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The ACCO project

[T"Iy#4 Algorithmic Constructions of Combinatorial Objects (ACCO)
grw:ar:iueme Grant no. IP-2020-02-9752 supported by the Croatian Science Foundation.

Home

m The topic of this research project are constructions of combinatorial objects with additional algebraic structure, such as quasi-

symmetric designs, schematic designs, g-analogs of designs, difference sets, (semi)partial geometries, and generalisations.
Results in algebraic combinatorics impose restrictions on the parameters and properties of such objects that can be exploited
to narrow-down the search space and develop specialised algorithms for their construction and classification.

Data & software ..
Research objectives

Publications

_ « Development of algorithmic methods for the construction and classification of combinatorial objects with strong algebraic

structure. These methods utilise known algebraic and combinatorial properties of the objects to handle larger
parameters and problems that have been out of reach with traditional construction methods.

m « Widening of theoretical knowledge about combinatorial objects that are the topic of research. Interesting theorems are
often discovered and proved on the basis of available examples. It is expected that the results of the project will lead to
such discoveries.

« Development of a software package, implemented in GAP, for the construction and analysis of combinatorial objects.
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Hadamard matrices

A v X v matrix with {—1, 1}-entries is Hadamard if H-H” = v/ holds.
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Hadamard matrices

A v X v matrix with {—1, 1}-entries is Hadamard if H-H” = v/ holds.

1 1 1 1

1 1 1 -1 1 -1

Examples: ( 1 ), ( 1 1 ), 1 1 -1 —1
1 -1 -1 1
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1 1 1 1

1 1 1 -1 1 -1

Examples: ( 1 ), ( 1 1 ), 1 1 -1 —1
1 -1 -1 1

Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then v =1, v =2, or v =0 (mod 4).
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Hadamard matrices

A v X v matrix with {—1, 1}-entries is Hadamard if H-H” = v/ holds.

1 1 1 1

1 1 1 -1 1 -1

Examples: ( 1 ), < 1 1 ), 1 1 -1 —1
1 -1 -1 1

Main question: for what orders v do Hadamard matrices exist?

Proposition.

If a Hadamard matrix exists, then v =1, v =2, or v =0 (mod 4).

Hadamard conjecture:

Hadamard matrices exits for all orders of the form v = 4m

Smallest unknown order: v = 668 = 4 - 167
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices,
Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices,
IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.
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Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices,
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An n-dimensional matrix of order v with {—1,1}-entries

H:{1,...,v}"— {-1,1}
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An n-dimensional matrix of order v with {—1,1}-entries

H:{1,...,v}"— {-1,1}
@ is Hadamard if all (n — 1)-dimensional parallel slices are orthogonal:

> H(it,...,a, ... in)H(i1, ... by .o yin) = v 6,

1< eenyijyeeerin<v
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IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

An n-dimensional matrix of order v with {—1,1}-entries

H:{1,...,v}"— {-1,1}
@ is Hadamard if all (n — 1)-dimensional parallel slices are orthogonal:
> H(it,...,a, ... in)H(i1, ... by .o yin) = v 6,
1< it yeeijyeensin <V

@ is proper Hadamard if all 2-dimensional slices are Hadamard matrices.

Main question: for what dimensions n and orders v do higher-dimen-
sional Hadamard matrices exist?
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Higher-dimensional Hadamard matrices

J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices,
Proc. Seventh Australian Conf., Lecture Notes in Math. 829, Springer,
Berlin, 1980, pp. 220-223.

J. Hammer, J. R. Seberry, Higher-dimensional orthogonal designs and
applications, |EEE Trans. Inform. Theory 27 (1981), no. 6, 772-779.
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Higher-dimensional Hadamard matrices

J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices,
Proc. Seventh Australian Conf., Lecture Notes in Math. 829, Springer,
Berlin, 1980, pp. 220-223.

J. Hammer, J. R. Seberry, Higher-dimensional orthogonal designs and
applications, |EEE Trans. Inform. Theory 27 (1981), no. 6, 772-779.

Yi Xian Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The
University of Sidney, 1987.

Theorem (“Product construction™).

Let h:{1,...,v}? = {—1,1} be an ordinary Hadamard matrix of order v.
Then . , .
H(i,y ... in) = H h(ij, ix)
1<j<k<n

is an n-dimensional proper Hadamard matrix of order v.
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Higher-dimensional Hadamard matrices

For dimensions n > 3, the order v > 2 of “improper” Hadamard matrices
must be even. They can exist for v =2 (mod 4)!

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 8/88



Higher-dimensional Hadamard matrices

For dimensions n > 3, the order v > 2 of “improper” Hadamard matrices
must be even. They can exist for v =2 (mod 4)!

Y. X. Yang, X. X. Niu, C. Q. Xu, Theory and applications of
higher-dimensional Hadamard matrices, Second edition, Chapman
and Hall/CRC Press, 2010.

Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension
n > 4 exist for all even orders v.
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Theorem (Y. X. Yang).

If the Hadamard conjecture is true, then Hadamard matrices of dimension
n > 4 exist for all even orders v.

What about dimension n =37
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Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders v =2 -3, m > 0.
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Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders v =2 -3, m > 0.

v =2,6,10,14,18,22, 26, 30, 34, 38,42, 46,50, 54, 58,62, . ..
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Higher-dimensional Hadamard matrices

Theorem (Y. X. Yang).

Hadamard matrices of dimension n = 3 exist for orders v =2-3", m > 0.
v =2,6,10,14,18,22, 26,30, 34,38,42,46,50,54,58,62, ...

Concluding questions: (from Y. X. Yang's book)

5. Prove or disprove the existence of three-dimensional Hadamard

matrices of orders 4k +2 # 2 - 3™,
6. Construct more three-dimensional Hadamard matrices of orders 4k + 2.
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Hadamard matrices of dimension n = 3 exist for orders v =2 -3, m > 0.

v =2,6,10,14,18,22, 26,30, 34,38,42,46,50,54,58,62, ...

Concluding questions: (from Y. X. Yang's book)

5. Prove or disprove the existence of three-dimensional Hadamard
matrices of orders 4k +2 # 2 - 3™,

6. Construct more three-dimensional Hadamard matrices of orders 4k + 2.

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Three-dimensional Hadamard
matrices of Paley type, Finite Fields Appl. 92 (2023), 102306.

Hadamard matrices of dimension n = 3 and order v = g + 1 exist for all
odd prime powers g (proper for g = 3 (mod 4), improper for g =1 (mod 4)).
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Higher-dimensional Hadamard matrices

H: PG(1,q)3 — {1,—1}, g=1 or 3 (mod 4),

_1, ifX:y:Z,
1, fx=y+#z
orx=z#y
ory =2z # X,
Hiay:2) =4z - ), if x = o0,
x(x = 2), if y = oo,
x(y — x), if z= o0,
X((x = y)(y — z)(z — x)), otherwise.

PG(1,q) = Fq U {oo}
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Higher-dimensional Hadamard matrices

Paul J. Shlichta, Higher dimensional Hadamard matrices, |IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566-572.

VI. FUTURE RESEARCH AND APPLICATIONS

The present exposition suggests a number of unsolved
problems and unproven conjectures. Some examples
follow.

a) The algebraic approach to the derivation of two-di-
mensional Hadamard matrices [2}-[7] suggests that a
similar procedure may be feasible for three- or
higher dimensional matrices.
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Higher-dimensional Hadamard matrices

Questions:

©@ What about dimension n = 3 and orders v = 22, 34, 46, 58,...7
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@ Can other known construction techniques for 2-dimensional
Hadamard matrices be generalized to higher dimensions?
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Higher-dimensional Hadamard matrices

Questions:

©@ What about dimension n = 3 and orders v = 22, 34, 46, 58,...7

@ Can other known construction techniques for 2-dimensional
Hadamard matrices be generalized to higher dimensions?

© Can existence be proved for even orders v and dimensions n > 4
without referring to the Hadamard conjecture?
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Higher-dimensional Hadamard matrices

Questions:

@ What about dimension n = 3 and orders v = 22, 34, 46, 58,...7

@ Can other known construction techniques for 2-dimensional
Hadamard matrices be generalized to higher dimensions?

© Can existence be proved for even orders v and dimensions n > 4
without referring to the Hadamard conjecture?

@ Other generalizations of Hadamard matrices to higher dimensions?

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024.
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Gnang-Filmus version of higher-dim. Hadamard matrices

Edinah K. Gnang, Yuval Filmus, On the spectra of hypermatrix direct
sum and Kronecker products constructions, Linear Algebra Appl. 519

(2017), 238-277.
An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if

Prod (H, H ™ HT, HT) —A

28.11.2024. 16 /88

V. Kréadinac (PMF-MO) On higher-dimensional designs



Gnang-Filmus version of higher-dim. Hadamard matrices

Edinah K. Gnang, Yuval Filmus, On the spectra of hypermatrix direct
sum and Kronecker products constructions, Linear Algebra Appl. 519
(2017), 238-277.

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if
Prod (H, H ™ HT, HT) —A

D. M. Mesner, P. Bhattacharya, Association schemes on triples and a
ternary algebra, J. Combin. Theory Ser. A 55 (1990), no. 2, 204-234.
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Gnang-Filmus version of higher-dim. Hadamard matrices

Edinah K. Gnang, Yuval Filmus, On the spectra of hypermatrix direct
sum and Kronecker products constructions, Linear Algebra Appl. 519
(2017), 238-277.

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if
Prod (H, H ™ HT, HT) —A

D. M. Mesner, P. Bhattacharya, Association schemes on triples and a
ternary algebra, J. Combin. Theory Ser. A 55 (1990), no. 2, 204-234.

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.
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An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if
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D. M. Mesner, P. Bhattacharya, Association schemes on triples and a
ternary algebra, J. Combin. Theory Ser. A 55 (1990), no. 2, 204-234.

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 X 4 X 4 x 4 matrix?
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sum and Kronecker products constructions, Linear Algebra Appl. 519
(2017), 238-277.

An n-dimensional matrix H : {1,...,v}" — {—1,1} is Hadamard if
Prod (H, H ™ HT, HT) —A

D. M. Mesner, P. Bhattacharya, Association schemes on triples and a
ternary algebra, J. Combin. Theory Ser. A 55 (1990), no. 2, 204-234.

Proposition.

An n-dimensional Hadamard matrix of order v = 2 exists for n = 2 and
for odd n > 3, but does not exist for even n > 2.

Question: Do Hadamard matrices of even dimensions n > 2 exist for
other orders v, e.g. a 4 x 4 x 4 x 4 matrix? 2% = 2256 ~ 1.16- 1077
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Gnang-Filmus version of higher-dim. Hadamard matrices

Proposition.

Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2™,
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Gnang-Filmus version of higher-dim. Hadamard matrices

Proposition.

Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2™,

Questions: (for odd dimensions n > 3)
@ Does the order v have to be divisible by 47
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Proposition.

Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2™,

Questions: (for odd dimensions n > 3)
@ Does the order v have to be divisible by 47

@ Are there examples with v not of the form 2M7
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Gnang-Filmus version of higher-dim. Hadamard matrices

Proposition.
Hadamard matrices exist for all odd dimensions n > 3 and orders v = 2™,

Questions: (for odd dimensions n > 3)
@ Does the order v have to be divisible by 47

@ Are there examples with v not of the form 2M7

© Apart from the Kronecker product construction, can other known
constructions for n = 2 be generalized to odd dimensions?

28.11.2024. 17 /88
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Other types of higher-dimensional designs

Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .
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Other types of higher-dimensional designs

Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67-81.

“Proper n-dimensional transposable designs”
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Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67-81.

“Proper n-dimensional transposable designs”

W. de Launey, D. Flannery, Algebraic design theory, American Mathe-
matical Society, 2011.
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Other types of higher-dimensional designs

Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67-81.

“Proper n-dimensional transposable designs”

W. de Launey, D. Flannery, Algebraic design theory, American Mathe-
matical Society, 2011.

A symmetric (v, k, \) design is a v X v matrix with {0, 1}-entries such
that A- A7 = (k—A) I+ AJ holds.
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Cubes of symmetric designs

Example: symmetric (7,3, 1) design (Fano plane)
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Cubes of symmetric designs

Example: symmetric (7,3, 1) design (Fano plane)
1101000
1010001
0100011
1000110
0001101
001 1010
0110100
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Cubes of symmetric designs

Example: symmetric (7,3, 1) design (Fano plane)
1101000
1010001
0100011
1000110
0001101
001 1010
0110100

An n-dimensional cube of symmetric (v, k, \) designs is a function
A:{1,...,v}" — {0,1} such that all 2-dimensional slices are symmetric
(v, k, A) designs. The set of all such objects is denoted C"(v, k, A).

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 19/88


https://doi.org/10.26493/1855-3974.3222.e53
https://doi.org/10.26493/1855-3974.3222.e53

Cubes of symmetric designs

Example: symmetric (7,3, 1) design (Fano plane)
1101000
1010001
0100011
1000110
0001101
001 1010
0110100

An n-dimensional cube of symmetric (v, k, \) designs is a function
A:{1,...,v}" — {0,1} such that all 2-dimensional slices are symmetric
(v, k, A) designs. The set of all such objects is denoted C"(v, k, A).

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (2024).
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Cubes of symmetric designs

Example: 3-cube of (7,3,1) designs (“Fano cube”)
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Cubes of symmetric designs

Example: 3-cube of (7,3,1) designs (“Fano cube”)

A (v, k,\) difference set is a k-subset D C G of an additively written
group of order v such that x — y, x,y € D cover G\ {0} exactly A times.
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Cubes of symmetric designs

Example: 3-cube of (7,3,1) designs (“Fano cube”)

A (v, k,\) difference set is a k-subset D C G of an additively written
group of order v such that x — y, x,y € D cover G\ {0} exactly A times.

Example: D = {0,1,3} is a (7,3, 1) difference set in G = Z7; ={0,...,6}

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 20/88



Cubes of symmetric designs

Theorem (“Difference cubes”).
If Dis a (v, k, A) difference set in G = {g1,...,8,}, then

A(il,...,i,,):[g,-l—{—...—f—g,-nED]

is an n-dimensional cube of symmetric (v, k, \) designs.
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Cubes of symmetric designs

Theorem (“Difference cubes”).
If Dis a (v, k, A) difference set in G = {g1,...,8,}, then

A(il,...,i,,):[g,-l—{—...—f—g,-nED]

is an n-dimensional cube of symmetric (v, k, \) designs.

J. Hammer, J. Seberry, Higher-dimensional orthogonal designs and
Hadamard matrices. Il, Proceedings of the Ninth Manitoba Conference on
Numerical Mathematics and Computing, Utilitas Math., 1980, pp. 23-29.

Warwick de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67-81.

V. Kréadinac, M. O. Pavcevi¢, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. (2024).
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Cubes of symmetric designs

Theorem (“Difference cubes”).

If Dis a (v, k, A) difference set in G = {g1,...,8,}, then
A(il,...,i,,):[g,-l—{—...—f—g,-nED]

is an n-dimensional cube of symmetric (v, k, \) designs.

Questions:

© Are there cubes of symmetric designs not coming from
this theorem? (“non-difference cubes”)
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Cubes of symmetric designs

Theorem (“Difference cubes”).

If Dis a (v, k, A) difference set in G = {g1,...,8,}, then
A(il,...,i,,):[g,-l—{—...—f—g,-nED]

is an n-dimensional cube of symmetric (v, k, \) designs.

Questions:

© Are there cubes of symmetric designs not coming from
this theorem? (“non-difference cubes”)

@ Are there cubes of symmetric designs with inequivalent
2-dimensional slices?

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024.



Cubes of symmetric designs

Theorem (“Group cubes™)

If {D1,...,D,} is a family of (v, k, \) difference sets in G = {gi,

-, 8v}
that are blocks of a symmetric (v, k, ) design, then

A(il,...,i,,):[g,-z—i—...—i—g,'nGD;I]

is an n-dimensional cube of symmetric (v, k, \) designs.
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Cubes of symmetric designs

Theorem (“Group cubes™)

If {D1,...,D,} is a family of (v, k, \) difference sets in G = {gi,

-, 8v}
that are blocks of a symmetric (v, k, ) design, then

A(il,...,i,,):[g,-z—i—...—i—g,'nGD;I]

is an n-dimensional cube of symmetric (v, k, \) designs.

Usually: D; = g; + D, i.e. the family is the development of a single D
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Cubes of symmetric designs

Theorem (“Group cubes™)

If {D1,...,D,} is a family of (v, k, A) difference sets in G = {g1,...,8/}
that are blocks of a symmetric (v, k, ) design, then

A(il,...,i,,):[g,-z—i—...—i—g,'nGD;I]

is an n-dimensional cube of symmetric (v, k, \) designs.

Usually: D; = g; + D, i.e. the family is the development of a single D

D ={0,1,4,14,16} C Zn
Di=i+D,i=0,...,20

V. Kréadinac (PMF-MO)
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Cubes of symmetric designs

Theorem (“Group cubes”)

If {D1,...,D,} is a family of (v, k, A) difference sets in G = {g1,...,8/}
that are blocks of a symmetric (v, k, ) design, then

A(il,...,i,,):[g,-2+...+g,'nGD,'I]

is an n-dimensional cube of symmetric (v, k, \) designs.

Usually: D; = g; + D, i.e. the family is the development of a single D

D=1{0,1,4,14,16} C Zn
Di=i+D,i=0,...,20
A 3-cube of (21,5,1) designs

(projective planes of order 4)
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Cubes of symmetric designs

Theorem (“Group cubes”)

If {D1,...,D,} is a family of (v, k, A) difference sets in G = {g1,...,8/}
that are blocks of a symmetric (v, k, ) design, then

(Il,.. In) [g;2+...+g;n€D;1]

is an n-dimensional cube of symmetric (v, k, \) designs.

G=(ab|a®=b" =1, ba= ab?)
D; = {1, a, b, b3, a2b2}

Dy = {2265, b5, 223, 2 b*, a}
D3 = {1, a? 7ab,b2,b6}

Dy1 = {a?b?, ab3, ab, b®, ab®}

V. Kréadinac (PMF-MO)
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Prescribed Automorphism Groups

PAG GAP Package PAG

. . The PAG k tains functions fi
Prescribed Automorphism Groups © SR NS [ Er
constructing combinatorial objects with prescribed

Version 0.2.3 automorphism groups.

Released 2024-05-21
The current version of this package is version

‘ Download tar.gz 0.2.3, released on 2024-05-21. For more
information, please refer to the package manual.

¥ View On GitHub There is also a README file.

This project is maintained by .
Vedran Krcadinac Dependencies

This package requires GAP version 4.11

https://vkrcadinac.github.io/PAG/
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Example: m =2, (16,6, 2)
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Example: m =2, (16,6, 2)

There are three such designs:
| Aut(D;)| = 11520, |Aut(D»)| =768, |Aut(Ds)| = 384
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Example: m =2, (16,6, 2)

There are three such designs:
| Aut(D;)| = 11520, |Aut(D»)| =768, |Aut(Ds)| = 384

Red design, Green design, Blue design

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024.



Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G:Zg Dlz{Dl,...,Dw}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G:Zg Dlz{Dl,...,Dw}

L4
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m, 2m—1(2m . 1)’ 2m—1(2m—1 . 1))

designs that are group cubes, but not difference cubes.

G=Z2XZSZ D2={D1,...,D16}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

G:ZQXQSZ D3:{D1,...,D16}

dndond
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G:Zg DQZ{D]_,...7D]_6}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m, 2m—1(2m . 1)’ 2m—1(2m—1 . 1))

designs that are group cubes, but not difference cubes.

G=Zg D2={D1,...,D16}

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024.



Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

G:ZLQ1 D3:{D1,...,D16}

o9
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

G= ZQXZg D3—{D1,...,D,
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

G=Z2XQSI Dg={D1,...,D8,Dg,...,D16}
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Non-group cubes?
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric
(4m om— 1( 1) om— 1(2m 1 1))

designs that are group cubes, but not difference cubes.

Non-group cubes?
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

Proposition.

Up to equivalence, the set C3(16,6,2) contains exactly 27 difference
cubes and 946 non-difference group cubes. Furthermore, it contains
at least 1423 inequivalent non-group cubes.
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Cubes of symmetric designs

For every m > 2 and n > 3, there are n-cubes of symmetric

(4m7 2m—1(2m . 1)’ 2m—1(2m—1 _ 1))

designs that are group cubes, but not difference cubes.

Proposition.

Up to equivalence, the set C3(16,6,2) contains exactly 27 difference
cubes and 946 non-difference group cubes. Furthermore, it contains
at least 1423 inequivalent non-group cubes.

The parameters are of Menon type: (4u?,2u? — u, u?> — u). By exchanging
0 — —1, the cubes are transformed to n-dimensional Hadamard matrices
with inequivalent slices!
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Cubes of symmetric designs

Questions:

@ There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37
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Cubes of symmetric designs

Questions:

@ There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37

@ Are there non-group cubes of (15,7, 3) designs? Are there any
non-group cubes for (v, k, \) # (16,6, 2)?
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Cubes of symmetric designs

Questions:

@ There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37

@ Are there non-group cubes of (15,7, 3) designs? Are there any
non-group cubes for (v, k, \) # (16,6, 2)?

© Is there a product construction for cubes of symmetric designs?
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Cubes of symmetric designs

Questions:

There are exactly 78 symmetric (25,9, 3) designs, but no difference
sets. Are there cubes of (25,9, 3) designs of dimension n > 37

Are there non-group cubes of (15,7, 3) designs? Are there any
non-group cubes for (v, k, \) # (16,6, 2)?

© Is there a product construction for cubes of symmetric designs?

Hadamard matrices coming from Menon designs are of square orders.
Are there n-dimensional Hadamard matrices with inequivalent slices
of non-square orders?

. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 37/88



V. Kréadinac (PMF-MO) i imensi i 2024, 38/88



Nobody expects Room squares!
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Room squares

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.

Thomas Gerald Room

Article  Talk

From Wikipedia, the free encyclopedia

Thomas Gerald Room FRS FAA (10 November 1902 — 2 April 1986) was an
Australian mathematician who is best known for Room squares. He was a
Foundation Fellow of the Australian Academy of Science.['ll2]
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Room squares

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.
Let S be a set of v + 1 elements, say S = {o0,1,2,...,v}.

A Room square of order v is a v X v matrix M such that:

@ the entries of M are empty or 2-element subsets of S
@ each 2-subset of S appears once in M

@ elements of S appear once in every row and column of M

V. Kréadinac (PMF-MO)
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Room squares

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.
Let S be a set of v + 1 elements, say S = {o0,1,2,...,v}.
A Room square of order v is a v X v matrix M such that:

@ the entries of M are empty or 2-element subsets of S
@ each 2-subset of S appears once in M

@ elements of S appear once in every row and column of M

Example.
ool 26 57 | 34
v=7 45 | 002 37 16
27 | 56 | o3 14
13 | 67 | co4 25
36 24 | 17 | o0b
47 35 | 12 | 06
15 46 | 23 | oo7
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Room squares

Equivalent objects:

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 42/88



Room squares
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Room squares

ool 26 57 34
45 | o02 16
27 56 | oo3 14
13 67 | oo4 25
36 24 17
47 35 006
15 23 | oo7

V. Kréadinac (PMF-MO)
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Room squares

Equivalent objects:

Theorem.

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v.

| A\

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 45/88



Room squares

1 2 3 4 5 6 7

1] ool 26 57 | 34

2|1 45 | 002 37 16

3127 | 56 | 003 14

4 13 | 67 | co4 25

51 36 24 | 17 | oob

6 47 35 | 12 | o0b

7 15 46 | 23 | oo7
116[4]3|7|2]|5 1152|6374
6(2|7|5/4|1|3 5126|3741
417|13|1]6|5|2 216(3|7(4|1|5
3/5(1|4]2|7|6 6374|152
7146|2531 3/7(4|1(5[2|6
2|1|5|7(3]|6]|4 714(1|5/2|6|3
513(2|6|1|4|7 411|5|12(6|3|7
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Room squares

Equivalent objects:

Theorem.

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.

| A\

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v.

Existence:

A Room square of order v exists if and only if v is odd and v # 3,5.
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Room squares

Equivalent objects:

Theorem.

A Room square of order v is equivalent to a pair of orthogonal
1-factorizations of the complete graph K, 1.

Theorem.
A Room square of order v is equivalent to a pair of orthogonal-
symmetric latin squares of order v.

| A\

Existence:

A Room square of order v exists if and only if v is odd and v # 3,5.

Proof: 1955-1973.
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

V. Kréadinac (PMF-MO)
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

VAl

7 i
1
1

T
| Wival

100/
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

Front view:
1156|124 37
8 002 67|35 14
5 od17[46] |25
36 04| 12|57
3 47 005 23|16
27 15 oo} 34
45]13 26 oo/
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

Top view:
oo 1] 36 27145
S 56|02 47 13
i 24]67[003 15
R 35]1704 26
: 37| |46[12[c5
; 14| [57[23c06
25 16|34 |0
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

Side view:
26[34] |57 ool
- 45 |16 00237
25 27 003 14|56
13 ool 25/67
: oo536[17] |24
of47]12] [35
071523 |46
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v

Let 1(v) be the largest possible dimension of a Room cube of order v
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v

Let 1(v) be the largest possible dimension of a Room cube of order v

Proposition.
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Room cubes

A Room cube is an n-dimensional matrix of order v with entries that are

empty or 2-subsets of S = {00, 1,2,..., v} such that every 2-dimensional
projection is a Room square.

An n-dimensional Room cube of order v is equivalent to:

@ n mutually orthogonal 1-factorizations of the complete graph K, 1

@ n mutually orthogonal-symmetric latin squares of order v

Let 1(v) be the largest possible dimension of a Room cube of order v

Proposition.

Conjecture (W. D. Wallis):  pu(v) < 3(v—1)
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Idea: why not use projections in the definition of higher-dimensional
symmetric designs?

Image: Cousin Ricky
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Projection cubes of symmetric designs

An n-cube of (v, k, \) designs is a function A: {1,...,v}" — {0,1} such
that all 2-dimensional slices (sections) are symmetric (v, k, \) designs.
The set of all such objects is denoted C"(v, k, A).

V. Kréadinac (PMF-MO)

On higher-dimensional designs 28.11.2024.
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Projection cubes of symmetric designs

A (v, k,\) projection n-cube is a function A: {1,...,v}" — {0,1} such
that all 2-dimensional projections are symmetric (v, k, A) designs.
The set of all such objects is denoted P"(v, k, A).

V. Kréadinac (PMF-MO)

On higher-dimensional designs 28.11.2024.

54 /88


https://arxiv.org/abs/2411.06936

Projection cubes of symmetric designs

A (v, k,\) projection n-cube is a function A: {1,...,v}" — {0,1} such
that all 2-dimensional projections are symmetric (v, k, A) designs.
The set of all such objects is denoted P"(v, k, A).

V. Kréadinac, L. Reli¢, Projection cubes of symmetric designs, preprint,
2024. https://arxiv.org/abs/2411.06936
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Projection cubes of symmetric designs

A (v, k,\) projection n-cube is a function A: {1,...,v}" — {0,1} such
that all 2-dimensional projections are symmetric (v, k, A) designs.
The set of all such objects is denoted P"(v, k, A).

V. Kréadinac, L. Reli¢, Projection cubes of symmetric designs, preprint,
2024. https://arxiv.org/abs/2411.06936

Front view: Top view: Side view:
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Projection cubes of symmetric designs

A (v, k,\) projection n-cube is a function A: {1,...,v}" — {0,1} such
that all 2-dimensional projections are symmetric (v, k, A) designs.
The set of all such objects is denoted P"(v, k, A).

V. Kréadinac, L. Reli¢, Projection cubes of symmetric designs, preprint,
2024. https://arxiv.org/abs/2411.06936
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Projection cubes of symmetric desig

A (v, k,\) projection n-cube is a function A: {1,...,v}" — {0,1} such
that all 2-dimensional projections are symmetric (v, k, A) designs.
The set of all such objects is denoted P"(v, k, A).

V. Kréadinac, L. Reli¢, Projection cubes of symmetric designs, preprint,
2024. https://arxiv.org/abs/2411.06936

Front view: Top view: Side view:

Persistence of Vision Raytracer, Version 3.7 (2013).
http://www.povray.org/
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Image: Jonathan Hunt
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Projection cubes of symmetric designs

What is a projection?
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Projection cubes of symmetric designs

What is a projection?

For an n-dimensional matrix C : {1,...,v}" > Fand 1 < x <y <n,
the projection MM, (C) is the 2-dimensional matrix with (i, iy )-entry

3 Clin, ..., in).
1<ty ein SV

The sum is taken over all n-tuples (i1,...,i,) € {1,...,v}" with fixed
coordinates iy and i, in a (semi)field IF.
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Projection cubes of symmetric designs

What is a projection?

For an n-dimensional matrix C : {1,...,v}" > Fand 1 < x <y <n,
the projection MM, (C) is the 2-dimensional matrix with (i, iy )-entry

> C(iry ..\ in).

1<ty ein SV

The sum is taken over all n-tuples (i1,...,i,) € {1,...,v}" with fixed
coordinates iy and i, in a (semi)field IF.

F = binary semifield (1 + 1 = 1) ~» “physical shaddow”
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Projection cubes of symmetric designs

What is a projection?

For an n-dimensional matrix C : {1,...,v}" > Fand 1 < x <y <n,
the projection MM, (C) is the 2-dimensional matrix with (i, iy )-entry

> C(iry ..\ in).
1<t iy seensin <V
The sum is taken over all n-tuples (i1,...,i,) € {1,...,v}" with fixed
coordinates iy and i, in a (semi)field IF.
F = binary semifield (1 + 1 = 1) ~» “physical shaddow”
Fy = binary field (1 + 1 = 0) ~» examples with different numbers of 1's

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 71/88



Projection cubes of symmetric designs

What is a projection?

For an n-dimensional matrix C : {1,...,v}" 5> Fand 1 < x <y <n,
the projection MM, (C) is the 2-dimensional matrix with (i, iy )-entry

> C(iry ..\ in).

L1<L ooy lseensly eosin SV

The sum is taken over all n-tuples (i1,...,i,) € {1,...,v}" with fixed
coordinates iy and i, in a (semi)field IF.

IF = field of characteristic 0:

Proposition.

The number of incidences (1-entries) of C € P"(v, k, ) is vk.
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Projection cubes of symmetric designs

We can interpret C : {1,...,v}" — {0,1} as a characteristic function
and identify it with the subset of n-tuples

C={(i,-yin) €{1,...,v}"| Cliry...,in) =1}
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Projection cubes of symmetric designs

We can interpret C : {1,...,v}" — {0,1} as a characteristic function
and identify it with the subset of n-tuples

C={(i,-yin) €{1,...,v}"| Cliry...,in) =1}

Let S C {1,...,v}" be a subset of cardinality vk. There exists a cube
C € P"(v, k,\) such that S = C if and only if the following statements
aretrue forall 1 < x <y < n:

Q forall i € {1,...,v}, there are exactly k elements j € {1,..., v} such
that (7, /) € My, (S),

@ forall j € {1,...,v}, there are exactly k elements i € {1, ..., v} such
that (7, /) € My (S),

@ forall i,i" € {1,...,v}, i # 1, there are exactly \ elements

Jj€A{1,...,v} such that (i,j) € My, (S) and (i, /) € My, (S).
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Projection cubes of symmetric designs

If Cisa (v, k,\) projection n-cube, then C is an orthogonal array of
size vk, degree n, order v, strength 1, and index k, i.e. an OA(vk, n,v,1).
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Projection cubes of symmetric designs

If Cisa (v, k,\) projection n-cube, then C is an orthogonal array of
size vk, degree n, order v, strength 1, and index k, i.e. an OA(vk, n,v,1).

k=1:
|P"(v,1,0)| = (v!)"*1

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 74 /88



Projection cubes of symmetric designs

If Cisa (v, k,\) projection n-cube, then C is an orthogonal array of
size vk, degree n, order v, strength 1, and index k, i.e. an OA(vk, n,v,1).

k=1:
|7)n(v7 170)’ = (V!)nil
k = 2: numbers of P"(3,2,1)-cubes up to equivalence

nn 2 3 4 5 6
#: 1 2 1 1 0
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Projection cubes of symmetric designs

If Cisa (v, k,\) projection n-cube, then C is an orthogonal array of
size vk, degree n, order v, strength 1, and index k, i.e. an OA(vk, n,v,1).

k=1:
|7)n(v7 170)’ = (V!)nil
k = 2: numbers of P"(3,2,1)-cubes up to equivalence

nn 2 3 4 5 6
#: 1 2 1 1 0

If a (v, k, ) projection n-cube with k > 2 exists, then n <

v(v+1)
=
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Projection cubes of symmetric designs

If Cisa (v, k,\) projection n-cube, then C is an orthogonal array of
size vk, degree n, order v, strength 1, and index k, i.e. an OA(vk, n,v,1).

k=1:
|7)n(v7 170)’ = (V!)nil
k = 2: numbers of P"(3,2,1)-cubes up to equivalence

nn 2 3 4 5 6
#: 1 2 1 1 0

If a (v, k, ) projection n-cube with k > 2 exists, then n <

v(v+1)
=

v(v,1,0) =00, ©(3,2,1) =5 (theorem gives 1(3,2,1) < 6)
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Higher-dimensional difference sets

Let G be an additively written group of order v. We can index projection
cubes with elements of G instead of the integers {1,...,v}:

C:G"—{0,1}, CcCGn
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Higher-dimensional difference sets

Let G be an additively written group of order v. We can index projection
cubes with elements of G instead of the integers {1,...,v}:

C:G"—{0,1}, CcCGn

An n-dimensional (v, k, \) difference set in G is a set of n-tuples D C G"
of size k such that {d —d, | d € D} C G are (v, k, \) difference sets
foralll1<x<y<n.
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Higher-dimensional difference sets

Let G be an additively written group of order v. We can index projection
cubes with elements of G instead of the integers {1,...,v}:

C:G"—{0,1}, CcCGn

An n-dimensional (v, k, \) difference set in G is a set of n-tuples D C G"
of size k such that {d —d, | d € D} C G are (v, k, \) difference sets
foralll1<x<y<n.

Proposition.

If D is an n-dimensional (v, k, \) difference set in G, then the development
devD={(d1+g,....,dn+g)| g€ G,de D}

is the representation C C G" of a projection cube C € P"(v, k, \).
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Higher-dimensional difference sets

Example. Let G = Z7. Then D; = {(0,1,3), (0,2,6), (0,4,5)} and
D> = {(0,1,2), (0,2,4), (0,4,1)} are two 3-dimensional (7,3,1)
difference set such that dev D; and dev D> are inequivalent “Fano
cubes” in P3(7,3,1).
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Higher-dimensional difference sets

Proposition.

Let D be an n-dimensional (v, k, \) difference set in G. Then the
projection cube C = dev D has an autotopy group isomorphic to G
acting sharply transitively on each coordinate.

28.11.2024.
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Higher-dimensional difference sets

Proposition.

Let D be an n-dimensional (v, k, \) difference set in G. Then the
projection cube C = dev D has an autotopy group isomorphic to G
acting sharply transitively on each coordinate.

Difference cubes in C"(v, k, A) have a much larger autotopy group
isomorphic to G"1.
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Higher-dimensional difference sets

Proposition.

Let D be an n-dimensional (v, k, \) difference set in G. Then the
projection cube C = dev D has an autotopy group isomorphic to G
acting sharply transitively on each coordinate.

Difference cubes in C"(v, k, A) have a much larger autotopy group
isomorphic to G"1.

Proposition.

Let C € P"(v, k, A) be a projection cube with an autotopy group G acting
sharply transitively on each coordinate. Then there is an n-dimensional
(v, k, A) difference set D C G" such that C is equivalent with dev D.
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Higher-dimensional difference sets

Theorem (“Higher-dimensional Paley difference sets”).

If g =3 (mod 4) is a prime power, then there exists a g-dimensional

difference set with parameters (q, (g — 1)/2,(g — 3)/4) in the additive
group of Fg.

V. Kréadinac (PMF-MO)

On higher-dimensional designs 28.11.2024.
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Higher-dimensional difference sets

Theorem (“Higher-dimensional Paley difference sets”).

If g =3 (mod 4) is a prime power, then there exists a g-dimensional

difference set with parameters (q, (g — 1)/2,(g — 3)/4) in the additive
group of Fg.

Example. 7-dimensional (7, 3,1) difference set in Zz:

D=1{(0,1,3,2,6,4,5), (0,2,6,4,5,1,3), (0,4,5,1,3,2,6)}
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Higher-dimensional difference sets

Theorem (“Higher-dimensional Paley difference sets”).

If g =3 (mod 4) is a prime power, then there exists a g-dimensional
difference set with parameters (q, (g — 1)/2,(g — 3)/4) in the additive
group of Fg.

Example. 7-dimensional (7,3, 1) difference set in Zz:

D=1{(0,1,3,2,6,4,5), (0,2,6,4,5,1,3), (0,4,5,1,3,2,6)}

Theorem (“Higher-dimensional cyclotomic difference sets”).

If g is a prime power such that the 4th powers in F; make a
(9,(g —1)/4,(q — 5)/16) difference set, or the 8th powers in F,
make a (g, (g — 1)/8,(q — 9)/64) difference set, then there exists
a g-dimensional difference set with the same parameters.
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Higher-dimensional difference sets

Theorem (“Higher-dimensional twin prime power difference sets").

If g and g + 2 are odd prime powers, then there exists a g-dimensional

difference set in G = Fg x Fq42 with parameters (4m —1,2m —1, m — 1)
for m = (q +1)?/4.

V. Kréadinac (PMF-MO)

On higher-dimensional designs 28.11.2024.
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Higher-dimensional difference sets

Theorem (“Higher-dimensional twin prime power difference sets").

If g and g + 2 are odd prime powers, then there exists a g-dimensional

difference set in G = Fg x Fq42 with parameters (4m —1,2m —1, m — 1)
for m = (q +1)?/4.

pe(v, k, \) = largest integer n such that an n-dimensional (v, k, \)
difference set in G exists
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Higher-dimensional difference sets

Theorem (“Higher-dimensional twin prime power difference sets").

If g and g + 2 are odd prime powers, then there exists a g-dimensional

difference set in G = Fg x Fq42 with parameters (4m —1,2m —1, m — 1)
for m = (q +1)?/4.

pe(v, k, \) = largest integer n such that an n-dimensional (v, k, \)
difference set in G exists

M(? 3, 1) =7 ,u(11,5,2) =11 /1,(15,7,3) =3 /1,(13,4, 1) =13
M(7747 2) =7 /1’(117673) =11 //’(157874) =4 :U’G(21757 1) =3
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Higher-dimensional difference sets

Theorem (“Higher-dimensional twin prime power difference sets").

If g and g + 2 are odd prime powers, then there exists a g-dimensional
difference set in G = Fg x Fq42 with parameters (4m —1,2m —1, m — 1)
for m = (q +1)?/4.

pe(v, k, \) = largest integer n such that an n-dimensional (v, k, \)
difference set in G exists

M(? 3, 1) =7 ,u(11,5,2) =11 /1,(15,7,3) =3 /1,(13,4, 1) =13
M(7747 2) =7 /1’(117673) =11 //’(157874) =4 :U’G(21757 1) =3

Questions:

@ Examples of projection cubes not coming from difference sets?
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Higher-dimensional difference sets

Theorem (“Higher-dimensional twin prime power difference sets").

If g and g + 2 are odd prime powers, then there exists a g-dimensional
difference set in G = Fg x Fq42 with parameters (4m —1,2m —1, m — 1)
for m = (q +1)?/4.

pe(v, k, \) = largest integer n such that an n-dimensional (v, k, \)
difference set in G exists

M(? 3, 1) =7 ,u(11,5,2) =11 /1,(15,7,3) =3 /1,(13,4, 1) =13
M(7747 2) =7 /1’(117673) =11 //’(157874) =4 :U’G(21757 1) =3

Questions:

@ Examples of projection cubes not coming from difference sets?

@ Examples such that the projections are non-isomorphic designs?

V. Kréadinac (PMF-MO) On higher-dimensional designs 28.11.2024. 79/88



Examples of P3(16, 6, 2)-cubes
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Examples of P3(16, 6, 2)-cubes
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More on C"(v, k, A) and P"(v, k, \) cubes

V. Kréadinac, M. O. Pavcevi¢, On higher-dimensional symmetric designs,
in preparation, 2024.
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More on C"(v, k, A) and P"(v, k, \) cubes

V. Kréadinac, M. O. Pavcevi¢, On higher-dimensional symmetric designs,
in preparation, 2024.

Proposition.

The total number of C"(3,2,1)-cubes is 3-2"~! and they are all isotopic.

V. Kréadinac (PMF-MO)
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More on C"(v, k, A) and P"(v, k, \) cubes

V. Kréadinac, M. O. Pavcevi¢, On higher-dimensional symmetric designs,

in preparation, 2024.

Proposition.

The total number of C"(3,2,1)-cubes is 3-2"~! and they are all isotopic.

The numbers of inequivalent cubes in P"(7,3,1) and P"(7,4,2) are given
below. In particular, ©(7,3,1) =7 and v(7,4,2) = 9.

(v, k,\)

n

3 4 5 6 7 8 9

10

(7,3,1)
(7,4,2)

13 20 4 3 2
877 884 74 19 9

V. Kréadinac (PMF-MO)
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More on C"(v, k, A) and P"(v, k, \) cubes

Proposition.

Let (71,...,7,) be an autotopy of C € P"(v, k,\). Then any component
7y uniquely determines all other components.

V. Kréadinac (PMF-MO)

On higher-dimensional designs

28.11.2024. 85/88



More on C"(v, k, A) and P"(v, k, \) cubes

Proposition.

Let (71,...,7,) be an autotopy of C € P"(v, k,\). Then any component
7y uniquely determines all other components.

Proposition.

Let (71,...,7n) be an autotopy of C € C"(v, k, A). Then any component
Ty is uniquely determined by the n — 1 other components.
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More on C"(v, k, A) and P"(v, k, \) cubes

Proposition.

Let (71,...,7,) be an autotopy of C € P"(v, k,\). Then any component
7y uniquely determines all other components.

Proposition.

Let (71,...,7n) be an autotopy of C € C"(v, k, A). Then any component
Ty is uniquely determined by the n — 1 other components.

Proposition.

Autotopies of cubes in P"(v, k, ) have the same number of fixed points
on each coordinate. Autotopies of cubes in C"(v, k, A) may have different
numbers of fixed points.
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More on higher-dimensional difference sets

Proposition.

If an n-dimensional (v, k, \) difference set D C G" exists, then n < v.
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More on higher-dimensional difference sets

Proposition.

If an n-dimensional (v, k, \) difference set D C G" exists, then n < v.

Let G be an elementary abelian group, i.e. the additive group of a finite
field Fq. Then any (g, k, \) difference set in G extends to g dimensions.
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More on higher-dimensional difference sets

Proposition.

If an n-dimensional (v, k, \) difference set D C G" exists, then n < v.

Let G be an elementary abelian group, i.e. the additive group of a finite
field Fq. Then any (g, k, \) difference set in G extends to g dimensions.

An antiautomorphism of a group G is a bijection ¢ : G — G such that

p(x +y)=ply) +e(x), ¥x,y €G
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More on higher-dimensional difference sets

Proposition.

If an n-dimensional (v, k, \) difference set D C G" exists, then n < v.

Let G be an elementary abelian group, i.e. the additive group of a finite
field Fq. Then any (g, k, \) difference set in G extends to g dimensions.

An antiautomorphism of a group G is a bijection ¢ : G — G such that

p(x +y)=ply) +e(x), ¥x,y €G

We say that R = {®1,...,pn—1} is a regular set of (anti)automorphisms
of G if each ; : G — G is an automorphism or antiautomorphism, and
each difference ; — ¢; is an automorphism or antiautomorphism for
1<i<j<n-1.
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More on higher-dimensional difference sets

If a group G allows a regular set of (anti)automorphisms of size n — 1,
then any (v, k, \) difference set in G extends to n dimensions.
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More on higher-dimensional difference sets

If a group G allows a regular set of (anti)automorphisms of size n — 1,
then any (v, k, \) difference set in G extends to n dimensions.

Let p be the smallest prime divisor of v. Then any cyclic (v, k, A)
difference set extends to p dimensions.
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More on higher-dimensional difference sets

If a group G allows a regular set of (anti)automorphisms of size n — 1,
then any (v, k, \) difference set in G extends to n dimensions.

Let p be the smallest prime divisor of v. Then any cyclic (v, k, A)
difference set extends to p dimensions.

Work in progress...

PN
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Thanks for your attention!
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