A new family of 3-designs of degree 3^*

Vedran Krčadinac

University of Zagreb, Croatia

(joint work with Lucija Relić)

10th Slovenian Conference on Graph Theory 18-24 June, 2023, Kranjska Gora, Slovenia

* This work was partially supported by the Croatian Science Foundation under the project 9752.

Introduction

Assumptions:

• • • • • • • •

æ

• Everybody knows the definition of a t- (v, k, λ) design

- Everybody knows the definition of a t- (v, k, λ) design
- All designs are simple

- Everybody knows the definition of a t- (v, k, λ) design
- All designs are simple
- $k \leq \frac{1}{2}v$ (complementing the blocks does not change t and d)

- Everybody knows the definition of a t- (v, k, λ) design
- All designs are simple
- $k \leq \frac{1}{2}v$ (complementing the blocks does not change t and d)

The degree of a design is the number of distinct block intersection sizes:

$$d = |\{ |B_1 \cap B_2| : B_1 \neq B_2 \text{ are blocks} \}|$$

э

Image: A matrix and a matrix

▲ 四 ▶

d = 2: Quasi-symmetric designs $(t \le 4)$

d = 2: Quasi-symmetric designs $(t \le 4)$

R. Vlahović Kruc, *Some results on quasi-symmetric designs with exceptional parameters*, PhD thesis, University of Zagreb, 2019.

d = 2: Quasi-symmetric designs $(t \le 4)$

R. Vlahović Kruc, *Some results on quasi-symmetric designs with exceptional parameters*, PhD thesis, University of Zagreb, 2019.

d = 3: ?

Intersection numbers: x < y < z

イロト イヨト イヨト

3

Intersection numbers: x < y < z

Ray-Chaudhuri, Wilson: $t \leq 6$

3

▶ < ∃ >

• • • • • • • • • •

Intersection numbers: x < y < z

- Ray-Chaudhuri, Wilson: $t \leq 6$
- t = 6: Do not exist!

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

< A > <

Intersection numbers: x < y < z

- Ray-Chaudhuri, Wilson: $t \leq 6$
- t = 6: Do not exist!

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

t = 5: The Witt 5-(24, 8, 1) design, x = 0, y = 2, z = 4

Y. J. Ionin, M. S. Shrikhande, 5-*designs with three intersection numbers*, J. Combin. Theory Ser. A **69** (1995), no. 1, 36–50.

Intersection numbers: x < y < z

- Ray-Chaudhuri, Wilson: $t \leq 6$
- t = 6: Do not exist!

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

t = 5: The Witt 5-(24, 8, 1) design, x = 0, y = 2, z = 4

Y. J. Ionin, M. S. Shrikhande, 5-*designs with three intersection numbers*, J. Combin. Theory Ser. A **69** (1995), no. 1, 36–50.

t = 4:

V. Krčadinac, R. Vlahović Kruc, *Schematic* 4-*designs*, Discrete Math. **346** (2023), no. 7, Paper No. 113385, 7 pp.

No.	V	k	λ	X	у	Ζ	Ξ
1	11	5	1	1	2	3	
2	23	8	4	0	2	4	
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

э

Image: A matched by the second sec

No.	V	k	λ	X	у	Ζ	Ξ
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

э

Image: A matched by the second sec

No.	V	k	λ	x	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	$QR(11,3)$: $[11,6,5]_3$
2	23	8	4	0	2	4	\checkmark	$QR(23,2)$: $[23,12,7]_2$
3	23	11	48	3	5	7	\checkmark	$QR(23,2)$: $[23,12,7]_2$
4	24	8	5	0	2	4	\checkmark	QR(23,2): [24, 12, 8] ₂
5	47	11	8	1	3	5	\checkmark	<i>QR</i> (47, 2): [47, 24, 11] ₂
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

э

Image: A matched black

No.	V	k	λ	X	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	$QR(11,3)$: $[11,6,5]_3$
2	23	8	4	0	2	4	\checkmark	$QR(23,2)$: $[23,12,7]_2$
3	23	11	48	3	5	7	\checkmark	$QR(23,2)$: $[23,12,7]_2$
4	24	8	5	0	2	4	\checkmark	QR(23,2): [24, 12, 8] ₂
5	47	11	8	1	3	5	\checkmark	<i>QR</i> (47, 2): [47, 24, 11] ₂
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	
9	647	323	25680	152	161	170	?	
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	

э

No.	V	k	λ	X	у	Ζ	Ξ	
1	11	5	1	1	2	3	\checkmark	$QR(11,3)$: $[11,6,5]_3$
2	23	8	4	0	2	4	\checkmark	$QR(23,2)$: $[23,12,7]_2$
3	23	11	48	3	5	7	\checkmark	$QR(23,2)$: $[23,12,7]_2$
4	24	8	5	0	2	4	\checkmark	QR(23,2): [24, 12, 8] ₂
5	47	11	8	1	3	5	\checkmark	<i>QR</i> (47, 2): [47, 24, 11] ₂
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	
9	647	323	25680	152	161	170	?	
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	

< 4[™] ▶

э

Admissible parameters:

$$v = 8n^{2} - 1$$

$$k = 4n^{2} - 1 = (2n - 1)(2n + 1)$$

$$\lambda = 4n^{4} - 7n^{2} + 3 = (n - 1)(n + 1)(4n^{2} - 3)$$

$$x = 2n^{2} - n - 1 = (n - 1)(2n + 1)$$

$$y = 2n^{2} - 1$$

$$z = 2n^{2} + n - 1 = (n + 1)(2n - 1)$$

$$n \ge 3 \text{ odd}$$

3. 3

Image: A matrix

Admissible parameters:

$$v = 8n^{2} - 1$$

$$k = 4n^{2} - 1 = (2n - 1)(2n + 1)$$

$$\lambda = 4n^{4} - 7n^{2} + 3 = (n - 1)(n + 1)(4n^{2} - 3)$$

$$x = 2n^{2} - n - 1 = (n - 1)(2n + 1)$$

$$y = 2n^{2} - 1$$

$$z = 2n^{2} + n - 1 = (n + 1)(2n - 1)$$

$$n \ge 3 \text{ odd}$$

Theorem (Cameron, Delsarte, 1973)

In a design of degree d and strength $t \ge 2d - 2$, the blocks form a symmetric association scheme with d classes.

\rightsquigarrow Schematic designs

Vedran Krčadinac (University of Zagreb)

d = 3, t = 3:

3

→ < ∃ →</p>

Image: A matrix and a matrix

d = 3, t = 3: Lots of admissible parameters, e.g. all Steiner 3-designs.

d = 3, t = 3: Lots of admissible parameters, e.g. all Steiner 3-designs.

V	k	λ	X	у	Ζ	Ξ
16	4	1	0	1	2	\checkmark
16	6	4	1	2	3	\checkmark
32	8	7	0	2	4	\checkmark
32	12	22	2	4	6	\checkmark
64	16	35	0	4	8	\checkmark
64	28	156	10	12	14	\checkmark
128	32	155	0	8	16	\checkmark
128	56	660	20	24	28	\checkmark
256	64	651	0	16	32	\checkmark
256	120	3304	52	56	60	\checkmark
512	128	2667	0	32	64	\checkmark
512	240	13384	104	112	120	\checkmark

d = 3, t = 3: Lots of admissible parameters, e.g. all Steiner 3-designs.

	Ξ	Ζ	у	X	λ	k	V
$AG_2(4,2), RM(2,4): [16,11,4]_2$	\checkmark	2	1	0	1	4	16
	\checkmark	3	2	1	4	6	16
$AG_3(5,2), RM(2,5): [32,16,8]_2$	\checkmark	4	2	0	7	8	32
	\checkmark	6	4	2	22	12	32
AG ₄ (6,2), RM(2,6): [64,22,16] ₂	\checkmark	8	4	0	35	16	64
	\checkmark	14	12	10	156	28	64
AG ₅ (7,2), RM(2,7): [128,29,32] ₂	\checkmark	16	8	0	155	32	128
	\checkmark	28	24	20	660	56	128
AG ₆ (8,2), RM(2,8): [256,37,64] ₂	\checkmark	32	16	0	651	64	256
	\checkmark	60	56	52	3304	120	256
AG ₇ (9,2), RM(2,9): [512,46,128]	\checkmark	64	32	0	2667	128	512
	\checkmark	120	112	104	13384	240	512

d = 3, t = 3: Lots of admissible parameters, e.g. all Steiner 3-designs.

Ξ	Ζ	у	X	λ	k	V
\checkmark	2	1	0	1	4	16
\checkmark	3	2	1	4	6	16
✓	4	2	0	7	8	32
\checkmark	6	4	2	22	12	32
✓	8	4	0	35	16	64
\checkmark	14	12	10	156	28	64
\checkmark	16	8	0	155	32	128
\checkmark	28	24	20	660	56	128
✓	32	16	0	651	64	256
\checkmark	60	56	52	3304	120	256
√	64	32	0	2667	128	512
\checkmark	120	112	104	13384	240	512

 $AG_2(4,2), RM(2,4): [16,11,4]_2$ Nordstrom-Robinson: $(16,2^8,6)_2$ $AG_3(5,2), RM(2,5): [32,16,8]_2$

 $AG_4(6,2), RM(2,6): [64,22,16]_2$ Kerdock code: $(64,2^{12},28)_2$ $AG_5(7,2), RM(2,7): [128,29,32]_2$

 $AG_6(8,2), RM(2,8): [256,37,64]_2$ Kerdock code: $(256,2^{16},120)_2$ $AG_7(9,2), RM(2,9): [512,46,128]_2$

d = 3, t = 3: Lots of admissible parameters, e.g. all Steiner 3-designs.

V	k	λ	X	у	Ζ	Ξ
16	4	1	0	1	2	\checkmark
16	6	4	1	2	3	\checkmark
32	8	7	0	2	4	\checkmark
32	12	22	2	4	6	\checkmark
64	16	35	0	4	8	\checkmark
64	28	156	10	12	14	\checkmark
128	32	155	0	8	16	\checkmark
128	56	660	20	24	28	\checkmark
256	64	651	0	16	32	\checkmark
256	120	3304	52	56	60	\checkmark
512	128	2667	0	32	64	\checkmark
512	240	13384	104	112	120	\checkmark

 $AG_2(4,2), RM(2,4): [16,11,4]_2$ Nordstrom-Robinson: $(16, 2^8, 6)_2$ $AG_{3}(5,2), RM(2,5): [32,16,8]_{2}$ 7 $AG_4(6,2), RM(2,6): [64,22,16]_2$ Kerdock code: (64, 2¹², 28)₂ $AG_5(7,2), RM(2,7): [128,29,32]_2$? AG₆(8,2), RM(2,8): [256,37,64]₂ Kerdock code: (256, 2¹⁶, 120)₂ AG₇(9,2), RM(2,9): [512,46,128]₂

Commercial break

Vedran Krčadinac (University of Zagreb)

• • • • • • • •

3

Commercial break

Combinatorial Constructions Conference (CCC) will take place at the Centre for Advanced Academic Studies in Dubrovnik, Croatia. **April 7-13, 2024**

Invited speakers: Marco Buratti, Italy Michael Kie Eimear Byrne, Ireland Patric Öste Dean Crnković, Croatia Kai-Uwe Sc Daniel Horsley, Australia

Michael Kiermaier, Germany Patric Östergård, Finland Kai-Uwe Schmidt, Germany

https://web.math.pmf.unizg.hr/acco/meetings.php

$$v = 2^{m}$$

$$k = 2^{m-1} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

$$m \ge 4 \text{ even}$$

э

Image: A matrix

$$v = 2^{m}$$
Foundation Points: $AG(m, 2)$

$$k = 2^{(m-1)} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

$$v = 2^{m}$$

$$k = 2^{m-1} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

Points: $AG(m, 2)$

$$m \ge 4$$
 even

$$m \ge 4$$
 even

Blocks: incidence functions $f: AG(m, 2) \rightarrow \{0, 1\}$

Image: Image:

$$v = 2^{m}$$
Points: $AG(m, 2)$

$$k = 2^{m-1} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

Blocks: incidence functions $f : AG(m, 2) \rightarrow \{0, 1\}$

RM(1,m)

$$v = 2^{m}$$

$$k = 2^{m-1} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

Points: $AG(m, 2)$

$$m \ge 4$$
 even

$$m \ge 4$$
 even

Blocks: incidence functions $f : AG(m, 2) \rightarrow \{0, 1\}$

$$RM(1,m)$$
 $RM(2,m)$

Image: Image:
$$v = 2^{m}$$
Points: $AG(m, 2)$

$$k = 2^{(m-1)} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

Image: A matrix and a matrix

Blocks: incidence functions $f : AG(m, 2) \rightarrow \{0, 1\}$

$$RM(1,m) \subset K(m) \subset RM(2,m)$$

Kerdock code $K(m)$: $\left(2^m, 2^{2m}, 2^{m-1} - 2^{(m-2)/2}\right)$

$$v = 2^{m}$$

$$k = 2^{m-1} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

Points: $AG(m, 2)$

$$m \ge 4$$
 even

$$m \ge 4$$
 even

Weight (distance) distribution of $RM(1,m) \subset K(m)$:

wt	0	$2^{m-1} - 2^{(m-2)/2}$	2^{m-1}	$2^{m-1} + 2^{(m-2)/2}$	2 ^{<i>m</i>}
#	1	$2^m(2^{m-1}-1)$	$2^{m+1} - 2$	$2^m(2^{m-1}-1)$	1

$$v = 2^{m}$$

$$k = 2^{m-1} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

Points: $AG(m, 2)$

$$m \ge 4$$
 even

$$m \ge 4$$
 even

Weight (distance) distribution of $RM(1, m) \subset K(m)$:

wt	0	$2^{m-1} - 2^{(m-2)/2}$	2^{m-1}	$2^{m-1} + 2^{(m-2)/2}$	2 ^{<i>m</i>}
#	1	$2^m(2^{m-1}-1)$	$2^{m+1} - 2$	$2^m(2^{m-1}-1)$	1

$$v = 2^{m}$$
Foundation Points: $AG(m, 2)$

$$k = 2^{(m-1)} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$

Weight (distance) distribution of $RM(1, m) \subset K(m)$:

wt	0	$2^{m-1} - 2^{(m-2)/2}$	2^{m-1}	$2^{m-1} + 2^{(m-2)/2}$	2 ^{<i>m</i>}
#	1	$2^m(2^{m-1}-1)$	$2^{m+1} - 2$	$2^m(2^{m-1}-1)$	1

 $v = 2^{m}$ Points: AG(m, 2) $k = 2^{m-1} - 2^{(m-2)/2}$ $\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$ $x = 2^{(m-4)/2} (2^{m/2} - 3)$ $y = 2^{(m-4)/2} (2^{m/2} - 2) \xrightarrow{\text{equivalence relation}}$ $z = 2^{(m-4)/2} (2^{m/2} - 1)$

Weight (distance) distribution of $RM(1,m) \subset K(m)$:

 wt
 0
 $2^{m-1} - 2^{(m-2)/2}$ 2^{m-1} $2^{m-1} + 2^{(m-2)/2}$ 2^m

 #
 1
 $2^m(2^{m-1}-1)$ $2^{m+1}-2$ $2^m(2^{m-1}-1)$ 1

э.

$$v = 2^{m}$$
Points: $AG(m, k)$

$$k = 2^{(m-1)} - 2^{(m-2)/2}$$

$$\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 3)$$

$$y = 2^{(m-4)/2} (2^{m/2} - 2)$$

$$z = 2^{(m-4)/2} (2^{m/2} - 1)$$
Points: $AG(m, m)$

$$m \ge 4$$
 even
$$2^{m-1} - 1 \text{ LSSD}(v, k, y)$$

$$x = 2^{(m-4)/2} (2^{m/2} - 1)$$

Weight (distance) distribution of $RM(1, m) \subset K(m)$:

wt	0	$2^{m-1} - 2^{(m-2)/2}$	2^{m-1}	$2^{m-1} + 2^{(m-2)/2}$	2 ^{<i>m</i>}
#	1	$2^m(2^{m-1}-1)$	$2^{m+1} - 2$	$2^m(2^{m-1}-1)$	1

э

2)

 $v = 2^{m}$ Points: AG(m, 2) $k = 2^{m-1} - 2^{(m-2)/2}$ $\lambda = 2^{(m-8)/2} (2^{m/2} - 2) (2^{m} - 2^{m/2} - 4)$ $x = 2^{(m-4)/2} (2^{m/2} - 3)$ $y = 2^{(m-4)/2} (2^{m/2} - 2)$ Schematic! $z = 2^{(m-4)/2} (2^{m/2} - 1)$

Weight (distance) distribution of $RM(1,m) \subset K(m)$:

 wt
 0
 $2^{m-1} - 2^{(m-2)/2}$ 2^{m-1} $2^{m-1} + 2^{(m-2)/2}$ 2^m

 #
 1
 $2^m(2^{m-1}-1)$ $2^{m+1}-2$ $2^m(2^{m-1}-1)$ 1

A. W. Nordstrom, J. P. Robinson, *An optimum nonlinear code*, Information and Control **11** (1967), 613–616.

A. W. Nordstrom, J. P. Robinson, *An optimum nonlinear code*, Information and Control **11** (1967), 613–616.

F. P. Preparata, *A class of optimum nonlinear double-error-correcting codes*, Information and Control **13** (1968), 378–400.

A. M. Kerdock, *A class of low-rate nonlinear binary codes*, Information and Control **20** (1972), 182–187.

A. W. Nordstrom, J. P. Robinson, *An optimum nonlinear code*, Information and Control **11** (1967), 613–616.

F. P. Preparata, *A class of optimum nonlinear double-error-correcting codes*, Information and Control **13** (1968), 378–400.

A. M. Kerdock, *A class of low-rate nonlinear binary codes*, Information and Control **20** (1972), 182–187.

P. J. Cameron, *On groups with several doubly-transitive permutation representations*, Math. Z. **128** (1972), 1–14.

P. J. Cameron, J. J. Seidel, *Quadratic forms over GF*(2), Nederl. Akad. Wetensch. Proc. Ser. A **76**=Indag. Math. **35** (1973), 1–8.

A. W. Nordstrom, J. P. Robinson, *An optimum nonlinear code*, Information and Control **11** (1967), 613–616.

F. P. Preparata, *A class of optimum nonlinear double-error-correcting codes*, Information and Control **13** (1968), 378–400.

A. M. Kerdock, *A class of low-rate nonlinear binary codes*, Information and Control **20** (1972), 182–187.

P. J. Cameron, *On groups with several doubly-transitive permutation representations*, Math. Z. **128** (1972), 1–14.

P. J. Cameron, J. J. Seidel, *Quadratic forms over GF*(2), Nederl. Akad. Wetensch. Proc. Ser. A **76**=Indag. Math. **35** (1973), 1–8.

R. Noda, *On homogeneous systems of linked symmetric designs*, Math. Z. **138** (1974), 15–20.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- W. M. Kantor, *Spreads, translation planes and Kerdock sets. I; II*, SIAM J. Algebraic Discrete Methods **3** (1982), no. 2; 3, 151–165; 308–318.
- W. M. Kantor, *An exponential number of generalized Kerdock codes*, Inform. and Control **53** (1982), no. 1-2, 74–80.
- W. M. Kantor, *Codes, quadratic forms and finite geometries*, Proc. Sympos. Appl. Math. **50** (1995), Amer. Math. Soc., 153–177.

- W. M. Kantor, *Spreads, translation planes and Kerdock sets. I; II*, SIAM J. Algebraic Discrete Methods **3** (1982), no. 2; 3, 151–165; 308–318.
- W. M. Kantor, *An exponential number of generalized Kerdock codes*, Inform. and Control **53** (1982), no. 1-2, 74–80.
- W. M. Kantor, *Codes, quadratic forms and finite geometries*, Proc. Sympos. Appl. Math. **50** (1995), Amer. Math. Soc., 153–177.
- A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, *The* \mathbb{Z}_4 -*linearity of Kerdock, Preparata, Goethals, and related codes*, IEEE Trans. Inform. Theory **40** (1994), no. 2, 301–319.

- W. M. Kantor, *Spreads, translation planes and Kerdock sets. I; II*, SIAM J. Algebraic Discrete Methods **3** (1982), no. 2; 3, 151–165; 308–318.
- W. M. Kantor, *An exponential number of generalized Kerdock codes*, Inform. and Control **53** (1982), no. 1-2, 74–80.
- W. M. Kantor, *Codes, quadratic forms and finite geometries*, Proc. Sympos. Appl. Math. **50** (1995), Amer. Math. Soc., 153–177.
- A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, *The* \mathbb{Z}_4 -*linearity of Kerdock, Preparata, Goethals, and related codes*, IEEE Trans. Inform. Theory **40** (1994), no. 2, 301–319.

K. Yang, T. Helleseth, *Two new infinite families of 3-designs from Kerdock codes over* \mathbb{Z}_4 , Des. Codes Cryptogr. **15** (1998), no. 2, 201–214.

 $v = 2^m$, $k = 2^{m-1} + 2^{m-2} \pm 2^{(m-3)/2}$, $\lambda = k(k-1)(k-2)/(2^m-2)$, $m \ge 3$ odd

э

< □ > < □ > < □ > < □ > < □ > < □ >

$$v = 2^{m}$$
Points: $AG(m, 2)$
 $k = 2^{m-1} - 2^{(m-1)/2}$
 $\lambda = 2^{(m-7)/2} (2^{(m-1)/2} - 2) (2^{m} - 2^{(m+1)/2} - 2)$
 $x = 2^{(m-3)/2} (2^{(m-1)/2} - 3)$
 $y = 2^{(m-3)/2} (2^{(m-1)/2} - 2)$
 $z = 2^{(m-3)/2} (2^{(m-1)/2} - 1)$

Image: A matrix

æ

$$v = 2^{m}$$
Points: $AG(m, 2)$

$$k = 2^{m-1} - 2^{(m-1)/2}$$

$$\lambda = 2^{(m-7)/2} (2^{(m-1)/2} - 2) (2^{m} - 2^{(m+1)/2} - 2)$$

$$x = 2^{(m-3)/2} (2^{(m-1)/2} - 3)$$

$$y = 2^{(m-3)/2} (2^{(m-1)/2} - 2)$$

$$z = 2^{(m-3)/2} (2^{(m-1)/2} - 1)$$

Corresponding code: $(2^m, 2^{2m+1}, 2^{m-1} - 2^{(m-1)/2})$

 $RM(1,m) \subset C \subset RM(2,m)$

$$v = 2^{m}$$
Points: $AG(m, 2)$
 $k = 2^{m-1} - 2^{(m-1)/2}$
 $\lambda = 2^{(m-7)/2} (2^{(m-1)/2} - 2) (2^{m} - 2^{(m+1)/2} - 2)$
 $x = 2^{(m-3)/2} (2^{(m-1)/2} - 3)$
 $y = 2^{(m-3)/2} (2^{(m-1)/2} - 2)$
 $z = 2^{(m-3)/2} (2^{(m-1)/2} - 1)$

Corresponding code: $(2^m, 2^{2m+1}, 2^{m-1} - 2^{(m-1)/2})$

wt
 0

$$2^{m-1} - 2^{(m-1)/2}$$
 2^{m-1}
 $2^{m-1} + 2^{(m-1)/2}$
 2^m

 #
 1
 $2^{m-1}(2^m-1)$
 $2^m(2^m+1)-2$
 $2^{m-1}(2^m-1)$
 1

$$v = 2^{m}$$
Points: $AG(m, 2)$

$$k = 2^{m-1} - 2^{(m-1)/2}$$

$$\lambda = 2^{(m-7)/2} (2^{(m-1)/2} - 2) (2^{m} - 2^{(m+1)/2} - 2)$$

$$x = 2^{(m-3)/2} (2^{(m-1)/2} - 3)$$

$$y = 2^{(m-3)/2} (2^{(m-1)/2} - 2)$$

$$z = 2^{(m-3)/2} (2^{(m-1)/2} - 1)$$

Corresponding code: $(2^m, 2^{2m+1}, 2^{m-1} - 2^{(m-1)/2})$

wt
 0

$$2^{m-1} - 2^{(m-1)/2}$$
 2^{m-1}
 $2^{m-1} + 2^{(m-1)/2}$
 2^m

 #
 1
 $2^{m-1}(2^m-1)$
 $2^m(2^m+1)-2$
 $2^{m-1}(2^m-1)$
 1

$$v = 2^{m}$$
Points: $AG(m, 2)$

$$k = 2^{m-1} - 2^{(m-1)/2}$$

$$\lambda = 2^{(m-7)/2} (2^{(m-1)/2} - 2) (2^{m} - 2^{(m+1)/2} - 2)$$

$$x = 2^{(m-3)/2} (2^{(m-1)/2} - 3)$$

$$y = 2^{(m-3)/2} (2^{(m-1)/2} - 2)$$

$$z = 2^{(m-3)/2} (2^{(m-1)/2} - 1)$$

Corresponding code: $(2^m, 2^{2m+1}, 2^{m-1} - 2^{(m-1)/2})$

wt	0	$2^{m-1} - 2^{(m-1)/2}$	2^{m-1}	$2^{m-1} + 2^{(m-1)/2}$	2 ^{<i>m</i>}
#	1	$2^{m-1}(2^m-1)$	$2^{m}(2^{m}+1)-2$	$2^{m-1}(2^m-1)$	1

$$v = 2^{m}$$
Points: $AG(m, 2)$

$$k = 2^{m-1} - 2^{(m-1)/2}$$

$$\lambda = 2^{(m-7)/2} (2^{(m-1)/2} - 2) (2^{m} - 2^{(m+1)/2} - 2)$$

$$x = 2^{(m-3)/2} (2^{(m-1)/2} - 3)$$

$$y = 2^{(m-3)/2} (2^{(m-1)/2} - 2)$$
Not schematic \cdots

$$z = 2^{(m-3)/2} (2^{(m-1)/2} - 1)$$

Corresponding code: $(2^m, 2^{2m+1}, 2^{m-1} - 2^{(m-1)/2})$

wt	0	$2^{m-1} - 2^{(m-1)/2}$	2^{m-1}	$2^{m-1} + 2^{(m-1)/2}$	2 ^{<i>m</i>}
#	1	$2^{m-1}(2^m-1)$	$2^{m}(2^{m}+1)-2$	$2^{m-1}(2^m-1)$	1

$$v = 2^{m}$$
Points: $AG(m, 2)$

$$k = 2^{m-1} - 2^{(m-1)/2}$$

$$\lambda = 2^{(m-7)/2} (2^{(m-1)/2} - 2) (2^{m} - 2^{(m+1)/2} - 2)$$

$$x = 2^{(m-3)/2} (2^{(m-1)/2} - 3)$$

$$y = 2^{(m-3)/2} (2^{(m-1)/2} - 2)$$
Not schematic \cdots

$$z = 2^{(m-3)/2} (2^{(m-1)/2} - 1)$$

Corresponding code: $(2^m, 2^{2m+1}, 2^{m-1} - 2^{(m-1)/2})$ May be linear \bigcirc

wt	0	$2^{m-1} - 2^{(m-1)/2}$	2^{m-1}	$2^{m-1} + 2^{(m-1)/2}$	2 ^{<i>m</i>}
#	1	$2^{m-1}(2^m-1)$	$2^{m}(2^{m}+1)-2$	$2^{m-1}(2^m-1)$	1

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

▶ < ∃ >

Image: A mathematical states and a mathem

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

ΓО

Image: A matrix

The rank of B is even: rk(B) = 2r

э

h.. 1

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

L ٦

The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{m-1-r}$

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

L ٦

The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{m-1-r}$

To get a good code, we want r as large as possible: m = 2r (even!)

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{m-1-r}$

To get a good code, we want r as large as possible: m = 2r (even!)

To get many codewords, we want as many symplectic matrices B_1, \ldots, B_ℓ as possible such that $rk(B_i - B_j) = m$.

-

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{m-1-r}$

To get a good code, we want r as large as possible: m = 2r (even!)

To get many codewords, we want as many symplectic matrices B_1, \ldots, B_ℓ as posible such that $rk(B_i - B_j) = m$. Upper bound: $\ell \leq 2^{m-1} - 1$

-

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{m-1-r}$

To get a good code, we want r as large as possible: m = 2r (even!)

To get many codewords, we want as many symplectic matrices B_1, \ldots, B_ℓ as posible such that $rk(B_i - B_j) = m$. Upper bound: $\ell \leq 2^{m-1} - 1$

A set of $\ell = 2^{m-1} - 1$ matrices is called a Kerdock set and gives rise to the Kerdock code.

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{m-1-r}$

To get a good code, we want r as large as possible: m = 2r (even!)

To get many codewords, we want as many symplectic matrices B_1, \ldots, B_ℓ as posible such that $rk(B_i - B_j) = m$. Upper bound: $\ell \leq 2^{m-1} - 1$

A set of $\ell = 2^{m-1} - 1$ matrices is called a Kerdock set and gives rise to the Kerdock code. How to construct Kerdock sets?

3

Quadratic forms over GF(2):

$$B(x_1,\ldots,x_m) = \sum_{1 \le i < j \le m} b_{ij} x_i x_j \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & b_{ij} \\ & \ddots & \\ b_{ji} & 0 \end{bmatrix}$$

L ¬

The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{m-1-r}$

To get a good code, we want r as large as possible: m = 2r (even!)

To get many codewords, we want as many symplectic matrices B_1, \ldots, B_ℓ as posible such that $rk(B_i - B_j) = m$. Upper bound: $\ell \leq 2^{m-1} - 1$

A set of $\ell = 2^{m-1} - 1$ matrices is called a Kerdock set and gives rise to the Kerdock code. How to construct Kerdock sets?

W. M. Kantor, *Codes, quadratic forms and finite geometries*, Proc. Sympos. Appl. Math. **50** (1995), Amer. Math. Soc., 153–177.

Trace map
$$T: \mathit{GF}(2^{m-1})
ightarrow \mathit{GF}(2), \ \ T(x) = \sum\limits_{i=0}^{m-2} x^{2^i}$$

イロト イヨト イヨト イヨト

Trace map
$$T: GF(2^{m-1})
ightarrow GF(2), \ \ T(x) = \sum\limits_{i=0}^{m-2} x^{2^i}$$

Linear operator $B_s: GF(2^{m-1}) \oplus GF(2) \rightarrow GF(2^{m-1}) \oplus GF(2),$ $B_s(x, a) = (xs^2 + sT(sx) + as, T(sx))$

3

→ < ∃ →</p>

Image: A matrix and a matrix

Trace map
$$T: GF(2^{m-1})
ightarrow GF(2), \ \ T(x) = \sum\limits_{i=0}^{m-2} x^{2^i}$$

Linear operator $B_s : GF(2^{m-1}) \oplus GF(2) \rightarrow GF(2^{m-1}) \oplus GF(2),$ $B_s(x, a) = (xs^2 + sT(sx) + as, T(sx))$

The set of matrices $\{B_s \mid s \in GF(2^{m-1}) \setminus \{0\}\}$ is a Kerdock set!

Trace map
$$T: GF(2^{m-1})
ightarrow GF(2), \ \ T(x) = \sum\limits_{i=0}^{m-2} x^{2^i}$$

Linear operator $B_s: GF(2^{m-1}) \oplus GF(2) \rightarrow GF(2^{m-1}) \oplus GF(2),$ $B_s(x, a) = (xs^2 + sT(sx) + as, T(sx))$

The set of matrices $\{B_s \mid s \in GF(2^{m-1}) \setminus \{0\}\}$ is a Kerdock set!

A variation of this construction gives many inequivalent examples:

W. M. Kantor, *An exponential number of generalized Kerdock codes*, Inform. and Control **53** (1982), no. 1-2, 74–80.

Trace map
$$T: GF(2^{m-1})
ightarrow GF(2), \quad T(x) = \sum_{i=0}^{m-2} x^{2^i}$$

Linear operator $B_s: GF(2^{m-1}) \oplus GF(2) \rightarrow GF(2^{m-1}) \oplus GF(2),$ $B_s(x, a) = (xs^2 + sT(sx) + as, T(sx))$

The set of matrices $\{B_s \mid s \in GF(2^{m-1}) \setminus \{0\}\}$ is a Kerdock set!

A variation of this construction gives many inequivalent examples:

W. M. Kantor, *An exponential number of generalized Kerdock codes*, Inform. and Control **53** (1982), no. 1-2, 74–80.

If *m* is **odd**, alternating matrices cannot be nonsingular (because their rank is even). Next best thing: take matrices *B* of rank m - 1, i.e. m = 2r + 1.

イロト イポト イヨト イヨト 二日

Kerdock sets in odd dimensions

For rk(B) = m - 1, the minimum weight of the coset B + RM(1, 2) is $2^{m-1} - 2^{(m-1)/2} = k$
For rk(B) = m - 1, the minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{(m-1)/2} = k$

We want as many matrices B_1, \ldots, B_ℓ as possible such that $rk(B_i - B_j) = m - 1$.

For rk(B) = m - 1, the minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{(m-1)/2} = k$

We want as many matrices B_1, \ldots, B_ℓ as possible such that $rk(B_i - B_j) = m - 1$. Upper bound: $\ell \leq 2^m - 1$

For rk(B) = m - 1, the minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{(m-1)/2} = k$

We want as many matrices B_1, \ldots, B_ℓ as possible such that $rk(B_i - B_j) = m - 1$. Upper bound: $\ell \leq 2^m - 1$

A maximal set of matrices can be obtained by a modification of Kantor's construction:

Trace map $T : GF(2^m) \to GF(2), \quad T(x) = \sum_{i=0}^{m-1} x^{2^i}$ Linear operator $B_s : GF(2^m) \to GF(2^m), \quad B_s(x) = xs^2 + sT(sx)$ The set of matrices $\{B_s \mid s \in GF(2^m) \setminus \{0\}\}$ defines the code.

For rk(B) = m - 1, the minimum weight of the coset B + RM(1,2) is $2^{m-1} - 2^{(m-1)/2} = k$

We want as many matrices B_1, \ldots, B_ℓ as possible such that $rk(B_i - B_j) = m - 1$. Upper bound: $\ell \leq 2^m - 1$

A maximal set of matrices can be obtained by a modification of Kantor's construction:

Trace map $T : GF(2^m) \to GF(2), \quad T(x) = \sum_{i=0}^{m-1} x^{2^i}$ Linear operator $B_s : GF(2^m) \to GF(2^m), \quad B_s(x) = xs^2 + sT(sx)$ The set of matrices $\{B_s \mid s \in GF(2^m) \setminus \{0\}\}$ defines the code. The code is nonlinear over GF(2) and supports 3-designs of degree 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

For rk(B) = m - 1, the minimum weight of the coset B + RM(1, 2) is $2^{m-1} - 2^{(m-1)/2} = k$

We want as many matrices B_1, \ldots, B_ℓ as possible such that $rk(B_i - B_j) = m - 1$. Upper bound: $\ell \leq 2^m - 1$

A maximal set of matrices can be obtained by a modification of Kantor's construction:

Trace map $T : GF(2^m) \to GF(2), \quad T(x) = \sum_{i=0}^{m-1} x^{2^i}$ Linear operator $B_s : GF(2^m) \to GF(2^m), \quad B_s(x) = xs^2 + sT(sx)$ The set of matrices $\{B_s \mid s \in GF(2^m) \setminus \{0\}\}$ defines the code. The code is nonlinear over GF(2) and supports 3-designs of degree 3. There are also GF(2)-linear codes with the same weight distribution (extended BCH codes) supporting non-isomorphic designs!

Vedran Krčadinac (University of Zagreb)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An (m, r)-set is a set $\{B_1, \ldots, B_\ell\}$ of $m \times m$ alternating matrices over GF(2) such that $rk(B_i - B_j) \ge 2r$.

An (m, r)-set is a set $\{B_1, \ldots, B_\ell\}$ of $m \times m$ alternating matrices over GF(2) such that $rk(B_i - B_j) \ge 2r$.

E. R. Berlekamp, *The weight enumerators for certain subcodes of the second order binary Reed-Muller codes*, Information and Control **17** (1970), 485–500.

An (m, r)-set is a set $\{B_1, \ldots, B_\ell\}$ of $m \times m$ alternating matrices over GF(2) such that $rk(B_i - B_j) \ge 2r$.

E. R. Berlekamp, *The weight enumerators for certain subcodes of the second order binary Reed-Muller codes*, Information and Control **17** (1970), 485–500.

For odd *m*, the Gray maps of these codes are not \mathbb{Z}_4 -linear.

Numbers of non-isomorphic designs

V	k	λ	X	у	Ζ	Nd	
16	4	1	0	1	2	\geq 45	AG ₂ (4, 2)
16	6	4	1	2	3	=1	Mathon 1981
32	8	7	0	2	4	≥ 3	AG ₃ (5,2)
32	12	22	2	4	6	≥ 3	
64	16	35	0	4	8	≥ 1	AG ₄ (6,2)
64	28	156	10	12	14	≥ 1	
128	32	155	0	8	16	≥ 1	AG ₅ (7,2)
128	56	660	20	24	28	<u>≥</u> 4	
256	64	651	0	16	32	≥ 1	AG ₆ (8,2)
256	120	3304	52	56	60	≥ 1	
512	128	2667	0	32	64	≥ 1	AG ₇ (9,2)
512	240	13384	104	112	120	\geq 4	

- (日)

э

Thanks for your attention!

Image: A mathematical states and a mathem

æ