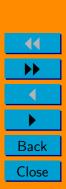
Cubes of designs

Kristijan Tabak Rochester Institute of Technology, Zagreb Campus Croatia e-mail: kxtcad@rit.edu Seminar za geometriju Seminar je održan u sklopu HRZZ projekata 6732 i 9752 (joint work with M.O. Pavčević)

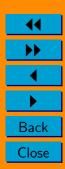




An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

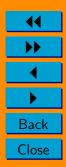
 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,



An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

 \mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}| = |\mathcal{B}| = v$,

where every 2-element subset of ${\cal P}$ is contained in an exactly λ sets (blocks) from ${\cal B}$



An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

 \mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}| = |\mathcal{B}| = v$,

where every 2-element subset of ${\cal P}$ is contained in an exactly λ sets (blocks) from ${\cal B}$

is called a (v, k, λ) symmetric design.

An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

where every 2-element subset of ${\cal P}$ is contained in an exactly λ sets (blocks) from ${\cal B}$

is called a (v, k, λ) symmetric design.

A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

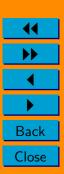
 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

where every 2-element subset of ${\cal P}$ is contained in an exactly λ sets (blocks) from ${\cal B}$

is called a (v, k, λ) symmetric design.

A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

If A is a matrix, then (i, j) entry of a matrix A is denoted by $(A)_{ij}$ (or sometimes just A_{ij}).



An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

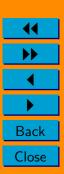
 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

where every 2-element subset of ${\cal P}$ is contained in an exactly λ sets (blocks) from ${\cal B}$

is called a (v, k, λ) symmetric design.

A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

If A is a matrix, then (i, j) entry of a matrix A is denoted by $(A)_{ij}$ (or sometimes just A_{ij}).

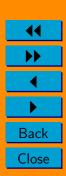


Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0, 1)-entries is a cube of (v, k, λ) symmetric design

Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0, 1)-entries is a cube of (v, k, λ) symmetric design if matrices A_x^i , A_y^j , A_z^m are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in [v]$, where



Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0, 1)-entries is a cube of (v, k, λ) symmetric design if matrices A_x^i , A_y^j , A_z^m are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in [v]$, where $(A_x^i)_{jm} = a_{ijm}, j, m \in [v]$, $(A_y^j)_{im} = a_{ijm}, i, m \in [v]$ and $(A_z^m)_{ij} = a_{ijm}, i, j \in [v]$.



Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0, 1)-entries is a cube of (v, k, λ) symmetric design if matrices A_x^i , A_y^j , A_z^m are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in [v]$, where $(A_x^i)_{jm} = a_{ijm}, j, m \in [v], (A_y^j)_{im} = a_{ijm}, i, m \in [v]$ and $(A_z^m)_{ij} = a_{ijm}, i, j \in [v]$. The class of all cubes of a (v, k, λ) symmetric design is denoted by $\mathcal{C}(v, k, \lambda)$.

Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0, 1)-entries is a cube of (v, k, λ) symmetric design if matrices A_x^i , A_u^j , A_z^m are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in |v|$, where $(A^i_x)_{jm} = a_{ijm}, \ j,m \in [v]$, $(A^j_v)_{im} = a_{ijm}, \ i,m \in [v]$ and $(A^m_z)_{ij} =$ $a_{ijm}, i, j \in [v].$ The class of all cubes of a (v,k,λ) symmetric design is denoted by $\mathcal{C}(v,k,\lambda).$ matrices A_x^i , A_y^j , A_z^m do not have to be incidence matrices of isomorphic designs

Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0, 1)-entries is a cube of (v, k, λ) symmetric design if matrices A_x^i , A_y^j , A_z^m are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in |v|$, where $(A^i_x)_{jm} = a_{ijm}, \ j,m \in [v], \ (A^j_v)_{im} = a_{ijm}, \ i,m \in [v] \ \text{and} \ (A^m_z)_{ij} =$ $a_{ijm}, i, j \in [v].$ The class of all cubes of a (v,k,λ) symmetric design is denoted by $\mathcal{C}(v,k,\lambda).$ matrices A_x^i , A_y^j , A_z^m do not have to be incidence matrices of isomorphic designs

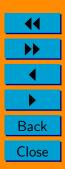
write group G in a group ring $\mathbb{Z}[G]$ as $G = \sum_{s=1}^{\infty} g_s$ where $g_1 = 1$ (unit

in a group G)

Image: A transmission of the sector of t

If $A \in \mathcal{M}_{v \times v}$ is a matrix then *t*-th row shall be denoted by $[A_t]$

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^{r} A_{ts}g_s$.



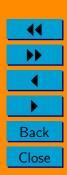
represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^{\circ} A_{ts}g_s$.

A set $D \subseteq G$ is a (v, k, λ) difference set in a group G

ALL ALL

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^{\cdot} A_{ts}g_s$.

A set $D \subseteq G$ is a (v, k, λ) difference set in a group Gif a multiset $\{d_1d_2^{-1} \mid d_1, d_2 \in D, d_1 \neq d_2\}$ contains exactly λ copies of every $g \in G \setminus \{1\}$.

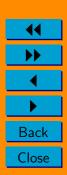


represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^{3} A_{ts}g_s$.

A set $D \subseteq G$ is a (v, k, λ) difference set in a group G

if a multiset $\{d_1d_2^{-1} \mid d_1, d_2 \in D, d_1 \neq d_2\}$ contains exactly λ copies of every $q \in G \setminus \{1\}$.

If X is a set, then δ_X is a characteristic function of a set X defined by



111/ CIV

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^{r} A_{ts}g_s$.

A set $D \subseteq G$ is a (v, k, λ) difference set in a group Gif a multiset $\{d_1d_2^{-1} \mid d_1, d_2 \in D, d_1 \neq d_2\}$ contains exactly λ copies of every $g \in G \setminus \{1\}$. If X is a set, then δ_X is a characteristic function of a set X defined by

$$\delta_X(x) = \begin{cases} 1, & \text{if } x \in X \\ 0, & \text{otherwise.} \end{cases}$$

↓
↓
Back
Close

Theorem: Let $G = \sum_{s=1}^{v} g_s$, $g_1 = 1$ be a group of order v with a (v, k, λ) difference set D. Let $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ be a 3-dimensional matrix defined by $a_{ijm} = \delta_{g_jg_iD}(g_m)$ for all $i, j, m \in [v]$. Then the following holds:

1. A is a cube of a (v, k, λ) symmetric design i.e. $A \in \mathcal{C}(v, k, \lambda)$, 2. A_x^i is an incidence matrix of a symmetric design $(G, \mathcal{D}ev(g_iD))$, 3. $[A_y^m]_t = g_t^{-1}g_mD^{(-1)}$

4. A_y^m is an incidence matrix of a symmetric design $(G, \sum_{t=1}^{n} g_t^{-1} g_m D^{(-1)}),$

5. $[A_z^m]_t = [A_x^t]_m$ for all $m, t \in [v]$,

6. A_z^m is an incidence matrix of a symmetric design $(G, \sum_{t=1} g_m g_t D)$.

↓
↓
↓
Back
Close

Theorem: Let $G = \sum_{s=1}^{v} g_s$, $g_1 = 1$ be a group of order v with a (v, k, λ) difference set D. Let $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ be a 3-dimensional matrix defined by $a_{ijm} = \delta_{g_jg_iD}(g_m)$ for all $i, j, m \in [v]$. Then the following holds:

1. A is a cube of a (v, k, λ) symmetric design i.e. $A \in \mathcal{C}(v, k, \lambda)$, 2. A_x^i is an incidence matrix of a symmetric design $(G, \mathcal{D}ev(g_iD))$, 3. $[A_y^m]_t = g_t^{-1}g_mD^{(-1)}$

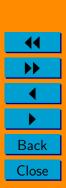
4. A_y^m is an incidence matrix of a symmetric design $(G, \sum_{t=1}^{n} g_t^{-1} g_m D^{(-1)}),$

5. $[A_z^m]_t = [A_x^t]_m$ for all $m, t \in [v]$,

6. A_z^m is an incidence matrix of a symmetric design $(G, \sum_{t=1} g_m g_t D)$.

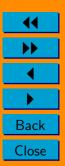
↓
↓
↓
Back
Close

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a 3-dimensional matrix such that $(A^{\psi})_{ijm} = \delta_{g_j^{\psi}g_iD}(g_m)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v, k, \lambda)$ and $[(A^{\psi})_y^m]_t = (g_t^{-1})^{\psi}g_m D^{(-1)}$ and $[(A^{\psi})_z^m]_t = g_m^{\psi}g_t D$.



Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a 3-dimensional matrix such that $(A^{\psi})_{ijm} = \delta_{g_j^{\psi}g_i D}(g_m)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v, k, \lambda)$ and $[(A^{\psi})_y^m]_t = (g_t^{-1})^{\psi}g_m D^{(-1)}$ and $[(A^{\psi})_z^m]_t = g_m^{\psi}g_t D$.

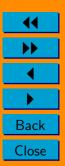
Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ_m be a permutation of $G = \sum_{s=1}^{v} g_s$ given by $\psi_m(g) = g_m g$. Then ψ_m is an isomorphism between A_x^1 and A_x^m . Furthermore, $\psi_m(g_t D) = g_t^{g_m^{-1}} g_m D$, or in terms of rows of incidence matrices, $\psi_m([A_x^1]_t) = [A_x^m]_{\tilde{t}}$, where $\tilde{t} = g_t^{g_m^{-1}}$.



大学で

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a 3-dimensional matrix such that $(A^{\psi})_{ijm} = \delta_{g_j^{\psi}g_i D}(g_m)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v, k, \lambda)$ and $[(A^{\psi})_y^m]_t = (g_t^{-1})^{\psi}g_m D^{(-1)}$ and $[(A^{\psi})_z^m]_t = g_m^{\psi}g_t D$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ_m be a permutation of $G = \sum_{s=1}^{v} g_s$ given by $\psi_m(g) = g_m g$. Then ψ_m is an isomorphism between A_x^1 and A_x^m . Furthermore, $\psi_m(g_t D) = g_t^{g_m^{-1}} g_m D$, or in terms of rows of incidence matrices, $\psi_m([A_x^1]_t) = [A_x^m]_{\tilde{t}}$, where $\tilde{t} = g_t^{g_m^{-1}}$.



大学で

Proposition: Let
$$A \in \mathcal{C}(v, k, \lambda)$$
 and $\mathcal{P} = \sum_{s=1}^{v} p_s$ is a set of points
of designs A_x^i . Then $[A_y^m]_t = \sum_{s=1}^{v} \delta_{B_{x,t}^s}(p_m)p_s$ and $[A_z^m]_t = [A_x^t]_m =$
 $\sum_{s=1}^{v} \delta_{B_{x,m}^t}(p_s)p_s$ for all $m, t \in [v]$, where $[A_y^m]_t$ and $[A_z^m]_t$ are t-th blocks
of designs A_y^m and A_z^m respectively.



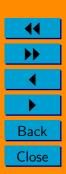
Proposition: Let
$$A \in \mathcal{C}(v, k, \lambda)$$
 and $\mathcal{P} = \sum_{s=1}^{v} p_s$ is a set of points
of designs A_x^i . Then $[A_y^m]_t = \sum_{s=1}^{v} \delta_{B_{x,t}^s}(p_m)p_s$ and $[A_z^m]_t = [A_x^t]_m = \sum_{s=1}^{v} \delta_{B_{x,m}^t}(p_s)p_s$ for all $m, t \in [v]$, where $[A_y^m]_t$ and $[A_z^m]_t$ are t-th blocks
of designs A_u^m and A_z^m respectively.

Theorem: Let $A \in \mathcal{C}(v, k, \lambda)$. Then for every $i, m \in [v]$ designs A_x^i , A_z^m and A_y^m satisfy the following:

1.
$$A_x^i = (\mathcal{P}, \sum_{t=1}^v B_{x,t}^i) = (\mathcal{P}, \mathcal{B}_x^i),$$

2. $A_z^m = (\mathcal{P}, \sum_{t=1}^{\circ} B_{x,m}^t) = (\mathcal{P}, \mathcal{B}_z^m)$, meaning that the set of blocks of a design A_z^m is a set of m-th blocks of designs A_x^t for all $t \in [v]$,

3. $A_y^m = (\mathcal{P}_y^m, \sum_{t=1}^{v} \langle p_m \rangle_{A_z^t}) = (\mathcal{P}_y^m, \mathcal{B}_y^m)$, meaning that the *t*-th block of a design A_y^m is *m*-th dual block of a design A_z^t .



なる本

3. $A_y^m = (\mathcal{P}_y^m, \sum_{t=1}^v \langle p_m \rangle_{A_z^t}) = (\mathcal{P}_y^m, \mathcal{B}_y^m)$, meaning that the *t*-th block of a design A_y^m is *m*-th dual block of a design A_z^t .

Cyclic cubes generated by a symmetric design

なの学

3. $A_y^m = (\mathcal{P}_y^m, \sum_{t=1}^v \langle p_m \rangle_{A_z^t}) = (\mathcal{P}_y^m, \mathcal{B}_y^m)$, meaning that the *t*-th block of a design A_y^m is *m*-th dual block of a design A_z^t .

Cyclic cubes generated by a symmetric design

Definition: Let $G = \sum_{i=1}^{v} g_i$ where $g_1 = 1$, be a group of order v. Let (G, \mathcal{B}) be a (v, k, λ) symmetric design where $\mathcal{B} = \sum_{i=1}^{v} B_i$. Let A_x^1 be an incidence matrix of a design (G, \mathcal{B}) . Let A_x^m be an incidence matrix of an incidence structure $(G, g_m \mathcal{B})$, where $g_m \mathcal{B} = \sum_{i=1}^{v} g_m B_i$. A cyclic cube (generated by a symmetric design (G, \mathcal{B})) is a 3-dimensional matrix $A = (a_{ijm})$ such that $a_{ijm} = (A_x^i)_{jm}$ for all $i, j, m \in [v]$.

Back

lose

3. $A_y^m = (\mathcal{P}_y^m, \sum_{t=1}^v \langle p_m \rangle_{A_z^t}) = (\mathcal{P}_y^m, \mathcal{B}_y^m)$, meaning that the *t*-th block of a design A_y^m is *m*-th dual block of a design A_z^t .

Cyclic cubes generated by a symmetric design

Definition: Let $G = \sum_{i=1}^{v} g_i$ where $g_1 = 1$, be a group of order v. Let (G, \mathcal{B}) be a (v, k, λ) symmetric design where $\mathcal{B} = \sum_{i=1}^{v} B_i$. Let A_x^1 be an incidence matrix of a design (G, \mathcal{B}) . Let A_x^m be an incidence matrix of an incidence structure $(G, g_m \mathcal{B})$, where $g_m \mathcal{B} = \sum_{i=1}^{v} g_m B_i$. A cyclic cube (generated by a symmetric design (G, \mathcal{B})) is a 3-dimensional matrix $A = (a_{ijm})$ such that $a_{ijm} = (A_x^i)_{jm}$ for all $i, j, m \in [v]$.

Back

lose

至了 9/9

Theorem: Let A be a cyclic cube. If $A \in C(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Theorem: Let A be a cyclic cube. If $A \in C(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Theorem: Let A be a cyclic cube. If $A \in C(v, k, \lambda)$, then $\mathcal{B} = \mathcal{D}ev(B)$ for all $B \in \mathcal{B}$ i.e. all blocks are difference sets from the same development of a difference set.

Theorem: Let A be a cyclic cube. If $A \in C(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Theorem: Let A be a cyclic cube. If $A \in C(v, k, \lambda)$, then $\mathcal{B} = \mathcal{D}ev(B)$ for all $B \in \mathcal{B}$ i.e. all blocks are difference sets from the same development of a difference set.

Thank you! Any Q's?

