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PMF-MO

28.11.2024.

? This work was fully supported by the Croatian Science Foundation under the project 9752.

V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 1 / 88



The ACCO project
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Hadamard matrices
A v × v matrix with {−1, 1}-entries is Hadamard if H · Hτ = v I holds.

Examples:
(

1
)
,

(
1 1
1 −1

)
,


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Main question: for what orders v do Hadamard matrices exist?

Proposition.
If a Hadamard matrix exists, then v = 1, v = 2, or v ≡ 0 (mod 4).

Hadamard conjecture:
Hadamard matrices exits for all orders of the form v = 4m

Smallest unknown order: v = 668 = 4 · 167

V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 5 / 88



Hadamard matrices
A v × v matrix with {−1, 1}-entries is Hadamard if H · Hτ = v I holds.

Examples:
(

1
)
,

(
1 1
1 −1

)
,


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Main question: for what orders v do Hadamard matrices exist?

Proposition.
If a Hadamard matrix exists, then v = 1, v = 2, or v ≡ 0 (mod 4).

Hadamard conjecture:
Hadamard matrices exits for all orders of the form v = 4m

Smallest unknown order: v = 668 = 4 · 167
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V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 5 / 88



Higher-dimensional Hadamard matrices
Paul J. Shlichta, Three- and four-dimensional Hadamard matrices,
Bull. Amer. Phys. Soc. 16 (8) (1971), 825–826.

Paul J. Shlichta, Higher dimensional Hadamard matrices,
IEEE Trans. Inform. Theory 25 (1979), no. 5, 566–572.

An n-dimensional matrix of order v with {−1, 1}-entries

H : {1, . . . , v}n → {−1, 1}
is Hadamard if all (n − 1)-dimensional parallel slices are orthogonal:∑

1≤i1,...,̂ij ,...,in≤v

H(i1, . . . , a, . . . , in)H(i1, . . . , b, . . . , in) = vn−1δab

is proper Hadamard if all 2-dimensional slices are Hadamard matrices.

Main question: for what dimensions n and orders v do higher-dimen-
sional Hadamard matrices exist?
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Higher-dimensional Hadamard matrices
J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices,
Proc. Seventh Australian Conf., Lecture Notes in Math. 829, Springer,
Berlin, 1980, pp. 220–223.
J. Hammer, J. R. Seberry, Higher-dimensional orthogonal designs and
applications, IEEE Trans. Inform. Theory 27 (1981), no. 6, 772–779.

Yi Xian Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85–88.
Warwick de Launey, (O,G)-designs and applications, PhD thesis, The
University of Sidney, 1987.

Theorem (“Product construction”).
Let h : {1, . . . , v}2 → {−1, 1} be an ordinary Hadamard matrix of order v .
Then H(i1, . . . , in) =

∏
1≤j<k≤n

h(ij , ik)

is an n-dimensional proper Hadamard matrix of order v .
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Higher-dimensional Hadamard matrices
For dimensions n ≥ 3, the order v > 2 of “improper” Hadamard matrices
must be even. They can exist for v ≡ 2 (mod 4)!

Y. X. Yang, X. X. Niu, C. Q. Xu, Theory and applications of
higher-dimensional Hadamard matrices, Second edition, Chapman
and Hall/CRC Press, 2010.

Theorem (Y. X. Yang).
If the Hadamard conjecture is true, then Hadamard matrices of dimension
n ≥ 4 exist for all even orders v .

What about dimension n = 3 ?
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Higher-dimensional Hadamard matrices
Theorem (Y. X. Yang).
Hadamard matrices of dimension n = 3 exist for orders v = 2 · 3m, m ≥ 0.

v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .
Concluding questions: (from Y. X. Yang’s book)
5. Prove or disprove the existence of three-dimensional Hadamard

matrices of orders 4k + 2 6= 2 · 3m.
6. Construct more three-dimensional Hadamard matrices of orders 4k + 2.

V. Krčadinac, M. O. Pavčević, K. Tabak, Three-dimensional Hadamard
matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.

Theorem.
Hadamard matrices of dimension n = 3 and order v = q + 1 exist for all
odd prime powers q (proper for q ≡ 3 (mod 4), improper for q ≡ 1 (mod 4)).

v = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .
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V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 9 / 88

https://doi.org/10.1016/j.ffa.2023.102306
https://doi.org/10.1016/j.ffa.2023.102306


Higher-dimensional Hadamard matrices
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Higher-dimensional Hadamard matrices

H : PG(1, q)3 → {1,−1}, q ≡ 1 or 3 (mod 4),

H(x , y , z) =



−1, if x = y = z ,

1, if x = y 6= z
or x = z 6= y
or y = z 6= x ,

χ(z − y), if x =∞,

χ(x − z), if y =∞,

χ(y − x), if z =∞,

χ((x − y)(y − z)(z − x)), otherwise.

PG(1, q) = Fq ∪ {∞}

V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 13 / 88



Higher-dimensional Hadamard matrices

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566–572.

SIiL. ICHTA:WGHERDIMENSION.4LIL4D~ MATRICES 

of Hadamard matrices of this form are shown in Fig. l(a) 
and (b), Fig. 6(a), and Fig. 7(d) and (e). All of these are 
completely proper and indeed are the only completely 
proper 2” Hadamard matrices that have been found thus 
far. Moreover, all of the lower dimensional sections of 
these matrices are members of the same family. 

It can be shown that all 2” matrices of the double- 
proximity-shell type are completely proper Hadamard 
matrices. The general form of this matrix diik...= is given 
by the relation 

t&+ =2sin 32sK)] . 
[ (12) 

where S is the sum of the subscripts and K= 0 or 1. Any 
two-dimensional section of this matrix, e.g., . in the pq 
plane, must have the form 

I 

d+...,..., &...j,(q+l)-z 

4ik . ..(p+l)q...r ‘$j/c...(p+l)(q+l)...r 1 
and must therefore, from (12), have the values (assuming 
dijk...pq...r = 1) either 

[: -:] Or [ -: I:]? 

both of which are Hadamard matrices. It therefore follows 
that all two-dimensional sections of this matrix are 
Hadamard matrices and that the.2” matrix is a  completely 
proper Hadamard matrix. 

It is therefore always possible, by successive direct 
multiplications of 2” matrices as defined by (12), to con- 
struct a  completely proper Hadamard matrix of any di- 
mensionality of the order of any power of two. 

VI. FUTURE RESEARCHANDA~PLICATIONS 

The present exposition suggests a number of unsolved 
problems and unproven conjectures. Some examples 
follow. 

a) The algebraic approach to the derivation of two-di- 
mensional Hadamard matrices [2]-[7] suggests that a  
similar procedure may be feasible for three- or 
higher dimensional matrices. 

b) Just as families of two-dimensional Hadamard 
matrices (such as skew and W illiamson matrices) 
have been distinguished, it may be possible to iden- 
tify families of higher dimensional matrices, espe- 
cially families which extend over a range of dimen- 
sions as well as of orders (cf. Section V, f) above). 

c) The assertion that double-proximity-shell matrices, 
as defined by (12), are the only completely proper 2” 
matrices may be provable or refutable by counterex- 
ample. 

d) An algorithm may be developed for deriving a com- 
pletely proper m3 (or m ”) Hadamard matrix from an 
m2 one. 

e) Two-dimensional Hadamard matrices exist only in 
orders of 1, 2, or 4t. No such restriction has yet been 

571 

TABLE I 
COMPAR~SONOFNUMBERANDTYPESOFCORRRLATIONSPER 

ELEMENT BETWEENTWO-DIMENSIONALHADM~ARD MATRICES 

AND4” PROPERhDAhURD MATRICES WITH THE SAME NUMBER 

TYPE OF 
MATRIX 

82 
proper 43 

162 
proper 44 

322 
proper 45 

642 
proper 46 

- 
T 

OF ELEMENTS. 

CORRE NUMBER OF - 
ELEMENTS TYPE 

LAT IONS P 
ORDER 

czz==== 

ER ELEMENT 
NUMBER 

- 

64 
64 

POW 8 14 
square 16 9 

row 4 18 

256 
256 

POW 16 30 
cube 64 12 

Y4q"aY-e 16 36 
POW 4 36 

1024 
1024 

mw 32 
44 256 
cube 64 

square 16 
row 4 

62 
15 
60 
90 
60 

4096 row 
4096 :4 5 

cube 
square 

POW 

64 126 
1024 18 

256 90 
64 180 
lb 180 

4 90 

established for higher dimensions. There may exist 
absolutely improper m3 or mn Hadamard matrices of 
order m=2s#4t. 

f) W ith the exception of (12), none of the above equa- 
tions or relations depend on the binary character of 
the matrix elements. The same rules and procedures 
should therefore be valid for deriving other higher 
dimensional orthogonal matrices. 

It therefore seems likely that higher dimensional orthogo- 
nal matrices will provide a fruitful field for future re- 
search. 

W ith regard to practical application, the most obvious 
advantage of higher dimensional Hadamard matrices is 
the presence or absence of propriety. Table I demon- 
strates that proper 44, 45, and 4’j matrices have far more 
correlation checks per element than their two-dimensional 
counterparts. Moreover, these tests range from large scale 
$-population comparisons, useful as a quick check for 
freedom from errors, to highly localized row checks for 
locating specific errors. Therefore, it seems likely that 
proper Hadamard matrices of dimensionality n > 4 will 
prove advantageous in error-correcting codes. 

Conversely, certain forms of Hadamard matrices may 
be of value in security coding because of their resemb- 
lance to random ,matrices. It should be noted that any 
Hadamard matrix is a  kind of paradigm of a random 
binary matrix in that the correlation value for any pair of 
parallel (n - 1)-dimensional sections (i.e., zero) is the ex- 
pected value for such correlations in a random matrix; for 
a  proper Hadamard matrix, this is true for any lower 
dimensional section. It therefore seems plausible to regard 
any sufficiently large random binary matrix as potentially 
a  Hadamard matrix with errors that can be located and 
corrected. (A computer program for this purpose is cur- 
rently under study.) The Hadamard matrices so derived, 
because of the absence of obvious pattern and their re- 
semblance to random matrices, might usefully combine 
error correction with immunity from unauthorized decod- 
ing. 

Authorized licensed use limited to: University of Zagreb. Downloaded on May 11,2023 at 10:07:45 UTC from IEEE Xplore.  Restrictions apply. 
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Higher-dimensional Hadamard matrices

Questions:

1 What about dimension n = 3 and orders v = 22, 34, 46, 58, . . .?

2 Can other known construction techniques for 2-dimensional
Hadamard matrices be generalized to higher dimensions?

3 Can existence be proved for even orders v and dimensions n ≥ 4
without referring to the Hadamard conjecture?

4 Other generalizations of Hadamard matrices to higher dimensions?
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Gnang-Filmus version of higher-dim. Hadamard matrices
Edinah K. Gnang, Yuval Filmus, On the spectra of hypermatrix direct
sum and Kronecker products constructions, Linear Algebra Appl. 519
(2017), 238–277.

An n-dimensional matrix H : {1, . . . , v}n → {−1, 1} is Hadamard if

Prod
(
H,Hτn−1

, . . . ,Hτ2
,Hτ

)
= ∆

D. M. Mesner, P. Bhattacharya, Association schemes on triples and a
ternary algebra, J. Combin. Theory Ser. A 55 (1990), no. 2, 204–234.

Proposition.
An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n ≥ 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v , e.g. a 4× 4× 4× 4 matrix? 244 = 2256 ≈ 1.16 · 1077
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Gnang-Filmus version of higher-dim. Hadamard matrices

Proposition.
Hadamard matrices exist for all odd dimensions n ≥ 3 and orders v = 2m.

Questions: (for odd dimensions n ≥ 3)
1 Does the order v have to be divisible by 4?

2 Are there examples with v not of the form 2m?

3 Apart from the Kronecker product construction, can other known
constructions for n = 2 be generalized to odd dimensions?
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Other types of higher-dimensional designs

Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.

“Proper n-dimensional transposable designs”

W. de Launey, D. Flannery, Algebraic design theory, American Mathe-
matical Society, 2011.

A symmetric (v , k, λ) design is a v × v matrix with {0, 1}-entries such
that A · Aτ = (k − λ) I + λ J holds.
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V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 18 / 88



Other types of higher-dimensional designs

Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.

“Proper n-dimensional transposable designs”

W. de Launey, D. Flannery, Algebraic design theory, American Mathe-
matical Society, 2011.

A symmetric (v , k, λ) design is a v × v matrix with {0, 1}-entries such
that A · Aτ = (k − λ) I + λ J holds.
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Cubes of symmetric designs

Example: symmetric (7, 3, 1) design (Fano plane)



1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0


An n-dimensional cube of symmetric (v , k, λ) designs is a function
A : {1, . . . , v}n → {0, 1} such that all 2-dimensional slices are symmetric
(v , k, λ) designs. The set of all such objects is denoted Cn(v , k, λ).

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (2024).
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Cubes of symmetric designs
Example: 3-cube of (7, 3, 1) designs (“Fano cube”)

A (v , k, λ) difference set is a k-subset D ⊆ G of an additively written
group of order v such that x − y , x , y ∈ D cover G \ {0} exactly λ times.

Example: D = {0, 1, 3} is a (7, 3, 1) difference set in G = Z7 = {0, . . . , 6}
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Cubes of symmetric designs

Theorem (“Difference cubes”).
If D is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A(i1, . . . , in) = [ gi1 + . . .+ gin ∈ D ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

J. Hammer, J. Seberry, Higher-dimensional orthogonal designs and
Hadamard matrices. II, Proceedings of the Ninth Manitoba Conference on
Numerical Mathematics and Computing, Utilitas Math., 1980, pp. 23–29.

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (2024).
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Cubes of symmetric designs

Theorem (“Difference cubes”).
If D is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A(i1, . . . , in) = [ gi1 + . . .+ gin ∈ D ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

Questions:

1 Are there cubes of symmetric designs not coming from
this theorem? (“non-difference cubes”)

2 Are there cubes of symmetric designs with inequivalent
2-dimensional slices?
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Cubes of symmetric designs

Theorem (“Group cubes”)
If {D1, . . . ,Dv} is a family of (v , k, λ) difference sets in G = {g1, . . . , gv}
that are blocks of a symmetric (v , k, λ) design, then

A(i1, . . . , in) = [ gi2 + . . .+ gin ∈ Di1 ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

Usually: Di = gi + D, i.e. the family is the development of a single D

D = {0, 1, 4, 14, 16} ⊆ Z21

Di = i + D, i = 0, . . . , 20

A 3-cube of (21, 5, 1) designs
(projective planes of order 4)
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Cubes of symmetric designs

Theorem (“Group cubes”)
If {D1, . . . ,Dv} is a family of (v , k, λ) difference sets in G = {g1, . . . , gv}
that are blocks of a symmetric (v , k, λ) design, then

A(i1, . . . , in) = [ gi2 + . . .+ gin ∈ Di1 ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

G = 〈a, b | a3 = b7 = 1, ba = ab2〉

D1 = {1, a, b, b3, a2b2}

D2 = {a2b6, b6, a2b3, a2b4, a}

D3 = {1, a2, ab, b2, b6}
...

D21 = {a2b2, ab3, ab5, b6, ab6}
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Prescribed Automorphism Groups

https://vkrcadinac.github.io/PAG/
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Cubes of symmetric designs

Theorem.
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

Example: m = 2, (16, 6, 2)

There are three such designs:
|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Red design, Green design, Blue design
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V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 28 / 88



Cubes of symmetric designs

Theorem.
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Theorem.
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

G = Z2 × Z8: D3 = {D1, . . . ,D8,D9, . . . ,D16}
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Cubes of symmetric designs

Theorem.
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

G = Z2 × Q8: D2 = {D1, . . . ,D8,D9, . . . ,D16}
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Cubes of symmetric designs

Theorem.
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

Non-group cubes?

V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 34 / 88



Cubes of symmetric designs

Theorem.
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

Non-group cubes?
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Cubes of symmetric designs

Theorem.
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

Proposition.
Up to equivalence, the set C3(16, 6, 2) contains exactly 27 difference
cubes and 946 non-difference group cubes. Furthermore, it contains
at least 1423 inequivalent non-group cubes.

The parameters are of Menon type: (4u2, 2u2 − u, u2 − u). By exchanging
0→ −1, the cubes are transformed to n-dimensional Hadamard matrices
with inequivalent slices!
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Cubes of symmetric designs

Questions:

1 There are exactly 78 symmetric (25, 9, 3) designs, but no difference
sets. Are there cubes of (25, 9, 3) designs of dimension n ≥ 3?

2 Are there non-group cubes of (15, 7, 3) designs? Are there any
non-group cubes for (v , k, λ) 6= (16, 6, 2)?

3 Is there a product construction for cubes of symmetric designs?

4 Hadamard matrices coming from Menon designs are of square orders.
Are there n-dimensional Hadamard matrices with inequivalent slices
of non-square orders?
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And now. . .
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And now. . .

Nobody expects Room squares !

V. Krčadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 39 / 88



Room squares
T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.
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Room squares
T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.

Let S be a set of v + 1 elements, say S = {∞, 1, 2, . . . , v}.
A Room square of order v is a v × v matrix M such that:

the entries of M are empty or 2-element subsets of S
each 2-subset of S appears once in M
elements of S appear once in every row and column of M

Example.

v = 7
∞1 26 57 34
45 ∞2 37 16
27 56 ∞3 14

13 67 ∞4 25
36 24 17 ∞5

47 35 12 ∞6
15 46 23 ∞7
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Room squares
Equivalent objects:

Theorem.
A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph Kv+1.
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Room squares

∞1 26 57 34
45 ∞2 37 16
27 56 ∞3 14

13 67 ∞4 25
36 24 17 ∞5

47 35 12 ∞6
15 46 23 ∞7
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Room squares
Equivalent objects:

Theorem.
A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph Kv+1.

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v .
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Room squares

1 2 3 4 5 6 7
1 ∞1 26 57 34
2 45 ∞2 37 16
3 27 56 ∞3 14
4 13 67 ∞4 25
5 36 24 17 ∞5
6 47 35 12 ∞6
7 15 46 23 ∞7

1 6 4 3 7 2 5
6 2 7 5 4 1 3
4 7 3 1 6 5 2
3 5 1 4 2 7 6
7 4 6 2 5 3 1
2 1 5 7 3 6 4
5 3 2 6 1 4 7

1 5 2 6 3 7 4
5 2 6 3 7 4 1
2 6 3 7 4 1 5
6 3 7 4 1 5 2
3 7 4 1 5 2 6
7 4 1 5 2 6 3
4 1 5 2 6 3 7
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Room squares
Equivalent objects:

Theorem.
A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph Kv+1.

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v .

Existence:
Theorem.
A Room square of order v exists if and only if v is odd and v 6= 3, 5.

Proof: 1955–1973.
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Room cubes
A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {∞, 1, 2, . . . , v} such that every 2-dimensional
projection is a Room square.
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Room cubes
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Room cubes
A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {∞, 1, 2, . . . , v} such that every 2-dimensional
projection is a Room square.
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Room cubes
A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {∞, 1, 2, . . . , v} such that every 2-dimensional
projection is a Room square.

Theorem.
An n-dimensional Room cube of order v is equivalent to:

n mutually orthogonal 1-factorizations of the complete graph Kv+1

n mutually orthogonal-symmetric latin squares of order v

Let µ(v) be the largest possible dimension of a Room cube of order v

Proposition.
µ(v) ≤ v − 2

Conjecture (W. D. Wallis): µ(v) ≤ 1
2 (v − 1)
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Idea

Idea: why not use projections in the definition of higher-dimensional
symmetric designs?

Image: Cousin Ricky
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Projection cubes of symmetric designs
An n-cube of (v , k, λ) designs is a function A : {1, . . . , v}n → {0, 1} such
that all 2-dimensional slices (sections) are symmetric (v , k, λ) designs.
The set of all such objects is denoted Cn(v , k, λ).
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Projection cubes of symmetric designs
A (v , k, λ) projection n-cube is a function A : {1, . . . , v}n → {0, 1} such
that all 2-dimensional projections are symmetric (v , k, λ) designs.
The set of all such objects is denoted Pn(v , k, λ).

V. Krčadinac, L. Relić, Projection cubes of symmetric designs, preprint,
2024. https://arxiv.org/abs/2411.06936

Front view: Top view: Side view:
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that all 2-dimensional projections are symmetric (v , k, λ) designs.
The set of all such objects is denoted Pn(v , k, λ).

V. Krčadinac, L. Relić, Projection cubes of symmetric designs, preprint,
2024. https://arxiv.org/abs/2411.06936
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Projection cubes of symmetric designs
What is a projection?

For an n-dimensional matrix C : {1, . . . , v}n → F and 1 ≤ x < y ≤ n,
the projection Πxy (C) is the 2-dimensional matrix with (ix , iy )-entry∑

1≤i1,...,îx ,...,îy ,...,in≤v

C(i1, . . . , in).

The sum is taken over all n-tuples (i1, . . . , in) ∈ {1, . . . , v}n with fixed
coordinates ix and iy in a (semi)field F.

F = binary semifield (1 + 1 = 1)  “physical shaddow”
F2 = binary field (1 + 1 = 0)  examples with different numbers of 1’s
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What is a projection?

For an n-dimensional matrix C : {1, . . . , v}n → F and 1 ≤ x < y ≤ n,
the projection Πxy (C) is the 2-dimensional matrix with (ix , iy )-entry∑

1≤i1,...,îx ,...,îy ,...,in≤v

C(i1, . . . , in).

The sum is taken over all n-tuples (i1, . . . , in) ∈ {1, . . . , v}n with fixed
coordinates ix and iy in a (semi)field F.

F = binary semifield (1 + 1 = 1)  “physical shaddow”
F2 = binary field (1 + 1 = 0)  examples with different numbers of 1’s

F = field of characteristic 0:
Proposition.
The number of incidences (1-entries) of C ∈ Pn(v , k, λ) is vk.
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Projection cubes of symmetric designs
We can interpret C : {1, . . . , v}n → {0, 1} as a characteristic function
and identify it with the subset of n-tuples

C = {(i1, . . . , in) ∈ {1, . . . , v}n | C(i1, . . . , in) = 1}

Proposition.
Let S ⊆ {1, . . . , v}n be a subset of cardinality vk. There exists a cube
C ∈ Pn(v , k, λ) such that S = C if and only if the following statements
are true for all 1 ≤ x < y ≤ n:

1 for all i ∈ {1, . . . , v}, there are exactly k elements j ∈ {1, . . . , v} such
that (i , j) ∈ Πxy (S),

2 for all j ∈ {1, . . . , v}, there are exactly k elements i ∈ {1, . . . , v} such
that (i , j) ∈ Πxy (S),

3 for all i , i ′ ∈ {1, . . . , v}, i 6= i ′, there are exactly λ elements
j ∈ {1, . . . , v} such that (i , j) ∈ Πxy (S) and (i ′, j) ∈ Πxy (S).
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Projection cubes of symmetric designs

Corollary.
If C is a (v , k, λ) projection n-cube, then C is an orthogonal array of
size vk, degree n, order v , strength 1, and index k, i.e. an OA(vk, n, v , 1).

k = 1:
|Pn(v , 1, 0)| = (v !)n−1

k = 2: numbers of Pn(3, 2, 1)-cubes up to equivalence
n: 2 3 4 5 6
#: 1 2 1 1 0

Theorem.

If a (v , k, λ) projection n-cube with k ≥ 2 exists, then n ≤ v(v + 1)
2 .

ν(v , 1, 0) =∞, ν(3, 2, 1) = 5 (theorem gives ν(3, 2, 1) ≤ 6)
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Higher-dimensional difference sets

Let G be an additively written group of order v . We can index projection
cubes with elements of G instead of the integers {1, . . . , v}:

C : Gn → {0, 1}, C ⊆ Gn

An n-dimensional (v , k, λ) difference set in G is a set of n-tuples D ⊆ Gn

of size k such that {dx − dy | d ∈ D} ⊆ G are (v , k, λ) difference sets
for all 1 ≤ x < y ≤ n.

Proposition.
If D is an n-dimensional (v , k, λ) difference set in G , then the development

dev D = {(d1 + g , . . . , dn + g) | g ∈ G , d ∈ D}

is the representation C ⊆ Gn of a projection cube C ∈ Pn(v , k, λ).
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Higher-dimensional difference sets

Example. Let G = Z7. Then D1 = {(0, 1, 3), (0, 2, 6), (0, 4, 5)} and
D2 = {(0, 1, 2), (0, 2, 4), (0, 4, 1)} are two 3-dimensional (7, 3, 1)
difference set such that dev D1 and dev D2 are inequivalent “Fano
cubes” in P3(7, 3, 1).
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Higher-dimensional difference sets

Proposition.
Let D be an n-dimensional (v , k, λ) difference set in G . Then the
projection cube C = dev D has an autotopy group isomorphic to G
acting sharply transitively on each coordinate.

Difference cubes in Cn(v , k, λ) have a much larger autotopy group
isomorphic to Gn−1.

Proposition.
Let C ∈ Pn(v , k, λ) be a projection cube with an autotopy group G acting
sharply transitively on each coordinate. Then there is an n-dimensional
(v , k, λ) difference set D ⊆ Gn such that C is equivalent with dev D.
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Higher-dimensional difference sets

Theorem (“Higher-dimensional Paley difference sets”).
If q ≡ 3 (mod 4) is a prime power, then there exists a q-dimensional
difference set with parameters (q, (q − 1)/2, (q − 3)/4) in the additive
group of Fq.

Example. 7-dimensional (7, 3, 1) difference set in Z7:

D = {(0, 1, 3, 2, 6, 4, 5), (0, 2, 6, 4, 5, 1, 3), (0, 4, 5, 1, 3, 2, 6)}

Theorem (“Higher-dimensional cyclotomic difference sets”).
If q is a prime power such that the 4th powers in Fq make a
(q, (q − 1)/4, (q − 5)/16) difference set, or the 8th powers in Fq
make a (q, (q − 1)/8, (q − 9)/64) difference set, then there exists
a q-dimensional difference set with the same parameters.
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Higher-dimensional difference sets

Theorem (“Higher-dimensional twin prime power difference sets”).
If q and q + 2 are odd prime powers, then there exists a q-dimensional
difference set in G = Fq × Fq+2 with parameters (4m − 1, 2m − 1,m − 1)
for m = (q + 1)2/4.

µG(v , k, λ) = largest integer n such that an n-dimensional (v , k, λ)
difference set in G exists

µ(7, 3, 1) = 7 µ(11, 5, 2) = 11 µ(15, 7, 3) = 3 µ(13, 4, 1) = 13

µ(7, 4, 2) = 7 µ(11, 6, 3) = 11 µ(15, 8, 4) = 4 µG(21, 5, 1) = 3

Questions:
1 Examples of projection cubes not coming from difference sets?
2 Examples such that the projections are non-isomorphic designs?
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Examples of P3(16, 6, 2)-cubes
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More on Cn(v , k , λ) and Pn(v , k , λ) cubes
V. Krčadinac, M. O. Pavčević, On higher-dimensional symmetric designs,
in preparation, 2024.

Proposition.
The total number of Cn(3, 2, 1)-cubes is 3 · 2n−1 and they are all isotopic.

Theorem.
The numbers of inequivalent cubes in Pn(7, 3, 1) and Pn(7, 4, 2) are given
below. In particular, ν(7, 3, 1) = 7 and ν(7, 4, 2) = 9.

n
(v , k, λ) 2 3 4 5 6 7 8 9 10
(7, 3, 1) 1 13 20 4 3 2 0 0 0
(7, 4, 2) 1 877 884 74 19 9 6 5 0
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n
(v , k, λ) 2 3 4 5 6 7 8 9 10
(7, 3, 1) 1 13 20 4 3 2 0 0 0
(7, 4, 2) 1 877 884 74 19 9 6 5 0
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V. Krčadinac, M. O. Pavčević, On higher-dimensional symmetric designs,
in preparation, 2024.

Proposition.
The total number of Cn(3, 2, 1)-cubes is 3 · 2n−1 and they are all isotopic.

Theorem.
The numbers of inequivalent cubes in Pn(7, 3, 1) and Pn(7, 4, 2) are given
below. In particular, ν(7, 3, 1) = 7 and ν(7, 4, 2) = 9.

n
(v , k, λ) 2 3 4 5 6 7 8 9 10
(7, 3, 1) 1 13 20 4 3 2 0 0 0
(7, 4, 2) 1 877 884 74 19 9 6 5 0
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More on Cn(v , k , λ) and Pn(v , k , λ) cubes

Proposition.
Let (π1, . . . , πn) be an autotopy of C ∈ Pn(v , k, λ). Then any component
πx uniquely determines all other components.

Proposition.
Let (π1, . . . , πn) be an autotopy of C ∈ Cn(v , k, λ). Then any component
πx is uniquely determined by the n − 1 other components.

Proposition.
Autotopies of cubes in Pn(v , k, λ) have the same number of fixed points
on each coordinate. Autotopies of cubes in Cn(v , k, λ) may have different
numbers of fixed points.
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More on higher-dimensional difference sets

Proposition.
If an n-dimensional (v , k, λ) difference set D ⊆ Gn exists, then n ≤ v .

Theorem.
Let G be an elementary abelian group, i.e. the additive group of a finite
field Fq. Then any (q, k, λ) difference set in G extends to q dimensions.

An antiautomorphism of a group G is a bijection ϕ : G → G such that

ϕ(x + y) = ϕ(y) + ϕ(x), ∀x , y ∈ G

We say that R = {ϕ1, . . . , ϕn−1} is a regular set of (anti)automorphisms
of G if each ϕi : G → G is an automorphism or antiautomorphism, and
each difference ϕi − ϕj is an automorphism or antiautomorphism for
1 ≤ i < j ≤ n − 1.
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More on higher-dimensional difference sets

Theorem.
If a group G allows a regular set of (anti)automorphisms of size n − 1,
then any (v , k, λ) difference set in G extends to n dimensions.

Corollary.
Let p be the smallest prime divisor of v . Then any cyclic (v , k, λ)
difference set extends to p dimensions.

Work in progress...
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The End

Thanks for your attention!
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