∈ D, d1 6= d2} contains exactly λ copies

of every g ∈ G \ {1}.
If X is a set, then δX is a characteristic function of a set X defined by

δX(x) =

{
1, if x ∈ X
0, otherwise.

.
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Theorem: Let G =
v∑
s=1

gs, g1 = 1 be a group of order v with a

(v, k, λ) difference set D. Let A = [aijm] ∈Mv×v×v be a 3-dimensional
matrix defined by aijm = δgjgiD(gm) for all i, j,m ∈ [v]. Then the
following holds:

1. A is a cube of a (v, k, λ) symmetric design i.e. A ∈ C(v, k, λ),
2. Ai

x is an incidence matrix of a symmetric design (G,Dev(giD)),

3. [Am
y ]t = g−1t gmD

(−1)

4. Am
y is an incidence matrix of a symmetric design (G,

v∑
t=1

g−1t gmD
(−1)),

5. [Am
z ]t = [At

x]m for all m, t ∈ [v],

6. Am
z is an incidence matrix of a symmetric design (G,

v∑
t=1

gmgtD).
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Proposition: Let A ∈ C(v, k, λ) be a cube constructed via dif-
ference set D ⊆ G. Let ψ be a permutation of G. Let Aψ be a 3-
dimensional matrix such that (Aψ)ijm = δgψj giD(gm). Then A is a cube,

i.e. Aψ ∈ C(v, k, λ) and [(Aψ)my ]t = (g−1t )ψgmD
(−1) and [(Aψ)mz ]t =

gψmgtD.
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by ψm(g) = gmg. Then ψm is an isomorphism between A1
x and Am

x .

Furthermore, ψm(gtD) = g
g−1
m
t gmD, or in terms of rows of incidence

matrices, ψm([A
1
x]t) = [Am

x ]t̃, where t̃ = g
g−1
m
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Proposition: Let A ∈ C(v, k, λ) and P =
v∑
s=1

ps is a set of points

of designs Ai
x. Then [Am

y ]t =
v∑
s=1

δBs
x,t
(pm)ps and [Am

z ]t = [At
x]m =

v∑
s=1

δBt
x,m
(ps)ps for all m, t ∈ [v], where [Am

y ]t and [Am
z ]t are t-th blocks

of designs Am
y and Am

z respectively.



7/9

JJ
II
J
I

Back

Close

Proposition: Let A ∈ C(v, k, λ) and P =
v∑
s=1

ps is a set of points

of designs Ai
x. Then [Am

y ]t =
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s=1

δBs
x,t
(pm)ps and [Am

z ]t = [At
x]m =

v∑
s=1

δBt
x,m
(ps)ps for all m, t ∈ [v], where [Am

y ]t and [Am
z ]t are t-th blocks

of designs Am
y and Am

z respectively.

Theorem: Let A ∈ C(v, k, λ). Then for every i,m ∈ [v] designs
Ai
x, A

m
z and Am

y satisfy the following:

1. Ai
x = (P ,

v∑
t=1

Bi
x,t) = (P ,Bix),

2. Am
z = (P ,

v∑
t=1

Bt
x,m) = (P ,Bmz ), meaning that the set of blocks of

a design Am
z is a set of m-th blocks of designs At

x for all t ∈ [v],
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3. Am
y = (Pm

y ,
v∑
t=1

〈pm〉Atz) = (Pm
y ,Bmy ), meaning that the t-th block

of a design Am
y is m-th dual block of a design At

z.
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v. Let (G,B) be a (v, k, λ) symmetric design where B =
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Bi. Let
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x ba an incidence matrix of a design (G,B). Let Am

x be an incidence

matrix of an incidence structure (G, gmB), where gmB =
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gmBi. A
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x)jm for all i, j,m ∈ [v].
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Proposition: Let A be a cyclic cube generated by a (v, k, λ) sym-

metric design (G,B), where G =
gi∑
i=1

is a group. Then |〈T 〉Amx | =

|〈g−1m T 〉A1
x
|, m ∈ [v]. A matrix Am

x is an incidence matrix of a (v, k, λ)
symmetric design for all m ∈ [v].
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Dev(B) for all B ∈ B i.e. all blocks are difference sets from the same
development of a difference set.
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