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Introduction

Assumptions:

Everybody knows the definition of a t-(v , k, λ) design

All designs are simple

k ≤ 1
2 v (complementing the blocks does not change t and d)

The degree of a design is the number of distinct block intersection sizes:

d = |{ |B1 ∩ B2| : B1 6= B2 are blocks}|
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Motivation

d = 1: Symmetric designs (v = b, t = 2)

d = 2: Quasi-symmetric designs (t ≤ 4)

R. Vlahović Kruc, Some results on quasi-symmetric designs with
exceptional parameters, PhD thesis, University of Zagreb, 2019.

d = 3: ?
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R. Vlahović Kruc, Some results on quasi-symmetric designs with
exceptional parameters, PhD thesis, University of Zagreb, 2019.

d = 3: ?
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R. Vlahović Kruc, Some results on quasi-symmetric designs with
exceptional parameters, PhD thesis, University of Zagreb, 2019.

d = 3: ?
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Designs of degree d = 3

Intersection numbers: x < y < z

Ray-Chaudhuri, Wilson: t ≤ 6

t = 6: Do not exist!

C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417–435.

t = 5: The Witt 5-(24, 8, 1) design, x = 0, y = 2, z = 4

Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers,
J. Combin. Theory Ser. A 69 (1995), no. 1, 36–50.

t = 4:

V. Krčadinac, R. Vlahović Kruc, Schematic 4-designs, Discrete Math.
346 (2023), no. 7, Paper No. 113385, 7 pp.
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Designs of degree d = 3 and strength t = 4

No. v k λ x y z ∃
1 11 5 1 1 2 3
2 23 8 4 0 2 4
3 23 11 48 3 5 7
4 24 8 5 0 2 4
5 47 11 8 1 3 5
6 71 35 264 14 17 20
7 199 99 2328 44 49 54
8 391 195 9264 90 97 104
9 647 323 25680 152 161 170

10 659 329 390874 153 164 175
11 967 483 57720 230 241 252
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Designs of degree d = 3 and strength t = 4

No. v k λ x y z ∃
1 11 5 1 1 2 3 X QR(11, 3): [11, 6, 5]3

2 23 8 4 0 2 4 X QR(23, 2): [23, 12, 7]2

3 23 11 48 3 5 7 X QR(23, 2): [23, 12, 7]2

4 24 8 5 0 2 4 X ̂QR(23, 2): [24, 12, 8]2

5 47 11 8 1 3 5 X QR(47, 2): [47, 24, 11]2

6 71 35 264 14 17 20
7 199 99 2328 44 49 54
8 391 195 9264 90 97 104
9 647 323 25680 152 161 170

10 659 329 390874 153 164 175
11 967 483 57720 230 241 252
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Designs of degree d = 3 and strength t = 4
Admissible parameters:

v = 8n2 − 1
k = 4n2 − 1 = (2n − 1)(2n + 1)
λ = 4n4 − 7n2 + 3 = (n − 1)(n + 1)(4n2 − 3)

x = 2n2 − n − 1 = (n − 1)(2n + 1)
y = 2n2 − 1
z = 2n2 + n − 1 = (n + 1)(2n − 1)

n ≥ 3 odd

Theorem (Cameron, Delsarte, 1973)
In a design of degree d and strength t ≥ 2d − 2, the blocks form a
symmetric association scheme with d classes.

 Schematic designs
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Designs of degree d = 3 and strength t = 3
d = 3, t = 3:

Lots of admissible parameters, e.g. all Steiner 3-designs.

v k λ x y z ∃
16 4 1 0 1 2 X

16 6 4 1 2 3 X

32 8 7 0 2 4 X

32 12 22 2 4 6 X

64 16 35 0 4 8 X

64 28 156 10 12 14 X

128 32 155 0 8 16 X

128 56 660 20 24 28 X

256 64 651 0 16 32 X

256 120 3304 52 56 60 X

512 128 2667 0 32 64 X

512 240 13384 104 112 120 X
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Designs of degree d = 3 and strength t = 3
d = 3, t = 3: Lots of admissible parameters, e.g. all Steiner 3-designs.

v k λ x y z ∃
16 4 1 0 1 2 X AG2(4, 2), RM(2, 4): [16, 11, 4]2

16 6 4 1 2 3 X

32 8 7 0 2 4 X AG3(5, 2), RM(2, 5): [32, 16, 8]2

32 12 22 2 4 6 X

64 16 35 0 4 8 X AG4(6, 2), RM(2, 6): [64, 22, 16]2

64 28 156 10 12 14 X

128 32 155 0 8 16 X AG5(7, 2), RM(2, 7): [128, 29, 32]2

128 56 660 20 24 28 X

256 64 651 0 16 32 X AG6(8, 2), RM(2, 8): [256, 37, 64]2

256 120 3304 52 56 60 X

512 128 2667 0 32 64 X AG7(9, 2), RM(2, 9): [512, 46, 128]2

512 240 13384 104 112 120 X
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Designs of degree d = 3 and strength t = 3
d = 3, t = 3: Lots of admissible parameters, e.g. all Steiner 3-designs.

v k λ x y z ∃
16 4 1 0 1 2 X AG2(4, 2), RM(2, 4): [16, 11, 4]2

16 6 4 1 2 3 X Nordstrom-Robinson: (16, 28, 6)2

32 8 7 0 2 4 X AG3(5, 2), RM(2, 5): [32, 16, 8]2

32 12 22 2 4 6 X

64 16 35 0 4 8 X AG4(6, 2), RM(2, 6): [64, 22, 16]2

64 28 156 10 12 14 X Kerdock code: (64, 212, 28)2

128 32 155 0 8 16 X AG5(7, 2), RM(2, 7): [128, 29, 32]2

128 56 660 20 24 28 X

256 64 651 0 16 32 X AG6(8, 2), RM(2, 8): [256, 37, 64]2

256 120 3304 52 56 60 X Kerdock code: (256, 216, 120)2

512 128 2667 0 32 64 X AG7(9, 2), RM(2, 9): [512, 46, 128]2

512 240 13384 104 112 120 X
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16 6 4 1 2 3 X Nordstrom-Robinson: (16, 28, 6)2

32 8 7 0 2 4 X AG3(5, 2), RM(2, 5): [32, 16, 8]2

32 12 22 2 4 6 X ?

64 16 35 0 4 8 X AG4(6, 2), RM(2, 6): [64, 22, 16]2

64 28 156 10 12 14 X Kerdock code: (64, 212, 28)2

128 32 155 0 8 16 X AG5(7, 2), RM(2, 7): [128, 29, 32]2

128 56 660 20 24 28 X ?

256 64 651 0 16 32 X AG6(8, 2), RM(2, 8): [256, 37, 64]2

256 120 3304 52 56 60 X Kerdock code: (256, 216, 120)2

512 128 2667 0 32 64 X AG7(9, 2), RM(2, 9): [512, 46, 128]2

512 240 13384 104 112 120 X ?
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Commercial break

Combinatorial Constructions Conference (CCC) will take place at
the Centre for Advanced Academic Studies in Dubrovnik, Croatia.
April 7-13, 2024

Invited speakers: Marco Buratti, Italy Michael Kiermaier, Germany
Eimear Byrne, Ireland Patric Österg̊ard, Finland
Dean Crnković, Croatia Kai-Uwe Schmidt, Germany
Daniel Horsley, Australia

https://web.math.pmf.unizg.hr/acco/meetings.php
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Known series of 3-designs of degree 3
The known series:

v = 2m

k = 2m−1 − 2(m−2)/2

λ = 2(m−8)/2
(

2m/2 − 2
) (

2m − 2m/2 − 4
)

x = 2(m−4)/2
(

2m/2 − 3
)

y = 2(m−4)/2
(

2m/2 − 2
)

z = 2(m−4)/2
(

2m/2 − 1
)

m ≥ 4 even

Points: AG(m, 2)

Blocks: incidence functions f : AG(m, 2)→ {0, 1}

RM(1,m) RM(2,m)
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Known series of 3-designs of degree 3
The known series:

v = 2m

k = 2m−1 − 2(m−2)/2

λ = 2(m−8)/2
(
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) (

2m − 2m/2 − 4
)

x = 2(m−4)/2
(

2m/2 − 3
)

y = 2(m−4)/2
(

2m/2 − 2
)

z = 2(m−4)/2
(

2m/2 − 1
)

m ≥ 4 even

Points: AG(m, 2)

Blocks: incidence functions f : AG(m, 2)→ {0, 1}

RM(1,m) ⊂ K (m) ⊂ RM(2,m)

Kerdock code K (m):
(

2m, 22m, 2m−1 − 2(m−2)/2
)
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Known series of 3-designs of degree 3
The known series:

v = 2m

k = 2m−1 − 2(m−2)/2

λ = 2(m−8)/2
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)

y = 2(m−4)/2
(

2m/2 − 2
)

z = 2(m−4)/2
(

2m/2 − 1
)

m ≥ 4 even

Points: AG(m, 2)

Weight (distance) distribution of RM(1,m) ⊂ K (m):

wt 0 2m−1 − 2(m−2)/2 2m−1 2m−1 + 2(m−2)/2 2m

# 1 2m(2m−1 − 1) 2m+1 − 2 2m(2m−1 − 1) 1
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Known series of 3-designs of degree 3 – wherefrom?
A. W. Nordstrom, J. P. Robinson, An optimum nonlinear code,
Information and Control 11 (1967), 613–616.

F. P. Preparata, A class of optimum nonlinear double-error-correcting
codes, Information and Control 13 (1968), 378–400.

A. M. Kerdock, A class of low-rate nonlinear binary codes, Information
and Control 20 (1972), 182–187.

P. J. Cameron, On groups with several doubly-transitive permutation
representations, Math. Z. 128 (1972), 1–14.

P. J. Cameron, J. J. Seidel, Quadratic forms over GF (2), Nederl. Akad.
Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 1–8.

R. Noda, On homogeneous systems of linked symmetric designs, Math. Z.
138 (1974), 15–20.

Vedran Krčadinac (University of Zagreb) 3-designs of degree 3 18-24 June, 2023 23 / 34



Known series of 3-designs of degree 3 – wherefrom?
A. W. Nordstrom, J. P. Robinson, An optimum nonlinear code,
Information and Control 11 (1967), 613–616.

F. P. Preparata, A class of optimum nonlinear double-error-correcting
codes, Information and Control 13 (1968), 378–400.

A. M. Kerdock, A class of low-rate nonlinear binary codes, Information
and Control 20 (1972), 182–187.

P. J. Cameron, On groups with several doubly-transitive permutation
representations, Math. Z. 128 (1972), 1–14.

P. J. Cameron, J. J. Seidel, Quadratic forms over GF (2), Nederl. Akad.
Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 1–8.

R. Noda, On homogeneous systems of linked symmetric designs, Math. Z.
138 (1974), 15–20.
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Known series of 3-designs of degree 3 – wherefrom?

W. M. Kantor, Spreads, translation planes and Kerdock sets. I; II, SIAM
J. Algebraic Discrete Methods 3 (1982), no. 2; 3, 151–165; 308–318.

W. M. Kantor, An exponential number of generalized Kerdock codes,
Inform. and Control 53 (1982), no. 1-2, 74–80.

W. M. Kantor, Codes, quadratic forms and finite geometries, Proc.
Sympos. Appl. Math. 50 (1995), Amer. Math. Soc., 153–177.

A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane,
P. Solé, The Z4-linearity of Kerdock, Preparata, Goethals, and related
codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319.

K. Yang, T. Helleseth, Two new infinite families of 3-designs from Kerdock
codes over Z4, Des. Codes Cryptogr. 15 (1998), no. 2, 201–214.

v = 2m, k = 2m−1 + 2m−2 ± 2(m−3)/2, λ = k(k − 1)(k − 2)/(2m − 2),
m ≥ 3 odd
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New series of 3-designs of degree 3
The new series:

v = 2m

k = 2m−1 − 2(m−1)/2

λ = 2(m−7)/2
(

2(m−1)/2 − 2
) (

2m − 2(m+1)/2 − 2
)

x = 2(m−3)/2
(

2(m−1)/2 − 3
)

y = 2(m−3)/2
(

2(m−1)/2 − 2
)

z = 2(m−3)/2
(

2(m−1)/2 − 1
)

m ≥ 5 odd

Points: AG(m, 2)

Corresponding code:
(

2m, 22m+1, 2m−1 − 2(m−1)/2
)

RM(1,m) ⊂ C ⊂ RM(2,m)
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May be linear
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Vedran Krčadinac (University of Zagreb) 3-designs of degree 3 18-24 June, 2023 28 / 34



Kerdock sets

Quadratic forms over GF (2):

B(x1, . . . , xm) =
∑

1≤i<j≤m
bijxi xj ←→ B =

 0 bij
. . .

bji 0



The rank of B is even: rk(B) = 2r

The minimum weight of the coset B + RM(1, 2) is 2m−1 − 2m−1−r

To get a good code, we want r as large as possible: m = 2r (even!)

To get many codewords, we want as many symplectic matrices B1, . . . ,B`

as posible such that rk(Bi − Bj) = m. Upper bound: ` ≤ 2m−1 − 1

A set of ` = 2m−1 − 1 matrices is called a Kerdock set and gives rise to
the Kerdock code. How to construct Kerdock sets?

W. M. Kantor, Codes, quadratic forms and finite geometries, Proc.
Sympos. Appl. Math. 50 (1995), Amer. Math. Soc., 153–177.
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the Kerdock code. How to construct Kerdock sets?

W. M. Kantor, Codes, quadratic forms and finite geometries, Proc.
Sympos. Appl. Math. 50 (1995), Amer. Math. Soc., 153–177.
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Kerdock sets

Trace map T : GF (2m−1)→ GF (2), T (x) =
m−2∑
i=0

x2i

Linear operator Bs : GF (2m−1)⊕ GF (2)→ GF (2m−1)⊕ GF (2),

Bs(x , a) = (xs2 + sT (sx) + as,T (sx))

The set of matrices {Bs | s ∈ GF (2m−1) \ {0} } is a Kerdock set!

A variation of this construction gives many inequivalent examples:

W. M. Kantor, An exponential number of generalized Kerdock codes,
Inform. and Control 53 (1982), no. 1-2, 74–80.

If m is odd, alternating matrices cannot be nonsingular (because their rank
is even). Next best thing: take matrices B of rank m − 1, i.e. m = 2r + 1.
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Kerdock sets in odd dimensions

For rk(B) = m − 1, the minimum weight of the coset B + RM(1, 2) is
2m−1 − 2(m−1)/2 = k

We want as many matrices B1, . . . ,B` as posible such that rk(Bi − Bj) =
m − 1. Upper bound: ` ≤ 2m − 1

A maximal set of matrices can be obtained by a modification of Kantor’s
construction:

Trace map T : GF (2m)→ GF (2), T (x) =
m−1∑
i=0

x2i

Linear operator Bs : GF (2m)→ GF (2m), Bs(x) = xs2 + sT (sx)

The set of matrices {Bs | s ∈ GF (2m) \ {0} } defines the code.

The code is nonlinear over GF (2) and supports 3-designs of degree 3.

There are also GF (2)-linear codes with the same weight distribution
(extended BCH codes) supporting non-isomorphic designs!
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Kerdock sets in odd dimensions

J.-M. Goethals, Nonlinear codes defined by quadratic forms over GF(2),
Information and Control 31 (1976), no. 1, 43–74.

An (m, r)-set is a set {B1, . . . ,B`} of m ×m alternating matrices over
GF (2) such that rk(Bi − Bj) ≥ 2r .

E. R. Berlekamp, The weight enumerators for certain subcodes of the
second order binary Reed-Muller codes, Information and Control 17
(1970), 485–500.

For odd m, the Gray maps of these codes are not Z4-linear.
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Numbers of non-isomorphic designs

v k λ x y z Nd
16 4 1 0 1 2 ≥ 45 AG2(4, 2)

16 6 4 1 2 3 = 1 Mathon 1981

32 8 7 0 2 4 ≥ 3 AG3(5, 2)

32 12 22 2 4 6 ≥ 3
64 16 35 0 4 8 ≥ 1 AG4(6, 2)

64 28 156 10 12 14 ≥ 1
128 32 155 0 8 16 ≥ 1 AG5(7, 2)

128 56 660 20 24 28 ≥ 4
256 64 651 0 16 32 ≥ 1 AG6(8, 2)

256 120 3304 52 56 60 ≥ 1
512 128 2667 0 32 64 ≥ 1 AG7(9, 2)

512 240 13384 104 112 120 ≥ 4

Vedran Krčadinac (University of Zagreb) 3-designs of degree 3 18-24 June, 2023 33 / 34



The End

Thanks for your attention!
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