Cubes of symmetric designs and difference sets*

Kristijan Tabak
(joint work with Mario Osvin Pavčević and Vedran Krčadinac)
Rochester Institute of Technology, Zagreb campus
10th Slovenian Conference on Graph Theory
18-24 June 2023, Kranjska Gora, Slovenia
Combinatorial Designs and their Applications

* This work was fully supported by the Croatian Science Foundation under the project 9752.

Motivation and definitions

We start with a known definition

Motivation and definitions

We start with a known definition

Definition.

Let V be a set of v points. A (v, k, λ) design over V is a collection \mathcal{D} of k-subsets of V called blocks, such that every pair of points is contained in exactly λ blocks.

Motivation and definitions

We start with a known definition

Definition.

Let V be a set of v points. A (v, k, λ) design over V is a collection \mathcal{D} of k-subsets of V called blocks, such that every pair of points is contained in exactly λ blocks.

Let $V=\left\{p_{1}, \ldots, p_{v}\right\}$ and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ then the incidence matrix $A=\left(a_{i j}\right)$ of the design is defined by $a_{i j}=\left[p_{i} \in B_{j}\right]$, where [] is Iverson symbol.

Motivation and definitions

We start with a known definition

Definition.

Let V be a set of v points. A (v, k, λ) design over V is a collection \mathcal{D} of k-subsets of V called blocks, such that every pair of points is contained in exactly λ blocks.

Let $V=\left\{p_{1}, \ldots, p_{v}\right\}$ and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ then the incidence matrix $A=\left(a_{i j}\right)$ of the design is defined by $a_{i j}=\left[p_{i} \in B_{j}\right]$, where [] is Iverson symbol.
$[X]=0$ iff X is true, otherwise $[X]=0$.

Fano plane, motivation for cubes

An incidence matrix of a $(7,3,1)$ design:

Fano plane, motivation for cubes

An incidence matrix of a $(7,3,1)$ design:

$$
A_{1}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Fano plane, motivation for cubes

An incidence matrix of a $(7,3,1)$ design:

$$
A_{1}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

We make a cyclic shift of rows of A_{1}

Fano plane, cyclic shifts

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad A_{3}=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \begin{array}{l}
A_{4}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right) \quad A_{5}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right) \\
A_{6}=\left(\begin{array}{lllllll}
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right) \quad A_{7}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
\end{array}
\end{aligned}
$$

Fano plane, cyclic shifts

Now put all of these matrices on top of each other:

Fano plane, cyclic shifts

Now put all of these matrices on top of each other:
first A_{1}, then A_{2} and end up with A_{7} as the top layer.

Fano plane, cyclic shifts

Now put all of these matrices on top of each other:
first A_{1}, then A_{2} and end up with A_{7} as the top layer.

Every slice is an incidence matrix of a $(7,3,1)$ symmetric design.

Fano plane, cyclic shifts

Now put all of these matrices on top of each other:
first A_{1}, then A_{2} and end up with A_{7} as the top layer.

Every slice is an incidence matrix of a $(7,3,1)$ symmetric design.

Warwick de Launey introduced higher-dimensional combinatorial designs of various types.

Fano plane, cyclic shifts

Now put all of these matrices on top of each other:
first A_{1}, then A_{2} and end up with A_{7} as the top layer.

Every slice is an incidence matrix of a $(7,3,1)$ symmetric design.

Warwick de Launey introduced higher-dimensional combinatorial designs of various types.

For example:

Fano plane, cyclic shifts

Now put all of these matrices on top of each other:
first A_{1}, then A_{2} and end up with A_{7} as the top layer.

Every slice is an incidence matrix of a $(7,3,1)$ symmetric design.

Warwick de Launey introduced higher-dimensional combinatorial designs of various types.

For example:
block designs, Hadamard matrices, orthogonal designs, weighing matrices.

Towards definition

We are interested in n-dimensional $\{0,1\}$-matrices of order v such that all 2-dimensional slices are incidence matrices of (v, k, λ) designs.

Towards definition

We are interested in n-dimensional $\{0,1\}$-matrices of order v such that all 2-dimensional slices are incidence matrices of (v, k, λ) designs.
n-dimensional incidence cube of order v is a function
$C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$.

Towards definition

We are interested in n-dimensional $\{0,1\}$-matrices of order v such that all 2-dimensional slices are incidence matrices of (v, k, λ) designs.
n-dimensional incidence cube of order v is a function
$C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$.
let $(x, y) \in\{1, \ldots, n\}^{2}$,

Towards definition

We are interested in n-dimensional $\{0,1\}$-matrices of order v such that all 2-dimensional slices are incidence matrices of (v, k, λ) designs.
n-dimensional incidence cube of order v is a function
$C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$.
let $(x, y) \in\{1, \ldots, n\}^{2}$,
a slice of the n-cube C is the matrix obtained by varying the coordinates in positions x and y, and taking some fixed values

Towards definition

We are interested in n-dimensional $\{0,1\}$-matrices of order v such that all 2-dimensional slices are incidence matrices of (v, k, λ) designs.
n-dimensional incidence cube of order v is a function
$C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$.
let $(x, y) \in\{1, \ldots, n\}^{2}$,
a slice of the n-cube C is the matrix obtained by varying the coordinates in positions x and y, and taking some fixed values
it is the restriction of C to the set
$\left\{i_{1}\right\} \times \cdots \times\left\{i_{x-1}\right\} \times V \times\left\{i_{x+1}\right\} \times \cdots \times\left\{i_{y-1}\right\} \times V \times\left\{i_{y+1}\right\} \times \cdots \times\left\{i_{n}\right\}$.

Towards definition

We are interested in n-dimensional $\{0,1\}$-matrices of order v such that all 2-dimensional slices are incidence matrices of (v, k, λ) designs.
n-dimensional incidence cube of order v is a function
$C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$.
let $(x, y) \in\{1, \ldots, n\}^{2}$,
a slice of the n-cube C is the matrix obtained by varying the coordinates in positions x and y, and taking some fixed values
it is the restriction of C to the set
$\left\{i_{1}\right\} \times \cdots \times\left\{i_{x-1}\right\} \times V \times\left\{i_{x+1}\right\} \times \cdots \times\left\{i_{y-1}\right\} \times V \times\left\{i_{y+1}\right\} \times \cdots \times\left\{i_{n}\right\}$.

Definition and classes

Definition.

An n-dimensional cube of symmetric (v, k, λ) designs is an n-cube of order v such that all of its slices are incidence matrices of (v, k, λ) designs. The set of all such n-cubes will be denoted by $\mathcal{C}^{n}(v, k, \lambda)$.

Definition and classes

Definition.

An n-dimensional cube of symmetric (v, k, λ) designs is an n-cube of order v such that all of its slices are incidence matrices of (v, k, λ) designs. The set of all such n-cubes will be denoted by $\mathcal{C}^{n}(v, k, \lambda)$.

This is a special case of de Launey's proper n-dimensional transposable designs $\left(v, \Pi_{R}, \Pi_{C}, \beta, S\right)^{n}$

Definition and classes

Definition.

An n-dimensional cube of symmetric (v, k, λ) designs is an n-cube of order v such that all of its slices are incidence matrices of (v, k, λ) designs. The set of all such n-cubes will be denoted by $\mathcal{C}^{n}(v, k, \lambda)$.

This is a special case of de Launey's proper n-dimensional transposable designs $\left(v, \Pi_{R}, \Pi_{C}, \beta, S\right)^{n}$
$\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts by permuting indices:

Definition and classes

Definition.

An n-dimensional cube of symmetric (v, k, λ) designs is an n-cube of order v such that all of its slices are incidence matrices of (v, k, λ) designs. The set of all such n-cubes will be denoted by $\mathcal{C}^{n}(v, k, \lambda)$.

This is a special case of de Launey's proper n-dimensional transposable designs $\left(v, \Pi_{R}, \Pi_{C}, \beta, S\right)^{n}$
$\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts by permuting indices:
for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(S_{v}\right)^{n}$,

Definition and classes

Definition.

An n-dimensional cube of symmetric (v, k, λ) designs is an n-cube of order v such that all of its slices are incidence matrices of (v, k, λ) designs. The set of all such n-cubes will be denoted by $\mathcal{C}^{n}(v, k, \lambda)$.

This is a special case of de Launey's proper n-dimensional transposable designs $\left(v, \Pi_{R}, \Pi_{C}, \beta, S\right)^{n}$
$\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts by permuting indices:
for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(S_{v}\right)^{n}$,
$C^{\alpha}\left(i_{1}, \ldots, i_{n}\right)=C\left(\alpha_{1}^{-1}\left(i_{1}\right), \ldots, \alpha_{n}^{-1}\left(i_{n}\right)\right)$.

Definition and classes

Definition.

An n-dimensional cube of symmetric (v, k, λ) designs is an n-cube of order v such that all of its slices are incidence matrices of (v, k, λ) designs. The set of all such n-cubes will be denoted by $\mathcal{C}^{n}(v, k, \lambda)$.

This is a special case of de Launey's proper n-dimensional transposable designs $\left(v, \Pi_{R}, \Pi_{C}, \beta, S\right)^{n}$
$\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts by permuting indices:
for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(S_{v}\right)^{n}$,
$C^{\alpha}\left(i_{1}, \ldots, i_{n}\right)=C\left(\alpha_{1}^{-1}\left(i_{1}\right), \ldots, \alpha_{n}^{-1}\left(i_{n}\right)\right)$.

The orbits of this action are the isotopy classes of cubes

Definition and classes

The stabiliser of a cube is its autotopy group

Definition and classes

The stabiliser of a cube is its autotopy group
$\gamma \in S_{n}$ act by conjugation, i.e.

Definition and classes

The stabiliser of a cube is its autotopy group
$\gamma \in S_{n}$ act by conjugation, i.e.

$$
C^{\gamma}\left(i_{1}, \ldots, i_{n}\right)=C\left(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}\right) .
$$

Definition and classes

The stabiliser of a cube is its autotopy group
$\gamma \in S_{n}$ act by conjugation, i.e.
$C^{\gamma}\left(i_{1}, \ldots, i_{n}\right)=C\left(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}\right)$.
isotopy + conjugation $=$ paratopy

Definition and classes

The stabiliser of a cube is its autotopy group
$\gamma \in S_{n}$ act by conjugation, i.e.
$C^{\gamma}\left(i_{1}, \ldots, i_{n}\right)=C\left(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}\right)$.
isotopy + conjugation $=$ paratopy
cubes equivalent if they can be mapped onto each other by paratopy.

Definition and classes

The stabiliser of a cube is its autotopy group
$\gamma \in S_{n}$ act by conjugation, i.e.
$C^{\gamma}\left(i_{1}, \ldots, i_{n}\right)=C\left(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}\right)$.
isotopy + conjugation $=$ paratopy
cubes equivalent if they can be mapped onto each other by paratopy.

Kramer-Mesner approach + our GAP package Prescribed Automorphism Groups

Difference cubes

Let G be a group of order v and let $D \subseteq G$ of size k.

Difference cubes

Let G be a group of order v and let $D \subseteq G$ of size k.
If (in the group ring $\mathbb{Z}[G]) D D^{(-1)}=\lambda\left(G-1_{G}\right)+k \times 1_{G}$, then

Difference cubes

Let G be a group of order v and let $D \subseteq G$ of size k.
If (in the group ring $\mathbb{Z}[G]) D D^{(-1)}=\lambda\left(G-1_{G}\right)+k \times 1_{G}$, then
D is a (v, k, λ) difference set and $(G,\{g D \mid g \in G\})$ is a (v, k, λ) symmetric design.

Difference cubes

Let G be a group of order v and let $D \subseteq G$ of size k.
If (in the group ring $\mathbb{Z}[G]) D D^{(-1)}=\lambda\left(G-1_{G}\right)+k \times 1_{G}$, then
D is a (v, k, λ) difference set and $(G,\{g D \mid g \in G\})$ is a (v, k, λ) symmetric design.

Theorem.

Let D be a (v, k, λ) difference set in the group G. Order the group elements as g_{1}, \ldots, g_{v}. Then the function

$$
\begin{equation*}
C\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{1}} \cdots g_{i_{n}} \in D\right] \tag{1}
\end{equation*}
$$

is an n-dimensional cube of (v, k, λ) designs.

Difference cubes

Let G be a group of order v and let $D \subseteq G$ of size k.
If (in the group ring $\mathbb{Z}[G]) D D^{(-1)}=\lambda\left(G-1_{G}\right)+k \times 1_{G}$, then
D is a (v, k, λ) difference set and $(G,\{g D \mid g \in G\})$ is a (v, k, λ) symmetric design.

Theorem.

Let D be a (v, k, λ) difference set in the group G. Order the group elements as g_{1}, \ldots, g_{v}. Then the function

$$
\begin{equation*}
C\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{1}} \cdots g_{i_{n}} \in D\right] \tag{1}
\end{equation*}
$$

is an n-dimensional cube of (v, k, λ) designs.

Difference cubes

This was originally proved by J. Hammer, J. Seberry for group developed n-dimensional proper Hadamard matrices

Difference cubes

This was originally proved by J. Hammer, J. Seberry for group developed n-dimensional proper Hadamard matrices

The cubes arising from the previous theorem are called difference cubes.

Difference cubes

This was originally proved by J. Hammer, J. Seberry for group developed n-dimensional proper Hadamard matrices

The cubes arising from the previous theorem are called difference cubes.

A non-difference cube is not equivalent to any difference cube

Difference cubes

This was originally proved by J. Hammer, J. Seberry for group developed n-dimensional proper Hadamard matrices

The cubes arising from the previous theorem are called difference cubes.

A non-difference cube is not equivalent to any difference cube We can generalise the construction of difference cubes.

Difference cubes

This was originally proved by J. Hammer, J. Seberry for group developed n-dimensional proper Hadamard matrices

The cubes arising from the previous theorem are called difference cubes.

A non-difference cube is not equivalent to any difference cube We can generalise the construction of difference cubes.

Theorem.

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ a (v, k, λ) design with all of its blocks being (v, k, λ) difference sets in G. Then

$$
\begin{equation*}
C\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right] \tag{2}
\end{equation*}
$$

is an n-dimensional cube of (v, k, λ) designs.

Difference cubes

This was originally proved by J. Hammer, J. Seberry for group developed n-dimensional proper Hadamard matrices

The cubes arising from the previous theorem are called difference cubes.

A non-difference cube is not equivalent to any difference cube We can generalise the construction of difference cubes.

Theorem.

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ a (v, k, λ) design with all of its blocks being (v, k, λ) difference sets in G. Then

$$
\begin{equation*}
C\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right] \tag{2}
\end{equation*}
$$

is an n-dimensional cube of (v, k, λ) designs.

Group cubes

Cubes constructed from previous Thm are called group cubes.

Group cubes

Cubes constructed from previous Thm are called group cubes.

Can we find designs that are not developments, but all of their blocks are difference sets?

Group cubes

Cubes constructed from previous Thm are called group cubes.

Can we find designs that are not developments, but all of their blocks are difference sets?

Then the construction may give non-difference cubes.

Group cubes

Cubes constructed from previous Thm are called group cubes.

Can we find designs that are not developments, but all of their blocks are difference sets?

Then the construction may give non-difference cubes.

The first example comes from $(21,5,1)$ symmetric design

Group cubes

Cubes constructed from previous Thm are called group cubes.

Can we find designs that are not developments, but all of their blocks are difference sets?

Then the construction may give non-difference cubes.

The first example comes from $(21,5,1)$ symmetric design

There is a $(21,5,1)$ design over F_{21} where all blocks are difference sets, but where they don't belong to a development of one difference set.

Group cubes, constructions

Theorem:

For every $m \geq 2$ and $n \geq 3$, the set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent group cubes that are not difference cubes.

Group cubes, constructions

Theorem:

For every $m \geq 2$ and $n \geq 3$, the set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent group cubes that are not difference cubes.

Proposition:

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group cubes, constructions

Theorem:

For every $m \geq 2$ and $n \geq 3$, the set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent group cubes that are not difference cubes.

Proposition:

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Proposition:

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.

Group cubes, constructions

Theorem:

For every $m \geq 2$ and $n \geq 3$, the set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent group cubes that are not difference cubes.

Proposition:

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Proposition:

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.

Proposition:

The set $\mathcal{C}^{3}(21,5,1)$ contains exactly three inequivalent group cubes, two of which are difference cubes.

The End

Thank you!

