A new family of 3-designs of degree 3*

Vedran Krčadinac
University of Zagreb, Croatia
(joint work with Lucija Relić)

10th Slovenian Conference on Graph Theory
18-24 June, 2023, Kranjska Gora, Slovenia

* This work was partially supported by the Croatian Science Foundation under the project 9752.

Introduction

Assumptions:

Introduction

Assumptions:

- Everybody knows the definition of a $t-(v, k, \lambda)$ design

Introduction

Assumptions:

- Everybody knows the definition of a $t-(v, k, \lambda)$ design
- All designs are simple

Introduction

Assumptions:

- Everybody knows the definition of a $t-(v, k, \lambda)$ design
- All designs are simple
- $k \leq \frac{1}{2} v$ (complementing the blocks does not change t and d)

Introduction

Assumptions:

- Everybody knows the definition of a $t-(v, k, \lambda)$ design
- All designs are simple
- $k \leq \frac{1}{2} v$ (complementing the blocks does not change t and d)

The degree of a design is the number of distinct block intersection sizes:

$$
d=\mid\left\{\left|B_{1} \cap B_{2}\right|: B_{1} \neq B_{2} \text { are blocks }\right\} \mid
$$

Motivation

$$
d=1: \quad \text { Symmetric designs }(v=b, t=2)
$$

Motivation

$$
d=1: \quad \text { Symmetric designs }(v=b, t=2)
$$

Motivation

$d=1: \quad$ Symmetric designs $(v=b, t=2)$

$d=2: \quad$ Quasi-symmetric designs $(t \leq 4)$

Motivation

$d=1: \quad$ Symmetric designs $(v=b, t=2)$

$d=2: \quad$ Quasi-symmetric designs $(t \leq 4)$
R. Vlahović Kruc, Some results on quasi-symmetric designs with exceptional parameters, PhD thesis, University of Zagreb, 2019.

Motivation

$d=1: \quad$ Symmetric designs $(v=b, t=2)$

$d=2: \quad$ Quasi-symmetric designs $(t \leq 4)$
R. Vlahović Kruc, Some results on quasi-symmetric designs with exceptional parameters, PhD thesis, University of Zagreb, 2019.
$d=3: \quad ?$

Designs of degree $d=3$

Intersection numbers: $\quad x<y<z$

Designs of degree $d=3$

Intersection numbers: $\quad x<y<z$
Ray-Chaudhuri, Wilson: $\quad t \leq 6$

Designs of degree $d=3$

Intersection numbers: $\quad x<y<z$
Ray-Chaudhuri, Wilson: $\quad t \leq 6$
$t=6$: Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

Designs of degree $d=3$

Intersection numbers: $\quad x<y<z$
Ray-Chaudhuri, Wilson: $\quad t \leq 6$
$t=6$: Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.
$t=5: \quad$ The Witt 5- $(24,8,1)$ design, $x=0, y=2, z=4$
Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.

Designs of degree $d=3$

Intersection numbers: $\quad x<y<z$
Ray-Chaudhuri, Wilson: $\quad t \leq 6$
$t=6$: Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.
$t=5: \quad$ The Witt 5- $(24,8,1)$ design, $x=0, y=2, z=4$
Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers, J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.
$t=4:$
V. Krčadinac, R. Vlahović Kruc, Schematic 4-designs, Discrete Math. 346 (2023), no. 7, Paper No. 113385, 7 pp.

Designs of degree $d=3$ and strength $t=4$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	
2	23	8	4	0	2	4	
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Designs of degree $d=3$ and strength $t=4$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Designs of degree $d=3$ and strength $t=4$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	QR(11,3): $[11,6,5]_{3}$
2	23	8	4	0	2	4	\checkmark	QR(23, 2): $[23,12,7]_{2}$
3	23	11	48	3	5	7	\checkmark	QR(23,2): $[23,12,7]_{2}$
4	24	8	5	0	2	4	\checkmark	$\widehat{\text { Q }}$ (23,2): $[24,12,8]_{2}$
5	47	11	8	1	3	5	\checkmark	QR(47, 2): $[47,24,11]_{2}$
6	71	35	264	14	17	20		
7	199	99	2328	44	49	54		
8	391	195	9264	90	97	104		
9	647	323	25680	152	161	170		
10	659	329	390874	153	164	175		
11	967	483	57720	230	241	252		

Designs of degree $d=3$ and strength $t=4$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	QR(11,3): $[11,6,5]_{3}$
2	23	8	4	0	2	4	\checkmark	QR(23, 2): $[23,12,7]_{2}$
3	23	11	48	3	5	7	\checkmark	QR(23,2): $[23,12,7]_{2}$
4	24	8	5	0	2	4	\checkmark	$\widehat{\text { Q }}$ (23, 2): $[24,12,8]_{2}$
5	47	11	8	1	3	5	\checkmark	QR(47,2): $[47,24,11]_{2}$
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	
9	647	323	25680	152	161	170	?	
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	

Designs of degree $d=3$ and strength $t=4$

No.	v	k	λ	x	y	z	\exists	
1	11	5	1	1	2	3	\checkmark	QR(11,3): $[11,6,5]_{3}$
2	23	8	4	0	2	4	\checkmark	QR(23, 2): $[23,12,7]_{2}$
3	23	11	48	3	5	7	\checkmark	QR(23,2): $[23,12,7]_{2}$
4	24	8	5	0	2	4	\checkmark	QR(23,2): $[24,12,8]_{2}$
5	47	11	8	1	3	5	\checkmark	$Q R(47,2):[47,24,11]_{2}$
6	71	35	264	14	17	20	?	
7	199	99	2328	44	49	54	?	
8	391	195	9264	90	97	104	?	
9	647	323	25680	152	161	170	?	
10	659	329	390874	153	164	175	?	
11	967	483	57720	230	241	252	?	

Designs of degree $d=3$ and strength $t=4$

Admissible parameters:

$$
\begin{aligned}
& v=8 n^{2}-1 \\
& k=4 n^{2}-1=(2 n-1)(2 n+1) \\
& \lambda=4 n^{4}-7 n^{2}+3=(n-1)(n+1)\left(4 n^{2}-3\right) \\
& x=2 n^{2}-n-1=(n-1)(2 n+1) \\
& y=2 n^{2}-1 \\
& z=2 n^{2}+n-1=(n+1)(2 n-1)
\end{aligned}
$$

Designs of degree $d=3$ and strength $t=4$

Admissible parameters:

$$
\begin{aligned}
& v=8 n^{2}-1 \\
& k=4 n^{2}-1=(2 n-1)(2 n+1) \\
& \lambda=4 n^{4}-7 n^{2}+3=(n-1)(n+1)\left(4 n^{2}-3\right) \\
& x=2 n^{2}-n-1=(n-1)(2 n+1) \\
& y=2 n^{2}-1 \\
& z=2 n^{2}+n-1=(n+1)(2 n-1)
\end{aligned}
$$

Theorem (Cameron, Delsarte, 1973)

In a design of degree d and strength $t \geq 2 d-2$, the blocks form a symmetric association scheme with d classes.
\rightsquigarrow Schematic designs

Designs of degree $d=3$ and strength $t=3$

$$
d=3, t=3:
$$

Designs of degree $d=3$ and strength $t=3$

$d=3, t=3$: Lots of admissible parameters, e.g. all Steiner 3-designs.

Designs of degree $d=3$ and strength $t=3$

$d=3, t=3$: Lots of admissible parameters, e.g. all Steiner 3-designs.

v	k	λ	x	y	z	\exists
16	4	1	0	1	2	\checkmark
16	6	4	1	2	3	\checkmark
32	8	7	0	2	4	\checkmark
32	12	22	2	4	6	\checkmark
64	16	35	0	4	8	\checkmark
64	28	156	10	12	14	\checkmark
128	32	155	0	8	16	\checkmark
128	56	660	20	24	28	\checkmark
256	64	651	0	16	32	\checkmark
256	120	3304	52	56	60	\checkmark
512	128	2667	0	32	64	\checkmark
512	240	13384	104	112	120	\checkmark

Designs of degree $d=3$ and strength $t=3$

$d=3, t=3$: Lots of admissible parameters, e.g. all Steiner 3-designs.

v	k	λ	x	y	z	\exists
16	4	1	0	1	2	\checkmark
16	6	4	1	2	3	\checkmark

Designs of degree $d=3$ and strength $t=3$

$d=3, t=3$: Lots of admissible parameters, e.g. all Steiner 3-designs.

v	k	λ	x	y	z	\exists	
16	4	1	0	1	2	\checkmark	$A G_{2}(4,2), R M(2,4):[16,11,4]_{2}$
16	6	4	1	2	3	\checkmark	Nordstrom-Robinson: $\left(16,2^{8}, 6\right)_{2}$
32	8	7	0	2	4	\checkmark	$A G_{3}(5,2), R M(2,5):[32,16,8]_{2}$
32	12	22	2	4	6	\checkmark	
64	16	35	0	4	8	\checkmark	$A G_{4}(6,2), R M(2,6):[64,22,16]_{2}$
64	28	156	10	12	14	\checkmark	Kerdock code: $\left(64,2^{12}, 28\right){ }_{2}$
128	32	155	0	8	16	\checkmark	$A G_{5}(7,2), R M(2,7):[128,29,32]_{2}$
128	56	660	20	24	28	\checkmark	
256	64	651	0	16	32	\checkmark	$A G_{6}(8,2), R M(2,8):[256,37,64]_{2}$
256	120	3304	52	56	60	\checkmark	Kerdock code: $\left(256,2^{16}, 120\right)_{2}$
512	128	2667	0	32	64	\checkmark	$A G_{7}(9,2), R M(2,9):[512,46,128]_{2}$
512	240	13384	104	112	120	\checkmark	

Designs of degree $d=3$ and strength $t=3$

$d=3, t=3$: Lots of admissible parameters, e.g. all Steiner 3-designs.

v	k	λ	x	y	z	\exists	
16	4	1	0	1	2	\checkmark	$A G_{2}(4,2), R M(2,4):[16,11,4]_{2}$
16	6	4	1	2	3	\checkmark	Nordstrom-Robinson: $\left(16,2^{8}, 6\right)_{2}$
32	8	7	0	2	4	\checkmark	$A G_{3}(5,2), R M(2,5):[32,16,8]_{2}$
32	12	22	2	4	6	\checkmark	$?$
64	16	35	0	4	8	\checkmark	$A G_{4}(6,2), R M(2,6):[64,22,16]_{2}$
64	28	156	10	12	14	\checkmark	$\operatorname{Kerdock~code:~}\left(64,2^{12}, 28\right)_{2}$
128	32	155	0	8	16	\checkmark	$A G_{5}(7,2), R M(2,7):[128,29,32]_{2}$
128	56	660	20	24	28	\checkmark	$?$
256	64	651	0	16	32	\checkmark	$A G_{6}(8,2), R M(2,8):[256,37,64]_{2}$
256	120	3304	52	56	60	\checkmark	$\operatorname{Kerdock~code:~}\left(256,2^{16}, 120\right)_{2}$
512	128	2667	0	32	64	\checkmark	$A G_{7}(9,2), R M(2,9):[512,46,128]_{2}$
512	240	13384	104	112	120	\checkmark	$?$

Commercial break

Commercial break

Constructions Conference April 7-13, 2024, Dubrovnik, Croatia

Combinatorial Constructions Conference (CCC) will take place at the Centre for Advanced Academic Studies in Dubrovnik, Croatia.
April 7-13, 2024

Invited speakers: Marco Buratti, Italy
Eimear Byrne, Ireland
Dean Crnković, Croatia
Daniel Horsley, Australia

Michael Kiermaier, Germany Patric Östergård, Finland Kai-Uwe Schmidt, Germany
https://web.math.pmf.unizg.hr/acco/meetings.php

Known series of 3-designs of degree 3

The known series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-2) / 2} \\
& \lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) \\
& x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) \\
& y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) \\
& z=2^{(m-4) / 2}\left(2^{m / 2}-1\right)
\end{aligned}
$$

$$
m \geq 4 \text { even }
$$

Known series of 3-designs of degree 3

The known series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-2) / 2} \\
& \lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) \\
& x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) \\
& y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) \\
& z=2^{(m-4) / 2}\left(2^{m / 2}-1\right)
\end{aligned}
$$

$$
m \geq 4 \text { even }
$$

Known series of 3-designs of degree 3

The known series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-2) / 2} \\
& \lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) \\
& x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) \\
& y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) \\
& z=2^{(m-4) / 2}\left(2^{m / 2}-1\right)
\end{aligned}
$$

Points: $A G(m, 2)$

$$
m \geq 4 \text { even }
$$

Blocks: incidence functions $f: A G(m, 2) \rightarrow\{0,1\}$

Known series of 3-designs of degree 3

The known series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-2) / 2} \\
& \lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) \\
& x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) \\
& y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) \\
& z=2^{(m-4) / 2}\left(2^{m / 2}-1\right)
\end{aligned}
$$

Blocks: incidence functions $f: A G(m, 2) \rightarrow\{0,1\}$

$$
R M(1, m)
$$

Known series of 3-designs of degree 3

The known series:

$$
\begin{array}{ll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-2) / 2} & \\
\lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) & \\
x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) & m \geq 4 \text { even } \\
y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) & \\
z=2^{(m-4) / 2}\left(2^{m / 2}-1\right) &
\end{array}
$$

Blocks: incidence functions $f: A G(m, 2) \rightarrow\{0,1\}$

$$
R M(1, m) \quad R M(2, m)
$$

Known series of 3-designs of degree 3

The known series:

$$
\begin{array}{ll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-2) / 2} & \\
\lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) & \\
x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) & m \geq 4 \text { even } \\
y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) & \\
z=2^{(m-4) / 2}\left(2^{m / 2}-1\right) &
\end{array}
$$

Blocks: incidence functions $f: A G(m, 2) \rightarrow\{0,1\}$

$$
R M(1, m) \subset K(m) \subset R M(2, m)
$$

Kerdock code $K(m): \quad\left(2^{m}, 2^{2 m}, 2^{m-1}-2^{(m-2) / 2}\right)$

Known series of 3-designs of degree 3

The known series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-2) / 2} \\
& \lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) \\
& x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) \\
& y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) \\
& z=2^{(m-4) / 2}\left(2^{m / 2}-1\right)
\end{aligned}
$$

Weight (distance) distribution of $R M(1, m) \subset K(m)$:

wt	0	$2^{m-1}-2^{(m-2) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-2) / 2}$	2^{m}
$\#$	1	$2^{m}\left(2^{m-1}-1\right)$	$2^{m+1}-2$	$2^{m}\left(2^{m-1}-1\right)$	1

Known series of 3-designs of degree 3

The known series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-2) / 2} \\
& \lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) \\
& x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) \\
& y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) \\
& z=2^{(m-4) / 2}\left(2^{m / 2}-1\right)
\end{aligned}
$$

Points: $A G(m, 2)$
$m \geq 4$ even

Weight (distance) distribution of $R M(1, m) \subset K(m)$:

wt	0	$2^{m-1}-2^{(m-2) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-2) / 2}$	2^{m}
$\#$	1	$2^{m}\left(2^{m-1}-1\right)$	$2^{m+1}-2$	$2^{m}\left(2^{m-1}-1\right)$	1

Known series of 3-designs of degree 3

The known series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-2) / 2} \\
& \lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) \\
& x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) \\
& y=2^{(m-4) / 2}\left(2^{m / 2}-2\right) \\
& z=2^{(m-4) / 2}\left(2^{m / 2}-1\right)
\end{aligned}
$$

Weight (distance) distribution of $R M(1, m) \subset K(m)$:

wt	0	$2^{m-1}-2^{(m-2) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-2) / 2}$	2^{m}
$\#$	1	$2^{m}\left(2^{m-1}-1\right)$	$2^{m+1}-2$	$2^{m}\left(2^{m-1}-1\right)$	1

Known series of 3-designs of degree 3

The known series:

$$
\begin{array}{lll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-2) / 2} & \\
\lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) & \\
x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) & m \geq 4 \text { even } \\
x=2^{(m-4) / 2}\left(2^{m / 2}-2\right) & \rightsquigarrow \text { equivalence relation } \\
z=2^{(m-4) / 2}\left(2^{m / 2}-1\right) &
\end{array}
$$

Weight (distance) distribution of $R M(1, m) \subset K(m)$:

wt	0	$2^{m-1}-2^{(m-2) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-2) / 2}$	2^{m}
$\#$	1	$2^{m}\left(2^{m-1}-1\right)$	$2^{m+1}-2$	$2^{m}\left(2^{m-1}-1\right)$	1

Known series of 3-designs of degree 3

The known series:

$$
\begin{array}{lll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-2) / 2} & \\
\lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) & \\
x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) & m \geq 4 \text { even } \\
x=2^{(m-4) / 2}\left(2^{m / 2}-2\right) & \rightsquigarrow \text { equivalence relation } \\
z=2^{(m-4) / 2}\left(2^{m / 2}-1\right) & 2^{m-1}-1 & \operatorname{LSSD}(v, k, y) \mathrm{s}
\end{array}
$$

Weight (distance) distribution of $R M(1, m) \subset K(m)$:

wt	0	$2^{m-1}-2^{(m-2) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-2) / 2}$	2^{m}
$\#$	1	$2^{m}\left(2^{m-1}-1\right)$	$2^{m+1}-2$	$2^{m}\left(2^{m-1}-1\right)$	1

Known series of 3-designs of degree 3

The known series:

$$
\begin{array}{lll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-2) / 2} & \\
\lambda=2^{(m-8) / 2}\left(2^{m / 2}-2\right)\left(2^{m}-2^{m / 2}-4\right) & \\
x=2^{(m-4) / 2}\left(2^{m / 2}-3\right) & m \geq 4 \text { even } \\
x=2^{(m-4) / 2}\left(2^{m / 2}-2\right) & \text { Schematic! } & \\
z=2^{(m-4) / 2}\left(2^{m / 2}-1\right) &
\end{array}
$$

Weight (distance) distribution of $R M(1, m) \subset K(m)$:

wt	0	$2^{m-1}-2^{(m-2) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-2) / 2}$	2^{m}
$\#$	1	$2^{m}\left(2^{m-1}-1\right)$	$2^{m+1}-2$	$2^{m}\left(2^{m-1}-1\right)$	1

Known series of 3 -designs of degree 3 - wherefrom?

A. W. Nordstrom, J. P. Robinson, An optimum nonlinear code, Information and Control 11 (1967), 613-616.

Known series of 3 -designs of degree 3 - wherefrom?

A. W. Nordstrom, J. P. Robinson, An optimum nonlinear code, Information and Control 11 (1967), 613-616.
F. P. Preparata, A class of optimum nonlinear double-error-correcting codes, Information and Control 13 (1968), 378-400.
A. M. Kerdock, A class of low-rate nonlinear binary codes, Information and Control 20 (1972), 182-187.

Known series of 3 -designs of degree 3 - wherefrom?

A. W. Nordstrom, J. P. Robinson, An optimum nonlinear code, Information and Control 11 (1967), 613-616.
F. P. Preparata, A class of optimum nonlinear double-error-correcting codes, Information and Control 13 (1968), 378-400.
A. M. Kerdock, A class of low-rate nonlinear binary codes, Information and Control 20 (1972), 182-187.
P. J. Cameron, On groups with several doubly-transitive permutation representations, Math. Z. 128 (1972), 1-14.
P. J. Cameron, J. J. Seidel, Quadratic forms over GF(2), Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 1-8.

Known series of 3 -designs of degree 3 - wherefrom?

A. W. Nordstrom, J. P. Robinson, An optimum nonlinear code, Information and Control 11 (1967), 613-616.
F. P. Preparata, A class of optimum nonlinear double-error-correcting codes, Information and Control 13 (1968), 378-400.
A. M. Kerdock, A class of low-rate nonlinear binary codes, Information and Control 20 (1972), 182-187.
P. J. Cameron, On groups with several doubly-transitive permutation representations, Math. Z. 128 (1972), 1-14.
P. J. Cameron, J. J. Seidel, Quadratic forms over GF(2), Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 1-8.
R. Noda, On homogeneous systems of linked symmetric designs, Math. Z. 138 (1974), 15-20.

Known series of 3 -designs of degree 3 - wherefrom?

W. M. Kantor, Spreads, translation planes and Kerdock sets. I; II, SIAM J. Algebraic Discrete Methods 3 (1982), no. 2; 3, 151-165; 308-318.
W. M. Kantor, An exponential number of generalized Kerdock codes, Inform. and Control 53 (1982), no. 1-2, 74-80.
W. M. Kantor, Codes, quadratic forms and finite geometries, Proc. Sympos. Appl. Math. 50 (1995), Amer. Math. Soc., 153-177.

Known series of 3 -designs of degree 3 - wherefrom?

W. M. Kantor, Spreads, translation planes and Kerdock sets. I; II, SIAM J. Algebraic Discrete Methods 3 (1982), no. 2; 3, 151-165; 308-318.
W. M. Kantor, An exponential number of generalized Kerdock codes, Inform. and Control 53 (1982), no. 1-2, 74-80.
W. M. Kantor, Codes, quadratic forms and finite geometries, Proc. Sympos. Appl. Math. 50 (1995), Amer. Math. Soc., 153-177.
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, The \mathbb{Z}_{4}-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319.

Known series of 3 -designs of degree 3 - wherefrom?

W. M. Kantor, Spreads, translation planes and Kerdock sets. I; II, SIAM J. Algebraic Discrete Methods 3 (1982), no. 2; 3, 151-165; 308-318.
W. M. Kantor, An exponential number of generalized Kerdock codes, Inform. and Control 53 (1982), no. 1-2, 74-80.
W. M. Kantor, Codes, quadratic forms and finite geometries, Proc. Sympos. Appl. Math. 50 (1995), Amer. Math. Soc., 153-177.
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, The \mathbb{Z}_{4}-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319.
K. Yang, T. Helleseth, Two new infinite families of 3-designs from Kerdock codes over \mathbb{Z}_{4}, Des. Codes Cryptogr. 15 (1998), no. 2, 201-214.
$v=2^{m}, k=2^{m-1}+2^{m-2} \pm 2^{(m-3) / 2}, \lambda=k(k-1)(k-2) /\left(2^{m}-2\right)$, $m \geq 3$ odd

New series of 3-designs of degree 3

The new series:

$$
\begin{aligned}
& v=2^{m} \\
& k=2^{m-1}-2^{(m-1) / 2} \\
& \lambda=2^{(m-7) / 2}\left(2^{(m-1) / 2}-2\right)\left(2^{m}-2^{(m+1) / 2}-2\right) \\
& x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-3\right) \\
& y=2^{(m-3) / 2}\left(2^{(m-1) / 2}-2\right) \\
& z=2^{(m-3) / 2}\left(2^{(m-1) / 2}-1\right)
\end{aligned}
$$

New series of 3-designs of degree 3

The new series:

$$
\begin{array}{lll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-1) / 2} & \\
\lambda=2^{(m-7) / 2}\left(2^{(m-1) / 2}-2\right)\left(2^{m}-2^{(m+1) / 2}-2\right) & \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-3\right) & m \geq 5 \text { odd } \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-2\right) & \\
z=2^{(m-3) / 2}\left(2^{(m-1) / 2}-1\right) &
\end{array}
$$

Corresponding code: $\left(2^{m}, 2^{2 m+1}, 2^{m-1}-2^{(m-1) / 2}\right)$

$$
R M(1, m) \subset C \subset R M(2, m)
$$

New series of 3-designs of degree 3

The new series:

$$
\begin{array}{lll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-1) / 2} & \\
\lambda=2^{(m-7) / 2}\left(2^{(m-1) / 2}-2\right)\left(2^{m}-2^{(m+1) / 2}-2\right) & \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-3\right) & m \geq 5 \text { odd } \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-2\right) & \\
y=2^{(m-3) / 2}\left(2^{(m-1) / 2}-1\right) &
\end{array}
$$

Corresponding code: $\left(2^{m}, 2^{2 m+1}, 2^{m-1}-2^{(m-1) / 2}\right)$

wt	0	$2^{m-1}-2^{(m-1) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-1) / 2}$	2^{m}
$\#$	1	$2^{m-1}\left(2^{m}-1\right)$	$2^{m}\left(2^{m}+1\right)-2$	$2^{m-1}\left(2^{m}-1\right)$	1

New series of 3-designs of degree 3

The new series:

$$
\begin{array}{lll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-1) / 2} & \\
\lambda=2^{(m-7) / 2}\left(2^{(m-1) / 2}-2\right)\left(2^{m}-2^{(m+1) / 2}-2\right) & \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-3\right) & m \geq 5 \text { odd } \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-2\right) & \\
y=2^{(m-3) / 2}\left(2^{(m-1) / 2}-1\right) &
\end{array}
$$

Corresponding code: $\left(2^{m}, 2^{2 m+1}, 2^{m-1}-2^{(m-1) / 2}\right)$

wt	0	$2^{m-1}-2^{(m-1) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-1) / 2}$	2^{m}
$\#$	1	$2^{m-1}\left(2^{m}-1\right)$	$2^{m}\left(2^{m}+1\right)-2$	$2^{m-1}\left(2^{m}-1\right)$	1

New series of 3-designs of degree 3

The new series:

$$
\begin{array}{lll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-1) / 2} & \\
\lambda=2^{(m-7) / 2}\left(2^{(m-1) / 2}-2\right)\left(2^{m}-2^{(m+1) / 2}-2\right) & \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-3\right) & m \geq 5 \text { odd } \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-2\right) & \\
z=2^{(m-3) / 2}\left(2^{(m-1) / 2}-1\right) &
\end{array}
$$

Corresponding code: $\left(2^{m}, 2^{2 m+1}, 2^{m-1}-2^{(m-1) / 2}\right)$

wt	0	$2^{m-1}-2^{(m-1) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-1) / 2}$	2^{m}
$\#$	1	$2^{m-1}\left(2^{m}-1\right)$	$2^{m}\left(2^{m}+1\right)-2$	$2^{m-1}\left(2^{m}-1\right)$	1

New series of 3-designs of degree 3

The new series:

$$
\begin{array}{ll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-1) / 2} & \\
\lambda=2^{(m-7) / 2}\left(2^{(m-1) / 2}-2\right)\left(2^{m}-2^{(m+1) / 2}-2\right) & \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-3\right) & m \geq 5 \text { odd } \\
y=2^{(m-3) / 2}\left(2^{(m-1) / 2}-2\right) & \text { Not schematic } \because \\
z=2^{(m-3) / 2}\left(2^{(m-1) / 2}-1\right) &
\end{array}
$$

Corresponding code: $\left(2^{m}, 2^{2 m+1}, 2^{m-1}-2^{(m-1) / 2}\right)$

wt	0	$2^{m-1}-2^{(m-1) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-1) / 2}$	2^{m}
$\#$	1	$2^{m-1}\left(2^{m}-1\right)$	$2^{m}\left(2^{m}+1\right)-2$	$2^{m-1}\left(2^{m}-1\right)$	1

New series of 3-designs of degree 3

The new series:

$$
\begin{array}{ll}
v=2^{m} & \text { Points: } A G(m, 2) \\
k=2^{m-1}-2^{(m-1) / 2} & \\
\lambda=2^{(m-7) / 2}\left(2^{(m-1) / 2}-2\right)\left(2^{m}-2^{(m+1) / 2}-2\right) & \\
x=2^{(m-3) / 2}\left(2^{(m-1) / 2}-3\right) & m \geq 5 \text { odd } \\
y=2^{(m-3) / 2}\left(2^{(m-1) / 2}-2\right) & \text { Not schematic } \because \\
z=2^{(m-3) / 2}\left(2^{(m-1) / 2}-1\right) &
\end{array}
$$

Corresponding code: $\left(2^{m}, 2^{2 m+1}, 2^{m-1}-2^{(m-1) / 2}\right)$ May be linear

wt	0	$2^{m-1}-2^{(m-1) / 2}$	2^{m-1}	$2^{m-1}+2^{(m-1) / 2}$	2^{m}
$\#$	1	$2^{m-1}\left(2^{m}-1\right)$	$2^{m}\left(2^{m}+1\right)-2$	$2^{m-1}\left(2^{m}-1\right)$	1

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$
The minimum weight of the coset $B+R M(1,2)$ is $2^{m-1}-2^{m-1-r}$

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$
The minimum weight of the coset $B+R M(1,2)$ is $2^{m-1}-2^{m-1-r}$
To get a good code, we want r as large as possible: $m=2 r$ (even!)

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$
The minimum weight of the coset $B+R M(1,2)$ is $2^{m-1}-2^{m-1-r}$
To get a good code, we want r as large as possible: $m=2 r$ (even!)
To get many codewords, we want as many symplectic matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=m$.

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$
The minimum weight of the coset $B+R M(1,2)$ is $2^{m-1}-2^{m-1-r}$
To get a good code, we want r as large as possible: $m=2 r$ (even!)
To get many codewords, we want as many symplectic matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=m$. Upper bound: $\ell \leq 2^{m-1}-1$

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$
The minimum weight of the coset $B+R M(1,2)$ is $2^{m-1}-2^{m-1-r}$
To get a good code, we want r as large as possible: $m=2 r$ (even!)
To get many codewords, we want as many symplectic matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=m$. Upper bound: $\ell \leq 2^{m-1}-1$
A set of $\ell=2^{m-1}-1$ matrices is called a Kerdock set and gives rise to the Kerdock code.

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$
The minimum weight of the coset $B+R M(1,2)$ is $2^{m-1}-2^{m-1-r}$
To get a good code, we want r as large as possible: $m=2 r$ (even!)
To get many codewords, we want as many symplectic matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=m$. Upper bound: $\ell \leq 2^{m-1}-1$
A set of $\ell=2^{m-1}-1$ matrices is called a Kerdock set and gives rise to the Kerdock code. How to construct Kerdock sets?

Kerdock sets

Quadratic forms over $G F(2)$:

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{1 \leq i<j \leq m} b_{i j} x_{i} x_{j} \longleftrightarrow B=\left[\begin{array}{ccc}
0 & & b_{i j} \\
& \ddots & \\
b_{j i} & & 0
\end{array}\right]
$$

The rank of B is even: $r k(B)=2 r$
The minimum weight of the coset $B+R M(1,2)$ is $2^{m-1}-2^{m-1-r}$
To get a good code, we want r as large as possible: $m=2 r$ (even!)
To get many codewords, we want as many symplectic matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=m$. Upper bound: $\ell \leq 2^{m-1}-1$
A set of $\ell=2^{m-1}-1$ matrices is called a Kerdock set and gives rise to the Kerdock code. How to construct Kerdock sets?
W. M. Kantor, Codes, quadratic forms and finite geometries, Proc. Sympos. Appl. Math. 50 (1995), Amer. Math. Soc., 153-177.

Kerdock sets

Trace map $\quad T: G F\left(2^{m-1}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-2} x^{2^{i}}$

Kerdock sets

Trace map $\quad T: G F\left(2^{m-1}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-2} x^{2^{i}}$
Linear operator $\quad B_{s}: G F\left(2^{m-1}\right) \oplus G F(2) \rightarrow G F\left(2^{m-1}\right) \oplus G F(2)$,

$$
B_{s}(x, a)=\left(x s^{2}+s T(s x)+a s, T(s x)\right)
$$

Kerdock sets

Trace map $\quad T: G F\left(2^{m-1}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-2} x^{2^{i}}$
Linear operator $\quad B_{s}: G F\left(2^{m-1}\right) \oplus G F(2) \rightarrow G F\left(2^{m-1}\right) \oplus G F(2)$,

$$
B_{s}(x, a)=\left(x s^{2}+s T(s x)+a s, T(s x)\right)
$$

The set of matrices $\left\{B_{s} \mid s \in G F\left(2^{m-1}\right) \backslash\{0\}\right\}$ is a Kerdock set!

Kerdock sets

Trace map $\quad T: G F\left(2^{m-1}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-2} x^{2^{i}}$
Linear operator $\quad B_{s}: G F\left(2^{m-1}\right) \oplus G F(2) \rightarrow G F\left(2^{m-1}\right) \oplus G F(2)$,

$$
B_{s}(x, a)=\left(x s^{2}+s T(s x)+a s, T(s x)\right)
$$

The set of matrices $\left\{B_{s} \mid s \in G F\left(2^{m-1}\right) \backslash\{0\}\right\}$ is a Kerdock set!
A variation of this construction gives many inequivalent examples:
W. M. Kantor, An exponential number of generalized Kerdock codes, Inform. and Control 53 (1982), no. 1-2, 74-80.

Kerdock sets

Trace map $\quad T: G F\left(2^{m-1}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-2} x^{2^{i}}$
Linear operator $\quad B_{s}: G F\left(2^{m-1}\right) \oplus G F(2) \rightarrow G F\left(2^{m-1}\right) \oplus G F(2)$,

$$
B_{s}(x, a)=\left(x s^{2}+s T(s x)+a s, T(s x)\right)
$$

The set of matrices $\left\{B_{s} \mid s \in G F\left(2^{m-1}\right) \backslash\{0\}\right\}$ is a Kerdock set!
A variation of this construction gives many inequivalent examples:
W. M. Kantor, An exponential number of generalized Kerdock codes, Inform. and Control 53 (1982), no. 1-2, 74-80.

If m is odd, alternating matrices cannot be nonsingular (because their rank is even). Next best thing: take matrices B of rank $m-1$, i.e. $m=2 r+1$.

Kerdock sets in odd dimensions

For $r k(B)=m-1$, the minimum weight of the coset $B+R M(1,2)$ is

$$
2^{m-1}-2^{(m-1) / 2}=k
$$

Kerdock sets in odd dimensions

For $r k(B)=m-1$, the minimum weight of the coset $B+R M(1,2)$ is

$$
2^{m-1}-2^{(m-1) / 2}=k
$$

We want as many matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=$ $m-1$.

Kerdock sets in odd dimensions

For $r k(B)=m-1$, the minimum weight of the coset $B+R M(1,2)$ is

$$
2^{m-1}-2^{(m-1) / 2}=k
$$

We want as many matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=$ $m-1$. Upper bound: $\ell \leq 2^{m}-1$

Kerdock sets in odd dimensions

For $r k(B)=m-1$, the minimum weight of the coset $B+R M(1,2)$ is

$$
2^{m-1}-2^{(m-1) / 2}=k
$$

We want as many matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=$ $m-1$. Upper bound: $\ell \leq 2^{m}-1$

A maximal set of matrices can be obtained by a modification of Kantor's construction:
Trace map $T: G F\left(2^{m}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-1} x^{2^{i}}$
Linear operator $\quad B_{s}: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right), \quad B_{s}(x)=x s^{2}+s T(s x)$
The set of matrices $\left\{B_{s} \mid s \in G F\left(2^{m}\right) \backslash\{0\}\right\}$ defines the code.

Kerdock sets in odd dimensions

For $r k(B)=m-1$, the minimum weight of the coset $B+R M(1,2)$ is

$$
2^{m-1}-2^{(m-1) / 2}=k
$$

We want as many matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=$ $m-1$. Upper bound: $\ell \leq 2^{m}-1$

A maximal set of matrices can be obtained by a modification of Kantor's construction:
Trace map $T: G F\left(2^{m}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-1} x^{2^{i}}$
Linear operator $\quad B_{s}: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right), \quad B_{s}(x)=x s^{2}+s T(s x)$
The set of matrices $\left\{B_{s} \mid s \in G F\left(2^{m}\right) \backslash\{0\}\right\}$ defines the code.
The code is nonlinear over $G F(2)$ and supports 3 -designs of degree 3 .

Kerdock sets in odd dimensions

For $r k(B)=m-1$, the minimum weight of the coset $B+R M(1,2)$ is

$$
2^{m-1}-2^{(m-1) / 2}=k
$$

We want as many matrices B_{1}, \ldots, B_{ℓ} as posible such that $r k\left(B_{i}-B_{j}\right)=$ $m-1$. Upper bound: $\ell \leq 2^{m}-1$

A maximal set of matrices can be obtained by a modification of Kantor's construction:
Trace map $T: G F\left(2^{m}\right) \rightarrow G F(2), \quad T(x)=\sum_{i=0}^{m-1} x^{2^{i}}$
Linear operator $\quad B_{s}: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right), \quad B_{s}(x)=x s^{2}+s T(s x)$
The set of matrices $\left\{B_{s} \mid s \in G F\left(2^{m}\right) \backslash\{0\}\right\}$ defines the code.
The code is nonlinear over $G F(2)$ and supports 3 -designs of degree 3 .
There are also GF(2)-linear codes with the same weight distribution (extended BCH codes) supporting non-isomorphic designs!

Kerdock sets in odd dimensions

J.-M. Goethals, Nonlinear codes defined by quadratic forms over GF(2), Information and Control 31 (1976), no. 1, 43-74.

Kerdock sets in odd dimensions

J.-M. Goethals, Nonlinear codes defined by quadratic forms over GF(2), Information and Control 31 (1976), no. 1, 43-74.

An (m, r)-set is a set $\left\{B_{1}, \ldots, B_{\ell}\right\}$ of $m \times m$ alternating matrices over $G F(2)$ such that $r k\left(B_{i}-B_{j}\right) \geq 2 r$.

Kerdock sets in odd dimensions

J.-M. Goethals, Nonlinear codes defined by quadratic forms over GF(2), Information and Control 31 (1976), no. 1, 43-74.

An (m, r)-set is a set $\left\{B_{1}, \ldots, B_{\ell}\right\}$ of $m \times m$ alternating matrices over $G F(2)$ such that $r k\left(B_{i}-B_{j}\right) \geq 2 r$.
E. R. Berlekamp, The weight enumerators for certain subcodes of the second order binary Reed-Muller codes, Information and Control 17 (1970), 485-500.

Kerdock sets in odd dimensions

J.-M. Goethals, Nonlinear codes defined by quadratic forms over GF(2), Information and Control 31 (1976), no. 1, 43-74.

An (m, r)-set is a set $\left\{B_{1}, \ldots, B_{\ell}\right\}$ of $m \times m$ alternating matrices over $G F(2)$ such that $r k\left(B_{i}-B_{j}\right) \geq 2 r$.
E. R. Berlekamp, The weight enumerators for certain subcodes of the second order binary Reed-Muller codes, Information and Control 17 (1970), 485-500.

For odd m, the Gray maps of these codes are not \mathbb{Z}_{4}-linear.

Numbers of non-isomorphic designs

v	k	λ	x	y	z	Nd	
16	4	1	0	1	2	≥ 45	$A G_{2}(4,2)$
16	6	4	1	2	3	$=1$	Mathon 1981
32	8	7	0	2	4	≥ 3	$A G_{3}(5,2)$
32	12	22	2	4	6	≥ 3	
64	16	35	0	4	8	≥ 1	$A G_{4}(6,2)$
64	28	156	10	12	14	≥ 1	
128	32	155	0	8	16	≥ 1	$A G_{5}(7,2)$
128	56	660	20	24	28	≥ 4	
256	64	651	0	16	32	≥ 1	$A G_{6}(8,2)$
256	120	3304	52	56	60	≥ 1	
512	128	2667	0	32	64	≥ 1	$A G_{7}(9,2)$
512	240	13384	104	112	120	≥ 4	

The End

Thanks for your attention!

