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The scientific project ACCO

Research objectives:

O1. Development of algorithmic methods for the construction and
classification of combinatorial objects with strong algebraic structure.
These methods utilise known algebraic and combinatorial properties
of the objects to handle larger parameters and problems that have
been out of reach with traditional construction methods.

O2. Widening of theoretical knowledge about combinatorial objects that
are the topic of research. Interesting theorems are often discovered
and proved on the basis of available examples. It is expected that
the results of the project will lead to such discoveries.

O3. Development of a software package, implemented in GAP,
for the construction and analysis of combinatorial objects.
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Why prescribe automorphism groups?

A t-(v , k, λ) design consists of a v -element set V of points and a
collection B of k-subsets of V called blocks such that every t-subset
of V is contained in exactly λ blocks.

The total number of blocks is denoted by b = |B| and is determined
by the other parameters.

An automorphism of the design is a permutation of V preserving B.

Does a 2-(51, 6, 1) design with b = 85 blocks exist?(
51
6

)
≈ 18 · 106

((51
6
)

85

)
≈ 1.8 · 10488

((51
6
)
/|G |

85/|G |

)
≈ 1011 for |G | = 40
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The old package KMAD 0.7

About 4000 lines of code. No documentation!
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PAG 0.1 – Manual and documentation
The PAG manual is available at:

https://web.math.pmf.unizg.hr/acco/publications.php

Contents

1 The PAG Package 4
1.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 More Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The PAG Functions 10
2.1 Working With Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Generating Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Constructing Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Global Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

References 13

Index 14
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PAG 0.1 – Manual and documentation

Chapter 1

The PAG Package

Prescribed Automorphism Groups (PAG) is a GAP package for constructing combinatorial objects
with prescribed automorphism groups.

1.1 Getting Started

The package is loaded by
Example

gap> LoadPackage("PAG");

Let us present a small example from the paper [Krč18]. In Theorem 8.1, simple 5-(16,7,10) designs
with the following automorphism group were constructed.

Example
gap> g:=Group((2,3,4)(5,6,7,8,9,10)(11,12,13,14,15,16),

> (1,5)(2,12)(3,15)(4,8)(6,14)(7,16)(9,10)(11,13));

They can be obtained by typing
Example

gap> KramerMesnerSearch(5,16,7,10,g);

Computing t-subset orbit representatives...

28

Computing k-subset orbit representatives...

71

Computing the Kramer-Mesner matrix...

[ 29, 72 ]

Starting solver...

No BOUNDS

The RHS is fixed !

No upper bounds: 0/1 variables are assumed

Orthogonal defect: 26.953339

First reduction successful

Orthogonal defect: 20.216092

Second reduction successful

.

.

.

4
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PAG 0.1 – Manual and documentation

Chapter 2

The PAG Functions

The following functions are available in the PAG package.

2.1 Working With Permutation Groups

2.1.1 CyclicPermutation

. CyclicPermutation(n) (function)

Returns the cyclic permutation (1,...,n ).

2.1.2 PrimitiveGroupsOfDegree

. PrimitiveGroupsOfDegree(v) (function)

Returns a list of all primitive permutation gropus on v points.

2.2 Generating Orbits

2.2.1 SubsetOrbitRepresentatives

. SubsetOrbitRepresentatives(G, v, k[, opt]) (function)

Computes orbit representatives of k -subsets of [1..v ] under the action of the permutation group G .
The basic algorithm is described in [KVK21]. The algorithm for short orbits is described in [KV16].
The last argument is a record opt for options. The possible components of opt are:

SizeLE:=n If defined, only representatives of orbits of size less or equal to n are computed.
IntesectionNumbers:=lin If defined, only representatives of good orbits are returned. These are

orbits with intersection numbers in the list of integers lin .

2.2.2 IsGoodSubsetOrbit

. IsGoodSubsetOrbit(G, rep, lin) (function)

6
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PAG 0.1 – What is implemented so far?

The standard Kramer-Mesner method for t-designs:

Generating G-orbits of k-subsets of V [GAP code]

 Orderly algorithm using GAP package images
 Algorithm for short orbits

Computing the Kramer-Mesner matrix [GAP code]

Solving 0-1 systems by A. Wassermann’s LLL solver
[interface to C program]

Transforming solutions to GAP package DESIGN format
[GAP code]

Command KramerMesnerSearch that does everything automatically
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To do list: from PAG 0.1 to PAG 1.0

Enhancements of the Kramer-Mesner method:

Tactical decomposition matrices

Quasi-symmetric designs: good orbits, compatibility matrices

More solvers: Gurobi, Minion. . .

Other construction methods and types of objects:

Quasi-symmetric designs by clique search

Configurations

Strongly regular graphs?
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Worked examples in PAG

V. Krčadinac, Some new designs with prescribed automorphism groups,
J. Combin. Des. 26 (2018), 193–200.

198 KRČADINAC

T A B L E 3 Base blocks for a 4-(15, 5, 2) design
{1, 2, 3, 4, 5} {1, 2, 3, 7, 11} {1, 2, 4, 7, 11} {1, 2, 4, 7, 14}
{1, 2, 4, 8, 10} {1, 2, 4, 8, 11} {1, 2, 4, 9, 12} {1, 2, 4, 9, 15}
{1, 2, 4, 10, 13} {1, 2, 4, 12, 14} {1, 2, 4, 13, 15} {1, 2, 7, 8, 9}
{1, 2, 7, 8, 14} {1, 2, 7, 12, 15} {1, 2, 10, 11, 12} {1, 2, 10, 11, 15}
{1, 2, 13, 14, 15} {1, 4, 7, 8, 12} {1, 4, 7, 9, 11} {1, 4, 8, 9, 14}
{1, 4, 8, 12, 13} {1, 4, 8, 13, 14} {1, 4, 9, 10, 11} {1, 4, 11, 12, 15}
{1, 4, 11, 14, 15} {1, 7, 8, 10, 11} {1, 7, 8, 10, 13} {1, 7, 8, 11, 15}
{1, 7, 8, 14, 15} {1, 7, 10, 11, 14} {1, 7, 10, 13, 15} {1, 7, 11, 12, 14}
{1, 7, 12, 13, 14} {1, 10, 11, 13, 15} {7, 8, 9, 10, 13} {7, 8, 11, 12, 13}

T A B L E 4 Base blocks for a 4-(16, 8, 45) design
{1, 2, 3, 4, 5, 6, 8, 11} {1, 2, 3, 4, 5, 6, 14, 16} {1, 2, 3, 4, 5, 8, 9, 14}
{1, 2, 3, 4, 5, 8, 12, 13} {1, 2, 3, 4, 5, 10, 12, 14} {1, 2, 3, 4, 5, 11, 15, 16}
{1, 2, 3, 4, 6, 8, 10, 16} {1, 2, 3, 4, 6, 13, 15, 16} {1, 2, 4, 5, 6, 7, 9, 11}
{1, 2, 4, 5, 6, 7, 13, 15} {1, 2, 4, 5, 6, 9, 11, 15} {1, 2, 4, 5, 6, 9, 11, 16}
{1, 2, 4, 5, 6, 10, 13, 16} {1, 2, 4, 5, 7, 8, 9, 16} {1, 2, 4, 5, 8, 12, 15, 16}
{1, 2, 4, 6, 8, 9, 10, 15}

7 DESIGNS WITH PARAMETERS 4-(𝟏𝟔, 𝟖, 𝝀)

For 𝑡 = 4, 𝑣 = 16, and 𝑘 = 8, we have 𝜆min = 15, 𝜆max =
(12
4

)
= 495, and 𝑀 = 16. By [7, Table 4.46],

4-(16, 8, 15𝑚) designs exist for 𝑚 ∈ {4,… , 16}. We found designs for 𝑚 = 3.
Theorem 7.1. Simple 4-(16, 8, 45) designs exist.

Proof. Let 𝐺 ≅ ℤ15.(ℤ4 × ℤ2) be the group of order 120 generated by the permutations

(2, 3)(4, 5, 6, 7)(8, 9, 10, 11)(12, 13, 14, 15)(1, 5)(2, 13)(3, 11)(6, 15)(7, 8)(9, 14)(10, 12).

The Kramer–Mesner system is of size 25 × 132 and has four solutions for 𝜆 = 45. They correspond to
four nonisomorphic designs with Aut() = 𝐺. Base blocks for one of them are given in Table 4. □

The same group 𝐺 can be used to construct 4-(16, 8, 15𝑚) designs for 𝑚 ∈ {4,… , 16}. We tried
many groups for 𝑚 ∈ {1, 2}, but did not find any designs.

8 DESIGNS WITH PARAMETERS 5-(𝟏𝟔, 𝟕, 𝝀)

For 𝑡 = 5, 𝑣 = 16, and 𝑘 = 7, we have 𝜆min = 5, 𝜆max =
(11
2

)
= 55, and 𝑀 = 5. By [7, Table 4.46],

5-(16, 7, 5𝑚) designs exist for 𝑚 ∈ {3, 4, 5}. Here we settle the case 𝑚 = 2.
Theorem 8.1. Simple 5-(16, 7, 10) designs exist.

Proof. Let 𝐺 ≅ (ℤ2 × ℤ2 × ℤ2 × ℤ2).𝐴4 be the group of order 192 generated by the permutations

(2, 3, 4)(5, 6, 7, 8, 9, 10)(11, 12, 13, 14, 15, 16)(1, 5)(2, 12)(3, 15)(4, 8)(6, 14)(7, 16)(9, 10)(11, 13).
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T A B L E 5 Base blocks for a 5-(16, 7, 10) design
{1, 2, 3, 4, 5, 6, 13} {1, 2, 3, 4, 5, 6, 14} {1, 2, 3, 5, 6, 7, 11} {1, 2, 3, 5, 6, 8, 9}
{1, 2, 3, 5, 6, 9, 10} {1, 2, 3, 5, 6, 9, 12} {1, 2, 3, 5, 6, 10, 15} {1, 2, 3, 5, 6, 14, 16}
{1, 2, 3, 5, 8, 11, 12} {1, 2, 5, 6, 7, 8, 16} {1, 2, 5, 6, 7, 9, 14} {1, 2, 5, 6, 7, 12, 13}
{1, 2, 5, 6, 7, 14, 15}

T A B L E 6 Base blocks for a 5-(17, 8, 40) design
{1, 2, 3, 4, 5, 6, 7, 10} {1, 2, 3, 4, 5, 6, 8, 10} {1, 2, 3, 4, 5, 6, 8, 13}
{1, 2, 3, 4, 5, 6, 9, 12} {1, 2, 3, 4, 5, 6, 10, 14} {1, 2, 3, 4, 5, 7, 8, 12}
{1, 2, 3, 4, 5, 7, 9, 14} {1, 2, 3, 4, 5, 7, 10, 14} {1, 2, 3, 4, 5, 7, 11, 13}
{1, 2, 3, 4, 5, 7, 14, 15} {1, 2, 3, 4, 5, 9, 10, 12} {1, 2, 3, 4, 6, 7, 8, 9}
{1, 2, 3, 4, 6, 7, 9, 16} {1, 2, 3, 4, 6, 7, 12, 16} {1, 2, 3, 4, 6, 7, 14, 16}
{1, 2, 3, 4, 6, 8, 14, 16} {1, 2, 3, 4, 6, 9, 11, 15} {1, 2, 3, 4, 7, 8, 9, 12}

The Kramer–Mesner system is of size 28 × 71 and has two solutions for 𝜆 = 10. The two designs are
isomorphic and have Aut() = 𝐺. Base blocks are listed in Table 5. □

The same group 𝐺 gives designs for 𝑚 = 5, and for 𝑚 ∈ {3, 4} a subgroup of index 2 can be used.
We did not find any designs for 𝑚 = 1.

9 DESIGNS WITH PARAMETERS 5-(𝟏𝟕, 𝟖, 𝝀)

For 𝑡 = 5, 𝑣 = 17, and 𝑘 = 8, we have 𝜆min = 20, 𝜆max =
(12
3

)
= 220, and 𝑀 = 5. By [7, Table 4.46],

5-(17, 8, 20𝑚) designs exist for 𝑚 ∈ {3, 4, 5}. Again, we can settle the 𝑚 = 2 case.
Theorem 9.1. Simple 5-(17, 8, 40) designs exist.

Proof. Let 𝐺 ≅ ℤ17.ℤ16 be the group of order 272 generated by the cycle (1, 2,… , 17) and the per-
mutation

(2, 4, 10, 11, 14, 6, 16, 12, 17, 15, 9, 8, 5, 13, 3, 7).

The Kramer–Mesner system is of size 25 × 95. It has 61 solutions for 𝜆 = 40, giving rise to 61 noni-
somorphic designs with Aut() = 𝐺. Base blocks for one of the designs are given in Table 6. □

The same group can be used for 𝑚 ∈ {3, 4, 5}. The existence of 5-(17, 8, 20) designs remains open.
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T A B L E 3 Base blocks for a 4-(15, 5, 2) design
{1, 2, 3, 4, 5} {1, 2, 3, 7, 11} {1, 2, 4, 7, 11} {1, 2, 4, 7, 14}
{1, 2, 4, 8, 10} {1, 2, 4, 8, 11} {1, 2, 4, 9, 12} {1, 2, 4, 9, 15}
{1, 2, 4, 10, 13} {1, 2, 4, 12, 14} {1, 2, 4, 13, 15} {1, 2, 7, 8, 9}
{1, 2, 7, 8, 14} {1, 2, 7, 12, 15} {1, 2, 10, 11, 12} {1, 2, 10, 11, 15}
{1, 2, 13, 14, 15} {1, 4, 7, 8, 12} {1, 4, 7, 9, 11} {1, 4, 8, 9, 14}
{1, 4, 8, 12, 13} {1, 4, 8, 13, 14} {1, 4, 9, 10, 11} {1, 4, 11, 12, 15}
{1, 4, 11, 14, 15} {1, 7, 8, 10, 11} {1, 7, 8, 10, 13} {1, 7, 8, 11, 15}
{1, 7, 8, 14, 15} {1, 7, 10, 11, 14} {1, 7, 10, 13, 15} {1, 7, 11, 12, 14}
{1, 7, 12, 13, 14} {1, 10, 11, 13, 15} {7, 8, 9, 10, 13} {7, 8, 11, 12, 13}

T A B L E 4 Base blocks for a 4-(16, 8, 45) design
{1, 2, 3, 4, 5, 6, 8, 11} {1, 2, 3, 4, 5, 6, 14, 16} {1, 2, 3, 4, 5, 8, 9, 14}
{1, 2, 3, 4, 5, 8, 12, 13} {1, 2, 3, 4, 5, 10, 12, 14} {1, 2, 3, 4, 5, 11, 15, 16}
{1, 2, 3, 4, 6, 8, 10, 16} {1, 2, 3, 4, 6, 13, 15, 16} {1, 2, 4, 5, 6, 7, 9, 11}
{1, 2, 4, 5, 6, 7, 13, 15} {1, 2, 4, 5, 6, 9, 11, 15} {1, 2, 4, 5, 6, 9, 11, 16}
{1, 2, 4, 5, 6, 10, 13, 16} {1, 2, 4, 5, 7, 8, 9, 16} {1, 2, 4, 5, 8, 12, 15, 16}
{1, 2, 4, 6, 8, 9, 10, 15}

7 DESIGNS WITH PARAMETERS 4-(𝟏𝟔, 𝟖, 𝝀)

For 𝑡 = 4, 𝑣 = 16, and 𝑘 = 8, we have 𝜆min = 15, 𝜆max =
(12
4

)
= 495, and 𝑀 = 16. By [7, Table 4.46],

4-(16, 8, 15𝑚) designs exist for 𝑚 ∈ {4,… , 16}. We found designs for 𝑚 = 3.
Theorem 7.1. Simple 4-(16, 8, 45) designs exist.

Proof. Let 𝐺 ≅ ℤ15.(ℤ4 × ℤ2) be the group of order 120 generated by the permutations

(2, 3)(4, 5, 6, 7)(8, 9, 10, 11)(12, 13, 14, 15)(1, 5)(2, 13)(3, 11)(6, 15)(7, 8)(9, 14)(10, 12).

The Kramer–Mesner system is of size 25 × 132 and has four solutions for 𝜆 = 45. They correspond to
four nonisomorphic designs with Aut() = 𝐺. Base blocks for one of them are given in Table 4. □

The same group 𝐺 can be used to construct 4-(16, 8, 15𝑚) designs for 𝑚 ∈ {4,… , 16}. We tried
many groups for 𝑚 ∈ {1, 2}, but did not find any designs.

8 DESIGNS WITH PARAMETERS 5-(𝟏𝟔, 𝟕, 𝝀)

For 𝑡 = 5, 𝑣 = 16, and 𝑘 = 7, we have 𝜆min = 5, 𝜆max =
(11
2

)
= 55, and 𝑀 = 5. By [7, Table 4.46],

5-(16, 7, 5𝑚) designs exist for 𝑚 ∈ {3, 4, 5}. Here we settle the case 𝑚 = 2.
Theorem 8.1. Simple 5-(16, 7, 10) designs exist.

Proof. Let 𝐺 ≅ (ℤ2 × ℤ2 × ℤ2 × ℤ2).𝐴4 be the group of order 192 generated by the permutations

(2, 3, 4)(5, 6, 7, 8, 9, 10)(11, 12, 13, 14, 15, 16)(1, 5)(2, 12)(3, 15)(4, 8)(6, 14)(7, 16)(9, 10)(11, 13).
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T A B L E 5 Base blocks for a 5-(16, 7, 10) design
{1, 2, 3, 4, 5, 6, 13} {1, 2, 3, 4, 5, 6, 14} {1, 2, 3, 5, 6, 7, 11} {1, 2, 3, 5, 6, 8, 9}
{1, 2, 3, 5, 6, 9, 10} {1, 2, 3, 5, 6, 9, 12} {1, 2, 3, 5, 6, 10, 15} {1, 2, 3, 5, 6, 14, 16}
{1, 2, 3, 5, 8, 11, 12} {1, 2, 5, 6, 7, 8, 16} {1, 2, 5, 6, 7, 9, 14} {1, 2, 5, 6, 7, 12, 13}
{1, 2, 5, 6, 7, 14, 15}

T A B L E 6 Base blocks for a 5-(17, 8, 40) design
{1, 2, 3, 4, 5, 6, 7, 10} {1, 2, 3, 4, 5, 6, 8, 10} {1, 2, 3, 4, 5, 6, 8, 13}
{1, 2, 3, 4, 5, 6, 9, 12} {1, 2, 3, 4, 5, 6, 10, 14} {1, 2, 3, 4, 5, 7, 8, 12}
{1, 2, 3, 4, 5, 7, 9, 14} {1, 2, 3, 4, 5, 7, 10, 14} {1, 2, 3, 4, 5, 7, 11, 13}
{1, 2, 3, 4, 5, 7, 14, 15} {1, 2, 3, 4, 5, 9, 10, 12} {1, 2, 3, 4, 6, 7, 8, 9}
{1, 2, 3, 4, 6, 7, 9, 16} {1, 2, 3, 4, 6, 7, 12, 16} {1, 2, 3, 4, 6, 7, 14, 16}
{1, 2, 3, 4, 6, 8, 14, 16} {1, 2, 3, 4, 6, 9, 11, 15} {1, 2, 3, 4, 7, 8, 9, 12}

The Kramer–Mesner system is of size 28 × 71 and has two solutions for 𝜆 = 10. The two designs are
isomorphic and have Aut() = 𝐺. Base blocks are listed in Table 5. □

The same group 𝐺 gives designs for 𝑚 = 5, and for 𝑚 ∈ {3, 4} a subgroup of index 2 can be used.
We did not find any designs for 𝑚 = 1.

9 DESIGNS WITH PARAMETERS 5-(𝟏𝟕, 𝟖, 𝝀)

For 𝑡 = 5, 𝑣 = 17, and 𝑘 = 8, we have 𝜆min = 20, 𝜆max =
(12
3

)
= 220, and 𝑀 = 5. By [7, Table 4.46],

5-(17, 8, 20𝑚) designs exist for 𝑚 ∈ {3, 4, 5}. Again, we can settle the 𝑚 = 2 case.
Theorem 9.1. Simple 5-(17, 8, 40) designs exist.

Proof. Let 𝐺 ≅ ℤ17.ℤ16 be the group of order 272 generated by the cycle (1, 2,… , 17) and the per-
mutation

(2, 4, 10, 11, 14, 6, 16, 12, 17, 15, 9, 8, 5, 13, 3, 7).

The Kramer–Mesner system is of size 25 × 95. It has 61 solutions for 𝜆 = 40, giving rise to 61 noni-
somorphic designs with Aut() = 𝐺. Base blocks for one of the designs are given in Table 6. □

The same group can be used for 𝑚 ∈ {3, 4, 5}. The existence of 5-(17, 8, 20) designs remains open.
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Chapter 1

The PAG Package

Prescribed Automorphism Groups (PAG) is a GAP package for constructing combinatorial objects
with prescribed automorphism groups.

1.1 Getting Started

The package is loaded by
Example

gap> LoadPackage("PAG");

Let us present a small example from the paper [Krc18]. In Theorem 8.1, simple 5-(16,7,10) designs
with the following automorphism group were constructed.

Example
gap> g:=Group((2,3,4)(5,6,7,8,9,10)(11,12,13,14,15,16),

> (1,5)(2,12)(3,15)(4,8)(6,14)(7,16)(9,10)(11,13));

They can be obtained by typing
Example

gap> KramerMesnerSearch(5,16,7,10,g);

Computing t-subset orbit representatives...

28

Computing k-subset orbit representatives...

71

Computing the Kramer-Mesner matrix...

[ 29, 72 ]

Starting solver...

No BOUNDS

The RHS is fixed !

No upper bounds: 0/1 variables are assumed

Orthogonal defect: 26.953339

First reduction successful

Orthogonal defect: 20.216092

Second reduction successful

.

.

.

4
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PAG 5

Comments during the calculation can be supressed by setting global options.
Example

gap> PAGGlobalOptions.Silent:=true;

true

gap> KramerMesnerSearch(5,16,7,10,g);

[ [ [ 1, 2, 3, 4, 5, 6, 13 ], [ 1, 2, 3, 4, 5, 6, 14 ],

[ 1, 2, 3, 5, 6, 7, 11 ], [ 1, 2, 3, 5, 6, 8, 9 ],

[ 1, 2, 3, 5, 6, 9, 10 ], [ 1, 2, 3, 5, 6, 9, 12 ],

[ 1, 2, 3, 5, 6, 10, 15 ], [ 1, 2, 3, 5, 6, 14, 16 ],

[ 1, 2, 3, 5, 8, 11, 12 ], [ 1, 2, 5, 6, 7, 8, 16 ],

[ 1, 2, 5, 6, 7, 9, 14 ], [ 1, 2, 5, 6, 7, 12, 13 ],

[ 1, 2, 5, 6, 7, 14, 15 ] ],

[ [ 1, 2, 3, 4, 5, 6, 8 ], [ 1, 2, 3, 4, 5, 6, 14 ],

[ 1, 2, 3, 5, 6, 7, 11 ], [ 1, 2, 3, 5, 6, 9, 12 ],

[ 1, 2, 3, 5, 6, 10, 12 ], [ 1, 2, 3, 5, 6, 10, 16 ],

[ 1, 2, 3, 5, 6, 12, 13 ], [ 1, 2, 3, 5, 6, 14, 15 ],

[ 1, 2, 3, 5, 8, 11, 12 ], [ 1, 2, 5, 6, 7, 8, 9 ],

[ 1, 2, 5, 6, 7, 9, 14 ], [ 1, 2, 5, 6, 7, 12, 13 ],

[ 1, 2, 5, 6, 11, 14, 16 ] ] ]

The output is a list of base blocks for two designs. There are options to get them in the Design
package format (DESIGN: Design). Then we can also check that they are really 5-designs.

Example
gap> d:=KramerMesnerSearch(5,16,7,10,g,rec(Design:=true));;

gap> List(d,AllTDesignLambdas);

[ [ 2080, 910, 364, 130, 40, 10 ], [ 2080, 910, 364, 130, 40, 10 ] ]

The two designs are in fact isomorphic.
Example

gap> d:=KramerMesnerSearch(5,16,7,10,g,rec(NonIsomorphic:=true));;

gap> Size(d);

1

The option NonIsomorphic applies the function BlockDesignIsomorphismClassRepresentatives
(DESIGN: BlockDesignIsomorphismClassRepresentatives) to the constructed designs.

1.2 Installation

The PAG package requires GAP 4.11 and the following packages:

• Images 1.3

• GRAPE 4.8

• Design 1.7

To install PAG, copy and unpack the package to the pkg directory of your local GAP installation.
The package uses external binaries. To compile them on UNIX-like environments, change to the
pkg/PAG-* directory and call

Example
$ ./configure.sh
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PAG 5

Comments during the calculation can be supressed by setting global options.
Example

gap> PAGGlobalOptions.Silent:=true;

true

gap> KramerMesnerSearch(5,16,7,10,g);

[ [ [ 1, 2, 3, 4, 5, 6, 13 ], [ 1, 2, 3, 4, 5, 6, 14 ],

[ 1, 2, 3, 5, 6, 7, 11 ], [ 1, 2, 3, 5, 6, 8, 9 ],

[ 1, 2, 3, 5, 6, 9, 10 ], [ 1, 2, 3, 5, 6, 9, 12 ],

[ 1, 2, 3, 5, 6, 10, 15 ], [ 1, 2, 3, 5, 6, 14, 16 ],

[ 1, 2, 3, 5, 8, 11, 12 ], [ 1, 2, 5, 6, 7, 8, 16 ],

[ 1, 2, 5, 6, 7, 9, 14 ], [ 1, 2, 5, 6, 7, 12, 13 ],

[ 1, 2, 5, 6, 7, 14, 15 ] ],

[ [ 1, 2, 3, 4, 5, 6, 8 ], [ 1, 2, 3, 4, 5, 6, 14 ],

[ 1, 2, 3, 5, 6, 7, 11 ], [ 1, 2, 3, 5, 6, 9, 12 ],

[ 1, 2, 3, 5, 6, 10, 12 ], [ 1, 2, 3, 5, 6, 10, 16 ],

[ 1, 2, 3, 5, 6, 12, 13 ], [ 1, 2, 3, 5, 6, 14, 15 ],

[ 1, 2, 3, 5, 8, 11, 12 ], [ 1, 2, 5, 6, 7, 8, 9 ],

[ 1, 2, 5, 6, 7, 9, 14 ], [ 1, 2, 5, 6, 7, 12, 13 ],

[ 1, 2, 5, 6, 11, 14, 16 ] ] ]

The output is a list of base blocks for two designs. There are options to get them in the Design
package format (DESIGN: Design). Then we can also check that they are really 5-designs.

Example
gap> d:=KramerMesnerSearch(5,16,7,10,g,rec(Design:=true));;

gap> List(d,AllTDesignLambdas);

[ [ 2080, 910, 364, 130, 40, 10 ], [ 2080, 910, 364, 130, 40, 10 ] ]

The two designs are in fact isomorphic.
Example

gap> d:=KramerMesnerSearch(5,16,7,10,g,rec(NonIsomorphic:=true));;

gap> Size(d);

1

The option NonIsomorphic applies the function BlockDesignIsomorphismClassRepresentatives
(DESIGN: BlockDesignIsomorphismClassRepresentatives) to the constructed designs.

1.2 Installation

The PAG package requires GAP 4.11 and the following packages:

• Images 1.3

• GRAPE 4.8

• Design 1.7

To install PAG, copy and unpack the package to the pkg directory of your local GAP installation.
The package uses external binaries. To compile them on UNIX-like environments, change to the
pkg/PAG-* directory and call

Example
$ ./configure.sh

B. Schmalz, The t-designs with prescribed automorphism group, new
simple 6-designs, J. Combin. Des. 1 (1993), 125–170.
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PAG 5

Comments during the calculation can be supressed by setting global options.
Example

gap> PAGGlobalOptions.Silent:=true;

true

gap> KramerMesnerSearch(5,16,7,10,g);

[ [ [ 1, 2, 3, 4, 5, 6, 13 ], [ 1, 2, 3, 4, 5, 6, 14 ],

[ 1, 2, 3, 5, 6, 7, 11 ], [ 1, 2, 3, 5, 6, 8, 9 ],

[ 1, 2, 3, 5, 6, 9, 10 ], [ 1, 2, 3, 5, 6, 9, 12 ],

[ 1, 2, 3, 5, 6, 10, 15 ], [ 1, 2, 3, 5, 6, 14, 16 ],

[ 1, 2, 3, 5, 8, 11, 12 ], [ 1, 2, 5, 6, 7, 8, 16 ],

[ 1, 2, 5, 6, 7, 9, 14 ], [ 1, 2, 5, 6, 7, 12, 13 ],

[ 1, 2, 5, 6, 7, 14, 15 ] ],

[ [ 1, 2, 3, 4, 5, 6, 8 ], [ 1, 2, 3, 4, 5, 6, 14 ],

[ 1, 2, 3, 5, 6, 7, 11 ], [ 1, 2, 3, 5, 6, 9, 12 ],

[ 1, 2, 3, 5, 6, 10, 12 ], [ 1, 2, 3, 5, 6, 10, 16 ],

[ 1, 2, 3, 5, 6, 12, 13 ], [ 1, 2, 3, 5, 6, 14, 15 ],

[ 1, 2, 3, 5, 8, 11, 12 ], [ 1, 2, 5, 6, 7, 8, 9 ],

[ 1, 2, 5, 6, 7, 9, 14 ], [ 1, 2, 5, 6, 7, 12, 13 ],

[ 1, 2, 5, 6, 11, 14, 16 ] ] ]

The output is a list of base blocks for two designs. There are options to get them in the Design
package format (DESIGN: Design). Then we can also check that they are really 5-designs.

Example
gap> d:=KramerMesnerSearch(5,16,7,10,g,rec(Design:=true));;

gap> List(d,AllTDesignLambdas);

[ [ 2080, 910, 364, 130, 40, 10 ], [ 2080, 910, 364, 130, 40, 10 ] ]

The two designs are in fact isomorphic.
Example

gap> d:=KramerMesnerSearch(5,16,7,10,g,rec(NonIsomorphic:=true));;

gap> Size(d);

1

The option NonIsomorphic applies the function BlockDesignIsomorphismClassRepresentatives
(DESIGN: BlockDesignIsomorphismClassRepresentatives) to the constructed designs.

1.2 Installation

The PAG package requires GAP 4.11 and the following packages:

• Images 1.3

• GRAPE 4.8

• Design 1.7

To install PAG, copy and unpack the package to the pkg directory of your local GAP installation.
The package uses external binaries. To compile them on UNIX-like environments, change to the
pkg/PAG-* directory and call

Example
$ ./configure.sh

B. Schmalz, The t-designs with prescribed automorphism group, new
simple 6-designs, J. Combin. Des. 1 (1993), 125–170.
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The t- Designs with Prescribed 
Automorphism Group, New 
Simple 6 -Designs 

Bernd Schmalz 
Universitat Bayreuth, Postfach 70 12 57, W-8580 Bayreuth, Germany 

ABSTRACT 

We introduce an algorithm for the construction of a complete system of representatives of 
t-designs with given parameters t - (v. k ,  A) and prescribed full automorphism group A. 
It is based on the following observation published by Kramer and Mesner in 1976: The 
t - (v, k ,  A) designs admitting automorphism group A are exactly the 0-1-solutions .% of 
the following system of linear equations 

Mtk .% = (A, ... ,A)'. 

M t k  are incidence matrices, which we compute by means of double cosets. Representing 
the set of all solutions of the above system of equations implicitly by a graph gives us the 
possibility either to extract the solutions explicitly or to compute their precise numbers, 
which often are very big. We use the lattice of overgroups of A in the full symmetric 
group S, for the construction or enumeration of the isomorphism types of the t-designs 
with full automorphism group A from these solutions. To the best of our knowledge our 
approach for the first time allows one to compute the precise number of isomorphism types 
or even these designs themselves for substantial numbers. We determined the (number 
o f )  isomorphism types for many known parameter sets and found new simple 6-designs 
with parameters 

6 - (28,8, A), A = 42,63,84,105, 

and full automorphism group PrL2(27). We constructed all isomorphism types of these 
designs; their precise numbers are 3,367,21743,38 277, respectively.0 1993 John Wiley & Sons, 
Inc. 

0 1993 John Wiley & Sons, Inc. 
Journal of Cornbinatorial Designs, Vol. 1, No. 2 (1993) 

CCC 1063-8539/93/020125-46 
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approach for the first time allows one to compute the precise number of isomorphism types 
or even these designs themselves for substantial numbers. We determined the (number 
o f )  isomorphism types for many known parameter sets and found new simple 6-designs 
with parameters 

6 - (28,8, A), A = 42,63,84,105, 

and full automorphism group PrL2(27). We constructed all isomorphism types of these 
designs; their precise numbers are 3,367,21743,38 277, respectively.0 1993 John Wiley & Sons, 
Inc. 

0 1993 John Wiley & Sons, Inc. 
Journal of Cornbinatorial Designs, Vol. 1, No. 2 (1993) 

CCC 1063-8539/93/020125-46 

125 

The t- Designs with Prescribed 
Automorphism Group, New 
Simple 6 -Designs 

Bernd Schmalz 
Universitat Bayreuth, Postfach 70 12 57, W-8580 Bayreuth, Germany 

ABSTRACT 

We introduce an algorithm for the construction of a complete system of representatives of 
t-designs with given parameters t - (v. k ,  A) and prescribed full automorphism group A. 
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with full automorphism group A from these solutions. To the best of our knowledge our 
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o f )  isomorphism types for many known parameter sets and found new simple 6-designs 
with parameters 

6 - (28,8, A), A = 42,63,84,105, 
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parameter case. The parameter sets and numbers of the 6-designs constructed this way 
can be found in 1.13. 

We have not yet talked about isomorphism of designs. 

Definition 1.12. Two designs (V ,  B )  and (V', 3') are isomorphic, iff there is a bijection 
TTT: V H V' such that 

T(B)  = B', 

where T is applied elementwise to the blocks and to the elements of the blocks. 0 

Of course it is ineffective to run through all elements of S, in order to test whether 
two t - ( v ,  k ,  A )  designs are isomorphic. There are three better alternatives known: The 
first one is to use invariants; good invariants are not known for all parameter sets, but in 
special cases like Steiner triple systems these techniques are very good, see [lo] and [6]. 
The second alternative is to transform the designs into directed graphs, the vertices of 
which are the disjoint union of the points and blocks of the corresponding designs; the 
edges indicate whether a point lies in a block of the design. Graph isomorphism testing 
can then be done for example by Brendan McKay's program [31]. These techniques are 
used in [18], where all 2 - (25,4,1) designs having a nontrivial automorphism group 
are constructed. 

Designs with big values of t have a very large number of blocks. A 6 - (33,8,36) 
design, for example, has 1424016 blocks. Here the lattice of overgroups of the 
prescribed automorphism group A can be used. The details of this technique are 
described in Section 4 of this article. Sometimes the isomorphism test is trivial: If 
A 5 S, is maximal in S,, all nontrivial simple designs admitting automorphism group 
A have full automorphism group A and are not isomorphic. For example all 11796 - 
(33,8,36) designs having full automorphism group PTL2(32) are not isomorphic. 

Summary 1.13. The simple 6-designs known to the author: 

1. There are exactly 1179 nonisomorphic 6 - (33,8,36) designs having full 

2. There are exactly 2 nonisomorphic 6 - (20,9,112) designs having full automor- 

3. There are exactly 3 nonisomorphic 6 - (28,8,42) designs having full automor- 

4. There are exactly 367 nonisomorphic 6 - (28,8,63) designs having full auto- 

5. There are exactly 21743 nonisomorphic 6 - (28,8,84) designs having full 

6. There are exactly 38 277 nonisomorphic 6 - (28,8,105) designs having full 

7. There are exactly 2 nonisomorphic 6 - (14,7,4) designs with cyclic derived 

8. There are 6 - (8m + 6,7,4m) designs for all positive integers m. 
9. There are 6 - (22,8,60) designs. 

automorphism group PI'L2(32). 

phism group PSLz(19). 

phism group PTLz(27). 

morphism group PTLz(27). 

automorphism group PTLz(27). 

automorphism group PI'L2(27). 

designs. 

10. There are 6 - (23 + 16m, 8,4(m + 1) (16m + 17)) designs for all integers 
m 2 1. 
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This produces a Makefile in the current directory. Now call
Example

$ make all

to compile the binares. They are placed in the bin subdirectory. Documentation in the doc sub-
directory is already compiled and can be read in PDF, html or from within GAP. To recompile the
documentation, call GAP with the makedoc.g file.

Installations of PAG with pre-compiled binaries for Windows may become available in the future.
Please inquire such an installation from the authors if you are interested.

1.3 More Worked Examples

The PAG function KramerMesnerSearch performs a search for t-designs with given parameters and
a given permutation group as group of automorphisms. See the paper by B. Schmalz [Sch93] for an
introduction to the Kramer-Mesner approach to constructing t-designs. Our first two examples are
from this paper.

1.3.1 6-(14,7,4) Designs

The summary about known 6-designs on page 130 of [Sch93] mentions that there are exactly two 6-
(14,7,4) designs with cyclic derived designs. This means that the two 6-designs have automorphisms
of order 13. They can be constructed with the following GAP commands.

Example
gap> g:=Group(CyclicPermutation(13));

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13) ])

gap> d:=KramerMesnerSearch(6,14,7,4,g,rec(NonIsomorphic:=true));;

gap> List(d,AllTDesignLambdas);

[ [ 1716, 858, 396, 165, 60, 18, 4 ], [ 1716, 858, 396, 165, 60, 18, 4 ] ]

The solver quickly finds 24 solutions of the Kramer-Mesner system. Most of the computation time is
used to eliminate isomorphic designs. Both designs have Z13 as their full automorphism group.

Example
gap> List(d,AutomorphismGroup);

[ Group([ (1,13,12,11,10,9,8,7,6,5,4,3,2) ]),

Group([ (1,13,12,11,10,9,8,7,6,5,4,3,2) ]) ]

1.3.2 6-(28,8,λ ) Designs

In [Sch93], the existence of 6-(28,8,λ ) designs was established for λ = 42, 63, 84, and 105. The exact
numbers of these designs with automorphism group PΓL(2,27) were computed. While the projective
general linear groups are readily available in GAP through the PGL command, there seemst to be no
equivalent command for semilinear groups. Using the FinInG package, we can get PΓL(2,27) as the
collineation group of the projective line over GF(27).

Example
gap> LoadPackage("FinInG");

gap> g1:=CollineationGroup(ProjectiveSpace(1,27));

The FinInG collineation group PGammaL(2,27)
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the set of all solutions of the above system of equations implicitly by a graph gives us the 
possibility either to extract the solutions explicitly or to compute their precise numbers, 
which often are very big. We use the lattice of overgroups of A in the full symmetric 
group S, for the construction or enumeration of the isomorphism types of the t-designs 
with full automorphism group A from these solutions. To the best of our knowledge our 
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This produces a Makefile in the current directory. Now call
Example

$ make all

to compile the binares. They are placed in the bin subdirectory. Documentation in the doc sub-
directory is already compiled and can be read in PDF, html or from within GAP. To recompile the
documentation, call GAP with the makedoc.g file.

Installations of PAG with pre-compiled binaries for Windows may become available in the future.
Please inquire such an installation from the authors if you are interested.

1.3 More Worked Examples

The PAG function KramerMesnerSearch performs a search for t-designs with given parameters and
a given permutation group as group of automorphisms. See the paper by B. Schmalz [Sch93] for an
introduction to the Kramer-Mesner approach to constructing t-designs. Our first two examples are
from this paper.

1.3.1 6-(14,7,4) Designs

The summary about known 6-designs on page 130 of [Sch93] mentions that there are exactly two 6-
(14,7,4) designs with cyclic derived designs. This means that the two 6-designs have automorphisms
of order 13. They can be constructed with the following GAP commands.

Example
gap> g:=Group(CyclicPermutation(13));

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13) ])

gap> d:=KramerMesnerSearch(6,14,7,4,g,rec(NonIsomorphic:=true));;

gap> List(d,AllTDesignLambdas);

[ [ 1716, 858, 396, 165, 60, 18, 4 ], [ 1716, 858, 396, 165, 60, 18, 4 ] ]

The solver quickly finds 24 solutions of the Kramer-Mesner system. Most of the computation time is
used to eliminate isomorphic designs. Both designs have Z13 as their full automorphism group.

Example
gap> List(d,AutomorphismGroup);

[ Group([ (1,13,12,11,10,9,8,7,6,5,4,3,2) ]),

Group([ (1,13,12,11,10,9,8,7,6,5,4,3,2) ]) ]

1.3.2 6-(28,8,λ ) Designs

In [Sch93], the existence of 6-(28,8,λ ) designs was established for λ = 42, 63, 84, and 105. The exact
numbers of these designs with automorphism group PΓL(2,27) were computed. While the projective
general linear groups are readily available in GAP through the PGL command, there seemst to be no
equivalent command for semilinear groups. Using the FinInG package, we can get PΓL(2,27) as the
collineation group of the projective line over GF(27).

Example
gap> LoadPackage("FinInG");

gap> g1:=CollineationGroup(ProjectiveSpace(1,27));

The FinInG collineation group PGammaL(2,27)PAG 7

We need a permutation representation of this group on 28 points.
Example

gap> g:=Image(ActionOnAllProjPoints(g1));

Group([ (3,28,27,26,25,24,23,22,21,20,19,18,17,4,16,15,14,13,12,11,10,9,8,7,6,5),

(1,2,4)(5,8,24)(6,21,10)(7,16,15)(9,25,28)(11,13,14)(12,27,23)(17,26,18)

(19,20,22), (5,7,13)(6,10,21)(8,16,14)(9,18,22)(11,24,15)(12,27,23)(17,19,25)

(20,28,26) ])

Alternatively, we can get the group from the library of small primitive permutation groups.
Example

gap> PrimitiveGroupsOfDegree(28);

[ PGL(2, 7), PSL(2, 8), PGammaL(2, 8), PSU(3, 3), PGammaU(3, 3), PSp(6, 2), A(8),

S(8), PSL(2, 27), PGL(2, 27), PSL(2, 27):3, PGammaL(2, 27), A(28), S(28) ]

Now we can construct the designs with λ = 42.
Example

gap> d:=KramerMesnerSearch(6,28,8,42,g);;

Computing t-subset orbit representatives...

14

Computing k-subset orbit representatives...

72

Computing the Kramer-Mesner matrix...

.

.

.

Loops: 27732

Total number of solutions: 3

total enumeration time: 0:00:00

gap> Size(d);

4

Notice that A. Wassermann’s LLL solver [Was98] reports finding 3 solutions, but we get 4 sets of base
blocks. That’s because the solver may return the same solution more than once. Here is how to get rid
of multiple solutions.

Example
gap> Size(AsSet(d));

3

Most of the CPU time in the example above was used to compute the Kramer-Mesner matrix. The
left-hand side of the Kramer-Mesner system is the same matrix for all λ , so we can compute it once
and reuse it to save time.

Example
gap> tsub:=SubsetOrbitRepresentatives(g,28,6);;

gap> ksub:=SubsetOrbitRepresentatives(g,28,8);;

gap> m:=KramerMesnerMat(g,tsub,ksub);;

Now we can quickly get the exact numbers of designs from the paper [Sch93].
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We need a permutation representation of this group on 28 points.
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Alternatively, we can get the group from the library of small primitive permutation groups.
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gap> PrimitiveGroupsOfDegree(28);
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gap> d:=KramerMesnerSearch(6,28,8,42,g);;

Computing t-subset orbit representatives...

14

Computing k-subset orbit representatives...

72

Computing the Kramer-Mesner matrix...

.

.

.

Loops: 27732

Total number of solutions: 3

total enumeration time: 0:00:00

gap> Size(d);

4

Notice that A. Wassermann’s LLL solver [Was98] reports finding 3 solutions, but we get 4 sets of base
blocks. That’s because the solver may return the same solution more than once. Here is how to get rid
of multiple solutions.

Example
gap> Size(AsSet(d));

3

Most of the CPU time in the example above was used to compute the Kramer-Mesner matrix. The
left-hand side of the Kramer-Mesner system is the same matrix for all λ , so we can compute it once
and reuse it to save time.

Example
gap> tsub:=SubsetOrbitRepresentatives(g,28,6);;

gap> ksub:=SubsetOrbitRepresentatives(g,28,8);;

gap> m:=KramerMesnerMat(g,tsub,ksub);;

Now we can quickly get the exact numbers of designs from the paper [Sch93].
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[ PGL(2, 7), PSL(2, 8), PGammaL(2, 8), PSU(3, 3), PGammaU(3, 3), PSp(6, 2), A(8),

S(8), PSL(2, 27), PGL(2, 27), PSL(2, 27):3, PGammaL(2, 27), A(28), S(28) ]

Now we can construct the designs with λ = 42.
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gap> d:=KramerMesnerSearch(6,28,8,42,g);;

Computing t-subset orbit representatives...

14

Computing k-subset orbit representatives...
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Computing the Kramer-Mesner matrix...
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.

.

Loops: 27732

Total number of solutions: 3

total enumeration time: 0:00:00

gap> Size(d);

4

Notice that A. Wassermann’s LLL solver [Was98] reports finding 3 solutions, but we get 4 sets of base
blocks. That’s because the solver may return the same solution more than once. Here is how to get rid
of multiple solutions.

Example
gap> Size(AsSet(d));

3

Most of the CPU time in the example above was used to compute the Kramer-Mesner matrix. The
left-hand side of the Kramer-Mesner system is the same matrix for all λ , so we can compute it once
and reuse it to save time.

Example
gap> tsub:=SubsetOrbitRepresentatives(g,28,6);;

gap> ksub:=SubsetOrbitRepresentatives(g,28,8);;

gap> m:=KramerMesnerMat(g,tsub,ksub);;

Now we can quickly get the exact numbers of designs from the paper [Sch93].
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Example
gap> PAGGlobalOptions.Silent:=true;

true

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,42))));

3

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,63))));

367

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,84))));

21743

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,105))));

38277

1.3.3 2-(81,6,2) Designs

The first simple 2-(81,6,2) design was recently found by A. Nakic [Nak21]. Here are the base blocks
of this design copy-pasted from the paper.

Example
gap> bb:=[[[0,0,0,0],[0,0,0,1],[0,0,0,2],[0,1,0,0],[0,1,0,1],[0,1,0,2]],

> [[0,0,0,0],[0,0,1,1],[0,0,2,2],[2,1,0,0],[2,1,1,1],[2,1,2,2]],

> [[0,0,0,0],[0,1,1,1],[0,2,2,2],[0,0,1,0],[0,1,2,1],[0,2,0,2]],

> [[0,0,0,0],[0,1,2,0],[0,2,1,0],[2,0,2,1],[2,1,1,1],[2,2,0,1]],

> [[0,0,0,0],[1,0,0,0],[2,0,0,0],[0,2,2,1],[1,2,2,1],[2,2,2,1]],

> [[0,0,0,0],[1,0,1,0],[2,0,2,0],[0,1,0,0],[1,1,1,0],[2,1,2,0]],

> [[0,0,0,0],[1,0,1,1],[2,0,2,2],[0,0,2,0],[1,0,0,1],[2,0,1,2]],

> [[0,0,0,0],[1,0,2,0],[2,0,1,0],[0,2,1,1],[1,2,0,1],[2,2,2,1]],

> [[0,0,0,0],[1,0,2,2],[2,0,1,1],[0,1,2,1],[1,1,1,0],[2,1,0,2]],

> [[0,0,0,0],[1,1,0,0],[2,2,0,0],[0,2,0,1],[1,0,0,1],[2,1,0,1]],

> [[0,0,0,0],[1,1,0,1],[2,2,0,2],[0,2,2,0],[1,0,2,1],[2,1,2,2]],

> [[0,0,0,0],[1,1,2,0],[2,2,1,0],[0,0,2,1],[1,1,1,1],[2,2,0,1]],

> [[0,0,0,0],[1,1,2,1],[2,2,1,2],[0,2,1,1],[1,0,0,2],[2,1,2,0]],

> [[0,0,0,0],[1,1,2,2],[2,2,1,1],[0,2,2,0],[1,0,1,2],[2,1,0,1]],

> [[0,0,0,0],[1,2,1,2],[2,1,2,1],[0,0,2,1],[1,2,0,0],[2,1,1,2]],

> [[0,0,0,0],[1,2,2,0],[2,1,1,0],[0,2,2,1],[1,1,1,1],[2,0,0,1]]]*Z(3)^0;;

The points of this design are elements of the 4-dimensional vector space V over GF(3). Here is how
to get the desing in the Design package format.

Example
gap> V:=Tuples([0,1,2],4)*Z(3)^0;;

gap> d1:=Union(List(bb,y->List(V,x->AsSet(x+y))));;

gap> d:=BlockDesign(81,List(d1,y->List(y,x->Position(V,x))));;

gap> AllTDesignLambdas(d);

[ 432, 32, 2 ]

The full automorphism group of the design is of order 2592. It’s a semidirect product of the additive
group of V and a group of order 32.

Example
gap> aut:=AutomorphismGroup(d);

<permutation group with 4 generators>

gap> Size(aut);

2592

gap> StructureDescription(aut);

"(C3 x C3 x C3 x C3) : (C16 : C2)"
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A B S T R A C T

We give the very first example of a simple 2 − (81, 6, 2) design. Its points are the elements of the elementary
abelian group of order 81 and each block is the union of two parallel lines of the 4-dimensional geometry
over the field of order 3. Hence it is also additive.

1. Introduction

A 𝑡 − (𝑣, 𝑘, 𝜆) design is a pair (𝑉 ,) where 𝑉 is a set of 𝑣 points
and  is a collection of 𝑘-subsets (blocks) of 𝑉 with the property that
every 𝑡-subset of 𝑉 is contained in exactly 𝜆 blocks. A design is said
to be simple if it does not have repeated blocks, i.e., if the multiset of
blocks is actually a set. We recall, in particular, that in a 2 − (𝑣, 𝑘, 𝜆)
design the number of blocks containing any fixed point is 𝜆(𝑣−1)

𝑘−1 and
that the number of blocks is 𝜆𝑣(𝑣−1)

𝑘(𝑘−1) . Thus 𝜆(𝑣 − 1) ≡ 0 (mod 𝑘 − 1) and
𝜆𝑣(𝑣 − 1) ≡ 0 (mod 𝑘(𝑘 − 1)) are trivial necessary conditions (called
divisibility conditions) for the existence of a 2 − (𝑣, 𝑘, 𝜆) design.

Two designs (𝑉 ,) and (𝑉 ,′ ′) are isomorphic if there exists a
bijection between 𝑉 and 𝑉 ′ turning  into ′. An automorphism group
of a design (𝑉 ,) is a group 𝐴 of permutations on 𝑉 leaving  invariant.
It is convenient to have designs with a ‘‘rich" automorphism group 𝐴
since they can be stored more efficiently in terms of memory space; we
do not need to give the entire collection of blocks but only a system of
representatives for the 𝐴-orbits on it.

For general background on the topic we refer to [1].
The authors of [2] developed an interesting theory about additive

designs. These are designs (𝑉 ,) for which, up to isomorphism, 𝑉 is
a subset of a suitable additive group 𝐺 and the elements of any block
sum up to zero. We propose to speak of a strictly additive design if 𝑉
coincides with the set of elements of 𝐺.

Among the strictly additive 2-designs with 𝜆 = 1 we obviously
have the point-line 2 − (𝑞𝑛, 𝑞, 1) designs associated with AG(𝑛, 𝑞), the
𝑛-dimensional affine geometry over the field of order 𝑞. As far as we
are aware, no other example of a strictly additive 2 − (𝑣, 𝑘, 1) design is
known. In the attempt to find strictly additive 2-designs with a higher
𝜆 it is natural to look for 2-(𝑞𝑛, 𝑚𝑞, 𝜆) designs whose points are those
of AG(𝑛, 𝑞) and whose blocks are union of 𝑚 pairwise disjoint lines.
Indeed such a design would be strictly additive automatically. It is
quite evident that the set of all possible unions of two parallel lines
of an affine plane AG(2, 𝑞) is a 2 − (𝑞2, 2𝑞, 2𝑞 − 1) design. For 𝑞 odd, this
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design has been characterized in [3] as the unique design with these
parameters and the property that the intersection of any two distinct
blocks has size 0, 4 or 𝑞.

In this note we explicitly give a simple 2 − (81, 6, 2) design which is
strictly additive. Indeed its points are those of AG(4, 3) and each block
is the union of two parallel lines. As far as we are aware, this is the
very first example of a simple design with these parameters.

2. The design

The values of 𝑣 for which a 2 − (𝑣, 6, 𝜆) design exists have been
completely determined for 𝜆 > 1 by Hanani [4]. For 𝜆 = 1 the existence
is still uncertain for twenty-nine values of 𝑣 the third of which is 81.
Thus it is unknown whether a 2 − (81, 6, 1) design exists. According to
the tables of 2-designs of small order by Mathon and Rosa [5] there is
only one known 2−(81, 6, 2) design. Looking at its explicit description in
Examples 2.7 on page 237 of [6], any expert reader will recognize that
it has sixteen pairs of repeated blocks. Thus it cannot be isomorphic to
the simple and strictly additive design with the same parameters that
we explicitly construct below.

Let 𝐺 = Z4
3 be the elementary abelian group of order 81. Given two

elements 𝑥 ∈ 𝐺 ⧵ {0} and 𝑦 ∈ 𝐺 ⧵ {0, 𝑥, 2𝑥}, let 𝐵(𝑥, 𝑦) be the union
of the two parallel lines {0, 𝑥, 2𝑥} and {𝑦, 𝑥 + 𝑦, 2𝑥 + 𝑦} of AG(4, 3). The
𝐺-stabilizer of 𝐵(𝑥, 𝑦) (under the natural action of 𝐺 on itself) is clearly
given by {0, 𝑥, 2𝑥}, hence its 𝐺-orbit has size |𝐺|∕3 = 27. Also, from the
divisibility conditions we infer that a 2−(81, 6, 2) design has 432 = 27⋅16
blocks. Thus it makes sense to look for a design with these parameters
whose collection of blocks is the union of the 𝐺-orbits of 16 suitable
blocks of the form 𝐵(𝑥, 𝑦). Such a 16-tuple of blocks has been found
with a computer and it is given below.

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2)}

{(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (2, 1, 0, 0), (2, 1, 1, 1), (2, 1, 2, 2)}
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We give the very first example of a simple 2 − (81, 6, 2) design. Its points are the elements of the elementary
abelian group of order 81 and each block is the union of two parallel lines of the 4-dimensional geometry
over the field of order 3. Hence it is also additive.

1. Introduction

A 𝑡 − (𝑣, 𝑘, 𝜆) design is a pair (𝑉 ,) where 𝑉 is a set of 𝑣 points
and  is a collection of 𝑘-subsets (blocks) of 𝑉 with the property that
every 𝑡-subset of 𝑉 is contained in exactly 𝜆 blocks. A design is said
to be simple if it does not have repeated blocks, i.e., if the multiset of
blocks is actually a set. We recall, in particular, that in a 2 − (𝑣, 𝑘, 𝜆)
design the number of blocks containing any fixed point is 𝜆(𝑣−1)

𝑘−1 and
that the number of blocks is 𝜆𝑣(𝑣−1)

𝑘(𝑘−1) . Thus 𝜆(𝑣 − 1) ≡ 0 (mod 𝑘 − 1) and
𝜆𝑣(𝑣 − 1) ≡ 0 (mod 𝑘(𝑘 − 1)) are trivial necessary conditions (called
divisibility conditions) for the existence of a 2 − (𝑣, 𝑘, 𝜆) design.

Two designs (𝑉 ,) and (𝑉 ,′ ′) are isomorphic if there exists a
bijection between 𝑉 and 𝑉 ′ turning  into ′. An automorphism group
of a design (𝑉 ,) is a group 𝐴 of permutations on 𝑉 leaving  invariant.
It is convenient to have designs with a ‘‘rich" automorphism group 𝐴
since they can be stored more efficiently in terms of memory space; we
do not need to give the entire collection of blocks but only a system of
representatives for the 𝐴-orbits on it.

For general background on the topic we refer to [1].
The authors of [2] developed an interesting theory about additive

designs. These are designs (𝑉 ,) for which, up to isomorphism, 𝑉 is
a subset of a suitable additive group 𝐺 and the elements of any block
sum up to zero. We propose to speak of a strictly additive design if 𝑉
coincides with the set of elements of 𝐺.

Among the strictly additive 2-designs with 𝜆 = 1 we obviously
have the point-line 2 − (𝑞𝑛, 𝑞, 1) designs associated with AG(𝑛, 𝑞), the
𝑛-dimensional affine geometry over the field of order 𝑞. As far as we
are aware, no other example of a strictly additive 2 − (𝑣, 𝑘, 1) design is
known. In the attempt to find strictly additive 2-designs with a higher
𝜆 it is natural to look for 2-(𝑞𝑛, 𝑚𝑞, 𝜆) designs whose points are those
of AG(𝑛, 𝑞) and whose blocks are union of 𝑚 pairwise disjoint lines.
Indeed such a design would be strictly additive automatically. It is
quite evident that the set of all possible unions of two parallel lines
of an affine plane AG(2, 𝑞) is a 2 − (𝑞2, 2𝑞, 2𝑞 − 1) design. For 𝑞 odd, this
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design has been characterized in [3] as the unique design with these
parameters and the property that the intersection of any two distinct
blocks has size 0, 4 or 𝑞.

In this note we explicitly give a simple 2 − (81, 6, 2) design which is
strictly additive. Indeed its points are those of AG(4, 3) and each block
is the union of two parallel lines. As far as we are aware, this is the
very first example of a simple design with these parameters.

2. The design

The values of 𝑣 for which a 2 − (𝑣, 6, 𝜆) design exists have been
completely determined for 𝜆 > 1 by Hanani [4]. For 𝜆 = 1 the existence
is still uncertain for twenty-nine values of 𝑣 the third of which is 81.
Thus it is unknown whether a 2 − (81, 6, 1) design exists. According to
the tables of 2-designs of small order by Mathon and Rosa [5] there is
only one known 2−(81, 6, 2) design. Looking at its explicit description in
Examples 2.7 on page 237 of [6], any expert reader will recognize that
it has sixteen pairs of repeated blocks. Thus it cannot be isomorphic to
the simple and strictly additive design with the same parameters that
we explicitly construct below.

Let 𝐺 = Z4
3 be the elementary abelian group of order 81. Given two

elements 𝑥 ∈ 𝐺 ⧵ {0} and 𝑦 ∈ 𝐺 ⧵ {0, 𝑥, 2𝑥}, let 𝐵(𝑥, 𝑦) be the union
of the two parallel lines {0, 𝑥, 2𝑥} and {𝑦, 𝑥 + 𝑦, 2𝑥 + 𝑦} of AG(4, 3). The
𝐺-stabilizer of 𝐵(𝑥, 𝑦) (under the natural action of 𝐺 on itself) is clearly
given by {0, 𝑥, 2𝑥}, hence its 𝐺-orbit has size |𝐺|∕3 = 27. Also, from the
divisibility conditions we infer that a 2−(81, 6, 2) design has 432 = 27⋅16
blocks. Thus it makes sense to look for a design with these parameters
whose collection of blocks is the union of the 𝐺-orbits of 16 suitable
blocks of the form 𝐵(𝑥, 𝑦). Such a 16-tuple of blocks has been found
with a computer and it is given below.

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2)}

{(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (2, 1, 0, 0), (2, 1, 1, 1), (2, 1, 2, 2)}
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{(0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2), (0, 0, 1, 0), (0, 1, 2, 1), (0, 2, 0, 2)}

{(0, 0, 0, 0), (0, 1, 2, 0), (0, 2, 1, 0), (2, 0, 2, 1), (2, 1, 1, 1), (2, 2, 0, 1)}

{(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0), (0, 2, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1)}

{(0, 0, 0, 0), (1, 0, 1, 0), (2, 0, 2, 0), (0, 1, 0, 0), (1, 1, 1, 0), (2, 1, 2, 0)}

{(0, 0, 0, 0), (1, 0, 1, 1), (2, 0, 2, 2), (0, 0, 2, 0), (1, 0, 0, 1), (2, 0, 1, 2)}

{(0, 0, 0, 0), (1, 0, 2, 0), (2, 0, 1, 0), (0, 2, 1, 1), (1, 2, 0, 1), (2, 2, 2, 1)}

{(0, 0, 0, 0), (1, 0, 2, 2), (2, 0, 1, 1), (0, 1, 2, 1), (1, 1, 1, 0), (2, 1, 0, 2)}

{(0, 0, 0, 0), (1, 1, 0, 0), (2, 2, 0, 0), (0, 2, 0, 1), (1, 0, 0, 1), (2, 1, 0, 1)}

{(0, 0, 0, 0), (1, 1, 0, 1), (2, 2, 0, 2), (0, 2, 2, 0), (1, 0, 2, 1), (2, 1, 2, 2)}

{(0, 0, 0, 0), (1, 1, 2, 0), (2, 2, 1, 0), (0, 0, 2, 1), (1, 1, 1, 1), (2, 2, 0, 1)}

{(0, 0, 0, 0), (1, 1, 2, 1), (2, 2, 1, 2), (0, 2, 1, 1), (1, 0, 0, 2), (2, 1, 2, 0)}

{(0, 0, 0, 0), (1, 1, 2, 2), (2, 2, 1, 1), (0, 2, 2, 0), (1, 0, 1, 2), (2, 1, 0, 1)}

{(0, 0, 0, 0), (1, 2, 1, 2), (2, 1, 2, 1), (0, 0, 2, 1), (1, 2, 0, 0), (2, 1, 1, 2)}

{(0, 0, 0, 0), (1, 2, 2, 0), (2, 1, 1, 0), (0, 2, 2, 1), (1, 1, 1, 1), (2, 0, 0, 1)}

Here is a short program in GAP [7] checking that the union of the
𝐺-orbits of the above sixteen 6-subsets of 𝐺 actually is the collection of
blocks of the desired 2 − (81, 6, 2) design.

# All points of AG(4,3)
pts := Tuples([0..2],4);
# blkOrbRep - block orbit reps
# all blocks of the design
blks:= Union(List (blkOrbRep, b-> List(pts, p ->
AsSet(List([1..Size(b)], i-> (b[i] + p) mod 3)))));;
# check that it is a 2-design
Collected(List(Combinations(pts, 2), p ->
Number(blks, b-> (p[1] in b) and (p[2] in b))));

It is evident that any block of the obtained design is a union of two
parallel lines. Hence we conclude that this design is strictly additive.
It is also easy to check that our design is simple. Thus, considering the

comments that we made at the beginning of this section, we have the
following new result.

The number of pairwise non-isomorphic 2 − (81, 6, 2) designs is at
least equal to 2.

Some infinite classes of strictly additive 2-designs will be given in
a future paper still in preparation [8].
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We give the very first example of a simple 2 − (81, 6, 2) design. Its points are the elements of the elementary
abelian group of order 81 and each block is the union of two parallel lines of the 4-dimensional geometry
over the field of order 3. Hence it is also additive.

1. Introduction

A 𝑡 − (𝑣, 𝑘, 𝜆) design is a pair (𝑉 ,) where 𝑉 is a set of 𝑣 points
and  is a collection of 𝑘-subsets (blocks) of 𝑉 with the property that
every 𝑡-subset of 𝑉 is contained in exactly 𝜆 blocks. A design is said
to be simple if it does not have repeated blocks, i.e., if the multiset of
blocks is actually a set. We recall, in particular, that in a 2 − (𝑣, 𝑘, 𝜆)
design the number of blocks containing any fixed point is 𝜆(𝑣−1)

𝑘−1 and
that the number of blocks is 𝜆𝑣(𝑣−1)

𝑘(𝑘−1) . Thus 𝜆(𝑣 − 1) ≡ 0 (mod 𝑘 − 1) and
𝜆𝑣(𝑣 − 1) ≡ 0 (mod 𝑘(𝑘 − 1)) are trivial necessary conditions (called
divisibility conditions) for the existence of a 2 − (𝑣, 𝑘, 𝜆) design.

Two designs (𝑉 ,) and (𝑉 ,′ ′) are isomorphic if there exists a
bijection between 𝑉 and 𝑉 ′ turning  into ′. An automorphism group
of a design (𝑉 ,) is a group 𝐴 of permutations on 𝑉 leaving  invariant.
It is convenient to have designs with a ‘‘rich" automorphism group 𝐴
since they can be stored more efficiently in terms of memory space; we
do not need to give the entire collection of blocks but only a system of
representatives for the 𝐴-orbits on it.

For general background on the topic we refer to [1].
The authors of [2] developed an interesting theory about additive

designs. These are designs (𝑉 ,) for which, up to isomorphism, 𝑉 is
a subset of a suitable additive group 𝐺 and the elements of any block
sum up to zero. We propose to speak of a strictly additive design if 𝑉
coincides with the set of elements of 𝐺.

Among the strictly additive 2-designs with 𝜆 = 1 we obviously
have the point-line 2 − (𝑞𝑛, 𝑞, 1) designs associated with AG(𝑛, 𝑞), the
𝑛-dimensional affine geometry over the field of order 𝑞. As far as we
are aware, no other example of a strictly additive 2 − (𝑣, 𝑘, 1) design is
known. In the attempt to find strictly additive 2-designs with a higher
𝜆 it is natural to look for 2-(𝑞𝑛, 𝑚𝑞, 𝜆) designs whose points are those
of AG(𝑛, 𝑞) and whose blocks are union of 𝑚 pairwise disjoint lines.
Indeed such a design would be strictly additive automatically. It is
quite evident that the set of all possible unions of two parallel lines
of an affine plane AG(2, 𝑞) is a 2 − (𝑞2, 2𝑞, 2𝑞 − 1) design. For 𝑞 odd, this
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design has been characterized in [3] as the unique design with these
parameters and the property that the intersection of any two distinct
blocks has size 0, 4 or 𝑞.

In this note we explicitly give a simple 2 − (81, 6, 2) design which is
strictly additive. Indeed its points are those of AG(4, 3) and each block
is the union of two parallel lines. As far as we are aware, this is the
very first example of a simple design with these parameters.

2. The design

The values of 𝑣 for which a 2 − (𝑣, 6, 𝜆) design exists have been
completely determined for 𝜆 > 1 by Hanani [4]. For 𝜆 = 1 the existence
is still uncertain for twenty-nine values of 𝑣 the third of which is 81.
Thus it is unknown whether a 2 − (81, 6, 1) design exists. According to
the tables of 2-designs of small order by Mathon and Rosa [5] there is
only one known 2−(81, 6, 2) design. Looking at its explicit description in
Examples 2.7 on page 237 of [6], any expert reader will recognize that
it has sixteen pairs of repeated blocks. Thus it cannot be isomorphic to
the simple and strictly additive design with the same parameters that
we explicitly construct below.

Let 𝐺 = Z4
3 be the elementary abelian group of order 81. Given two

elements 𝑥 ∈ 𝐺 ⧵ {0} and 𝑦 ∈ 𝐺 ⧵ {0, 𝑥, 2𝑥}, let 𝐵(𝑥, 𝑦) be the union
of the two parallel lines {0, 𝑥, 2𝑥} and {𝑦, 𝑥 + 𝑦, 2𝑥 + 𝑦} of AG(4, 3). The
𝐺-stabilizer of 𝐵(𝑥, 𝑦) (under the natural action of 𝐺 on itself) is clearly
given by {0, 𝑥, 2𝑥}, hence its 𝐺-orbit has size |𝐺|∕3 = 27. Also, from the
divisibility conditions we infer that a 2−(81, 6, 2) design has 432 = 27⋅16
blocks. Thus it makes sense to look for a design with these parameters
whose collection of blocks is the union of the 𝐺-orbits of 16 suitable
blocks of the form 𝐵(𝑥, 𝑦). Such a 16-tuple of blocks has been found
with a computer and it is given below.

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2)}

{(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (2, 1, 0, 0), (2, 1, 1, 1), (2, 1, 2, 2)}
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We give the very first example of a simple 2 − (81, 6, 2) design. Its points are the elements of the elementary
abelian group of order 81 and each block is the union of two parallel lines of the 4-dimensional geometry
over the field of order 3. Hence it is also additive.

1. Introduction

A 𝑡 − (𝑣, 𝑘, 𝜆) design is a pair (𝑉 ,) where 𝑉 is a set of 𝑣 points
and  is a collection of 𝑘-subsets (blocks) of 𝑉 with the property that
every 𝑡-subset of 𝑉 is contained in exactly 𝜆 blocks. A design is said
to be simple if it does not have repeated blocks, i.e., if the multiset of
blocks is actually a set. We recall, in particular, that in a 2 − (𝑣, 𝑘, 𝜆)
design the number of blocks containing any fixed point is 𝜆(𝑣−1)

𝑘−1 and
that the number of blocks is 𝜆𝑣(𝑣−1)

𝑘(𝑘−1) . Thus 𝜆(𝑣 − 1) ≡ 0 (mod 𝑘 − 1) and
𝜆𝑣(𝑣 − 1) ≡ 0 (mod 𝑘(𝑘 − 1)) are trivial necessary conditions (called
divisibility conditions) for the existence of a 2 − (𝑣, 𝑘, 𝜆) design.

Two designs (𝑉 ,) and (𝑉 ,′ ′) are isomorphic if there exists a
bijection between 𝑉 and 𝑉 ′ turning  into ′. An automorphism group
of a design (𝑉 ,) is a group 𝐴 of permutations on 𝑉 leaving  invariant.
It is convenient to have designs with a ‘‘rich" automorphism group 𝐴
since they can be stored more efficiently in terms of memory space; we
do not need to give the entire collection of blocks but only a system of
representatives for the 𝐴-orbits on it.

For general background on the topic we refer to [1].
The authors of [2] developed an interesting theory about additive

designs. These are designs (𝑉 ,) for which, up to isomorphism, 𝑉 is
a subset of a suitable additive group 𝐺 and the elements of any block
sum up to zero. We propose to speak of a strictly additive design if 𝑉
coincides with the set of elements of 𝐺.

Among the strictly additive 2-designs with 𝜆 = 1 we obviously
have the point-line 2 − (𝑞𝑛, 𝑞, 1) designs associated with AG(𝑛, 𝑞), the
𝑛-dimensional affine geometry over the field of order 𝑞. As far as we
are aware, no other example of a strictly additive 2 − (𝑣, 𝑘, 1) design is
known. In the attempt to find strictly additive 2-designs with a higher
𝜆 it is natural to look for 2-(𝑞𝑛, 𝑚𝑞, 𝜆) designs whose points are those
of AG(𝑛, 𝑞) and whose blocks are union of 𝑚 pairwise disjoint lines.
Indeed such a design would be strictly additive automatically. It is
quite evident that the set of all possible unions of two parallel lines
of an affine plane AG(2, 𝑞) is a 2 − (𝑞2, 2𝑞, 2𝑞 − 1) design. For 𝑞 odd, this
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design has been characterized in [3] as the unique design with these
parameters and the property that the intersection of any two distinct
blocks has size 0, 4 or 𝑞.

In this note we explicitly give a simple 2 − (81, 6, 2) design which is
strictly additive. Indeed its points are those of AG(4, 3) and each block
is the union of two parallel lines. As far as we are aware, this is the
very first example of a simple design with these parameters.

2. The design

The values of 𝑣 for which a 2 − (𝑣, 6, 𝜆) design exists have been
completely determined for 𝜆 > 1 by Hanani [4]. For 𝜆 = 1 the existence
is still uncertain for twenty-nine values of 𝑣 the third of which is 81.
Thus it is unknown whether a 2 − (81, 6, 1) design exists. According to
the tables of 2-designs of small order by Mathon and Rosa [5] there is
only one known 2−(81, 6, 2) design. Looking at its explicit description in
Examples 2.7 on page 237 of [6], any expert reader will recognize that
it has sixteen pairs of repeated blocks. Thus it cannot be isomorphic to
the simple and strictly additive design with the same parameters that
we explicitly construct below.

Let 𝐺 = Z4
3 be the elementary abelian group of order 81. Given two

elements 𝑥 ∈ 𝐺 ⧵ {0} and 𝑦 ∈ 𝐺 ⧵ {0, 𝑥, 2𝑥}, let 𝐵(𝑥, 𝑦) be the union
of the two parallel lines {0, 𝑥, 2𝑥} and {𝑦, 𝑥 + 𝑦, 2𝑥 + 𝑦} of AG(4, 3). The
𝐺-stabilizer of 𝐵(𝑥, 𝑦) (under the natural action of 𝐺 on itself) is clearly
given by {0, 𝑥, 2𝑥}, hence its 𝐺-orbit has size |𝐺|∕3 = 27. Also, from the
divisibility conditions we infer that a 2−(81, 6, 2) design has 432 = 27⋅16
blocks. Thus it makes sense to look for a design with these parameters
whose collection of blocks is the union of the 𝐺-orbits of 16 suitable
blocks of the form 𝐵(𝑥, 𝑦). Such a 16-tuple of blocks has been found
with a computer and it is given below.

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2)}

{(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 2), (2, 1, 0, 0), (2, 1, 1, 1), (2, 1, 2, 2)}
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{(0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2), (0, 0, 1, 0), (0, 1, 2, 1), (0, 2, 0, 2)}

{(0, 0, 0, 0), (0, 1, 2, 0), (0, 2, 1, 0), (2, 0, 2, 1), (2, 1, 1, 1), (2, 2, 0, 1)}

{(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0), (0, 2, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1)}

{(0, 0, 0, 0), (1, 0, 1, 0), (2, 0, 2, 0), (0, 1, 0, 0), (1, 1, 1, 0), (2, 1, 2, 0)}

{(0, 0, 0, 0), (1, 0, 1, 1), (2, 0, 2, 2), (0, 0, 2, 0), (1, 0, 0, 1), (2, 0, 1, 2)}

{(0, 0, 0, 0), (1, 0, 2, 0), (2, 0, 1, 0), (0, 2, 1, 1), (1, 2, 0, 1), (2, 2, 2, 1)}

{(0, 0, 0, 0), (1, 0, 2, 2), (2, 0, 1, 1), (0, 1, 2, 1), (1, 1, 1, 0), (2, 1, 0, 2)}

{(0, 0, 0, 0), (1, 1, 0, 0), (2, 2, 0, 0), (0, 2, 0, 1), (1, 0, 0, 1), (2, 1, 0, 1)}

{(0, 0, 0, 0), (1, 1, 0, 1), (2, 2, 0, 2), (0, 2, 2, 0), (1, 0, 2, 1), (2, 1, 2, 2)}

{(0, 0, 0, 0), (1, 1, 2, 0), (2, 2, 1, 0), (0, 0, 2, 1), (1, 1, 1, 1), (2, 2, 0, 1)}

{(0, 0, 0, 0), (1, 1, 2, 1), (2, 2, 1, 2), (0, 2, 1, 1), (1, 0, 0, 2), (2, 1, 2, 0)}

{(0, 0, 0, 0), (1, 1, 2, 2), (2, 2, 1, 1), (0, 2, 2, 0), (1, 0, 1, 2), (2, 1, 0, 1)}

{(0, 0, 0, 0), (1, 2, 1, 2), (2, 1, 2, 1), (0, 0, 2, 1), (1, 2, 0, 0), (2, 1, 1, 2)}

{(0, 0, 0, 0), (1, 2, 2, 0), (2, 1, 1, 0), (0, 2, 2, 1), (1, 1, 1, 1), (2, 0, 0, 1)}

Here is a short program in GAP [7] checking that the union of the
𝐺-orbits of the above sixteen 6-subsets of 𝐺 actually is the collection of
blocks of the desired 2 − (81, 6, 2) design.

# All points of AG(4,3)
pts := Tuples([0..2],4);
# blkOrbRep - block orbit reps
# all blocks of the design
blks:= Union(List (blkOrbRep, b-> List(pts, p ->
AsSet(List([1..Size(b)], i-> (b[i] + p) mod 3)))));;
# check that it is a 2-design
Collected(List(Combinations(pts, 2), p ->
Number(blks, b-> (p[1] in b) and (p[2] in b))));

It is evident that any block of the obtained design is a union of two
parallel lines. Hence we conclude that this design is strictly additive.
It is also easy to check that our design is simple. Thus, considering the

comments that we made at the beginning of this section, we have the
following new result.

The number of pairwise non-isomorphic 2 − (81, 6, 2) designs is at
least equal to 2.

Some infinite classes of strictly additive 2-designs will be given in
a future paper still in preparation [8].
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Example
gap> PAGGlobalOptions.Silent:=true;

true

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,42))));

3

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,63))));

367

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,84))));

21743

gap> Size(AsSet(SolveKramerMesner(ExpandMatRHS(m,105))));

38277

1.3.3 2-(81,6,2) Designs

The first simple 2-(81,6,2) design was recently found by A. Nakic [Nak21]. Here are the base blocks
of this design copy-pasted from the paper.

Example
gap> bb:=[[[0,0,0,0],[0,0,0,1],[0,0,0,2],[0,1,0,0],[0,1,0,1],[0,1,0,2]],

> [[0,0,0,0],[0,0,1,1],[0,0,2,2],[2,1,0,0],[2,1,1,1],[2,1,2,2]],

> [[0,0,0,0],[0,1,1,1],[0,2,2,2],[0,0,1,0],[0,1,2,1],[0,2,0,2]],

> [[0,0,0,0],[0,1,2,0],[0,2,1,0],[2,0,2,1],[2,1,1,1],[2,2,0,1]],

> [[0,0,0,0],[1,0,0,0],[2,0,0,0],[0,2,2,1],[1,2,2,1],[2,2,2,1]],

> [[0,0,0,0],[1,0,1,0],[2,0,2,0],[0,1,0,0],[1,1,1,0],[2,1,2,0]],

> [[0,0,0,0],[1,0,1,1],[2,0,2,2],[0,0,2,0],[1,0,0,1],[2,0,1,2]],

> [[0,0,0,0],[1,0,2,0],[2,0,1,0],[0,2,1,1],[1,2,0,1],[2,2,2,1]],

> [[0,0,0,0],[1,0,2,2],[2,0,1,1],[0,1,2,1],[1,1,1,0],[2,1,0,2]],

> [[0,0,0,0],[1,1,0,0],[2,2,0,0],[0,2,0,1],[1,0,0,1],[2,1,0,1]],

> [[0,0,0,0],[1,1,0,1],[2,2,0,2],[0,2,2,0],[1,0,2,1],[2,1,2,2]],

> [[0,0,0,0],[1,1,2,0],[2,2,1,0],[0,0,2,1],[1,1,1,1],[2,2,0,1]],

> [[0,0,0,0],[1,1,2,1],[2,2,1,2],[0,2,1,1],[1,0,0,2],[2,1,2,0]],

> [[0,0,0,0],[1,1,2,2],[2,2,1,1],[0,2,2,0],[1,0,1,2],[2,1,0,1]],

> [[0,0,0,0],[1,2,1,2],[2,1,2,1],[0,0,2,1],[1,2,0,0],[2,1,1,2]],

> [[0,0,0,0],[1,2,2,0],[2,1,1,0],[0,2,2,1],[1,1,1,1],[2,0,0,1]]]*Z(3)^0;;

The points of this design are elements of the 4-dimensional vector space V over GF(3). Here is how
to get the desing in the Design package format.

Example
gap> V:=Tuples([0,1,2],4)*Z(3)^0;;

gap> d1:=Union(List(bb,y->List(V,x->AsSet(x+y))));;

gap> d:=BlockDesign(81,List(d1,y->List(y,x->Position(V,x))));;

gap> AllTDesignLambdas(d);

[ 432, 32, 2 ]

The full automorphism group of the design is of order 2592. It’s a semidirect product of the additive
group of V and a group of order 32.

Example
gap> aut:=AutomorphismGroup(d);

<permutation group with 4 generators>

gap> Size(aut);

2592

gap> StructureDescription(aut);

"(C3 x C3 x C3 x C3) : (C16 : C2)"
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V. Krčadinac (PMF-MO) The GAP package PAG 4.5.2022. 43 / 45



Worked examples in PAG
PAG 9

This group has three subgroups of order 648 up to conjugation. We can use the second subgroup to
construct four more simple 2-(81,6,2) designs.

Example
gap> g:=Filtered(AllSubgroupsConjugation(aut),x->Size(x)=648);

[ <permutation group of size 648 with 7 generators>,

<permutation group of size 648 with 7 generators>,

<permutation group of size 648 with 7 generators> ]

gap> dd:=KramerMesnerSearch(2,81,6,2,g[2],rec(NonIsomorphic:=true));;

gap> List(dd,x->Size(AutomorphismGroup(x)));

[ 1944, 15552, 1296, 2592, 3888 ]

Two of the new designs have larger full automorphism groups than design from [Nak21]. Using their
subgroups, more simple 2-(81,6,2) designs can be constructed.

Homework: construct more examples of simple 2-(81, 6, 2) designs!
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The End

Thanks for your attention!
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