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Motivation and definitions

We start with a known definition

Definition.
Let V be a set of v points. A (v , k, λ) design over V is a collection D of
k-subsets of V called blocks, such that every pair of points is contained in
exactly λ blocks.

Let V = {p1, . . . , pv } and D = {B1, . . . , Bv } then the incidence matrix
A = (aij) of the design is defined by aij = [pi ∈ Bj ], where [ ] is Iverson
symbol.
[X ] = 0 iff X is true, otherwise [X ] = 0.
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Fano plane, motivation for cubes

An incidence matrix of a (7, 3, 1) design:

A1 =



1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0


.

We make a cyclic shift of rows of A1
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Fano plane, cyclic shifts

A1 =


1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0

 A2 =


1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0

 A3 =


0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1



A4 =


1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1

 A5 =


0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0



A6 =


0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1

 A7 =


0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0


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Fano plane, cyclic shifts

Now put all of these matrices on top of each other:

first A1, then A2 and end up with A7 as the top layer.

Every slice is an incidence matrix of a (7, 3, 1) symmetric design.

Warwick de Launey introduced higher-dimensional combinatorial designs
of various types.

For example:

block designs, Hadamard matrices, orthogonal designs, weighing matrices.
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Towards definition
We are interested in n-dimensional {0, 1}-matrices of order v such that all
2-dimensional slices are incidence matrices of (v , k, λ) designs.

n-dimensional incidence cube of order v is a function
C : {1, . . . , v}n → {0, 1}.

let (x , y) ∈ {1, . . . , n}2,

a slice of the n-cube C is the matrix obtained by varying the coordinates in
positions x and y , and taking some fixed values

it is the restriction of C to the set
{i1} × · · · × {ix−1} × V × {ix+1} × · · · × {iy−1} × V × {iy+1} × · · · × {in}.

The slices corresponding to (x , y) and (y , x) are transposed matrices.
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Definition and classes

Definition.
An n-dimensional cube of symmetric (v , k, λ) designs is an n-cube of order
v such that all of its slices are incidence matrices of (v , k, λ) designs. The
set of all such n-cubes will be denoted by Cn(v , k, λ).

This is a special case of de Launey’s proper n-dimensional transposable
designs (v , ΠR , ΠC , β, S)n

(Sv )n = Sv × . . . × Sv acts by permuting indices:
for α = (α1, . . . , αn) ∈ (Sv )n,
Cα(i1, . . . , in) = C(α−1

1 (i1), . . . , α−1
n (in)).

The orbits of this action are the isotopy classes of cubes
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Definition and classes

The stabiliser of a cube is its autotopy group

γ ∈ Sn act by conjugation, i.e.

Cγ(i1, . . . , in) = C(iγ−1(1), . . . , iγ−1(n)).

isotopy + conjugation = paratopy

cubes equivalent if they can be mapped onto each other by paratopy.

Kramer-Mesner approach + our GAP package Prescribed Automorphism
Groups
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Difference cubes

Let G be a group of order v and let D ⊆ G of size k.

If (in the group ring Z[G ]) DD(−1) = λ(G − 1G) + k × 1G , then

D is a (v , k, λ) difference set and (G , {gD | g ∈ G}) is a (v , k, λ)
symmetric design.

Theorem.
Let D be a (v , k, λ) difference set in the group G . Order the group
elements as g1, . . . , gv . Then the function

C(i1, . . . , in) = [gi1 · · · gin ∈ D] (1)

is an n-dimensional cube of (v , k, λ) designs.
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Difference cubes

This was originally proved by J. Hammer, J. Seberry for group developed
n-dimensional proper Hadamard matrices

The cubes arising from the previous theorem are called difference cubes.

A non-difference cube is not equivalent to any difference cube
We can generalise the construction of difference cubes.

Theorem.
Let G = {g1, . . . , gv } be a group and D = {B1, . . . , Bv } a (v , k, λ) design
with all of its blocks being (v , k, λ) difference sets in G . Then

C(i1, . . . , in) = [gi2 · · · gin ∈ Bi1 ] (2)

is an n-dimensional cube of (v , k, λ) designs.
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We can generalise the construction of difference cubes.

Theorem.
Let G = {g1, . . . , gv } be a group and D = {B1, . . . , Bv } a (v , k, λ) design
with all of its blocks being (v , k, λ) difference sets in G . Then

C(i1, . . . , in) = [gi2 · · · gin ∈ Bi1 ] (2)

is an n-dimensional cube of (v , k, λ) designs.
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Group cubes

Cubes constructed from previous Thm are called group cubes.

Can we find designs that are not developments, but all of their blocks are
difference sets?

Then the construction may give non-difference cubes.

The first example comes from (21, 5, 1) symmetric design

There is a (21, 5, 1) design over F21 where all blocks are difference sets,
but where they don’t belong to a development of one difference set.
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Group cubes, constructions

Theorem:
For every m ≥ 2 and n ≥ 3, the set
Cn(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1)) contains at least two inequivalent
group cubes that are not difference cubes.

Proposition:
Up to equivalence, the set C3(16, 6, 2) contains exactly 27 difference cubes
and 946 group cubes that are not difference cubes.

Proposition:
The set C3(16, 6, 2) contains at least 1423 inequivalent non-group cubes.

Proposition:
The set C3(21, 5, 1) contains exactly three inequivalent group cubes, two
of which are difference cubes.
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The End

Thank you!

Kristijan Tabak (RIT) Cubes of symmetric designs 18 - 24 June, 2023 13 / 13


