New results on additive designs

Anamari Nakic

University of Zagreb

Joint work with Marco Buratti

Kranjska Gora, June 2023
This work has been supported by HRZZ grant no. 9752

Definition

A $2-(v, k, \lambda)$ design is a pair (V, \mathcal{B}) such that

- V is a set of v points;
- \mathcal{B} is a collection of k-subsets of V (called blocks);
- each 2-subset of V is contained in λ blocks.

Figure: The Fano plane. 2-(7, 3, 1) design.

- A 2-design is symmetric if $|V|=|\mathcal{B}|$.
- A Steiner system is a design with $\lambda=1$.

Definition (Cageggi, Falcone, Pavone, 2017)
A design (V, \mathcal{B}) is additive under an abelian group G if

- $V \subseteq G$ and
- $\sum_{x \in B} x=0, \quad \forall B \in \mathcal{B}$.

Examples:

Parameters	Group	Description
$\left(p^{m n}, p^{m}, 1\right)$	$\mathbb{Z}_{p}^{m n}$	$\mathrm{AG}_{1}\left(n, p^{m}\right)$, points-lines design of $\mathrm{AG}\left(n, p^{m}\right)$
$\left([n]_{2}, 3,1\right)$	\mathbb{Z}_{2}^{n}	$\mathrm{PG}_{1}(n-1,2)$, points-lines design of PG $(n-1,2)$

The number of points of $\mathrm{PG}(n-1, q)$ is denoted by $[n]_{q}=\frac{q^{n}-1}{q-1}$

Definition (Cameron, 1974. Delsarte, 1976.)
A 2- (v, k, λ) design over \mathbb{F}_{q} is a pair (V, \mathcal{B}) such that

- V is the set of points of $\operatorname{PG}(v-1, q)$
- \mathcal{B} is a collection of $(k-1)$-dimensional subspaces $\mathrm{PG}(v-1, q)$ (blocks)
- each line is contained in λ blocks.

Properties:

- (v, k, λ) design over \mathbb{F}_{q} is a classical $\left([v]_{q},[k]_{q}, \lambda\right)$ design
- (v, k, λ) design over \mathbb{F}_{2} is additive under \mathbb{Z}_{2}^{v}

Parameters	Description	Reference
$\left([v]_{2}, 7,7\right)$	$(v, 3,7)$ design over \mathbb{F}_{2} for all v odd	Thomas, 1987 + Buratti, A.N., 2019
$(8191,7,1)$	$(13,3,1)$ design over \mathbb{F}_{2}	Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017

Definition

(V, \mathcal{B}) is additive under an abelian group G if $V \subseteq G$ and $\sum_{x \in B} x=0, \forall B \in \mathcal{B}$.

- strongly additive if $\mathcal{B}=\left\{\left.B \in\binom{V}{k} \right\rvert\, \sum_{x \in B} x=0\right\}$
- strictly additive if $V=G$
- almost strictly additive if $V=G \backslash\{0\}$
[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$\left(2^{n}-1,3,1\right)$	\mathbb{Z}_{2}^{n}	\checkmark		\checkmark	$\mathrm{PG}_{1}(n-1,2)$
$\left(p^{m n}, p^{m}, 1\right)$	$\mathbb{Z}_{p}^{m n}$		\checkmark		$\mathrm{AG}_{1}\left(n, p^{m}\right)$
$\left(p^{2}, p, 1\right)$	$\mathbb{Z}_{p}^{p(p-1)}{ }^{2}$	\checkmark			$\mathrm{AG}_{1}(2, p)$
(v, k, λ)	G	\checkmark			symmetric design
(v, k, λ)	$\mathbb{Z}_{k} \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k-\lambda \nmid k$, prime

Known inifinite families of additive Steiner designs [Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$\left(p^{m n}, p^{m}, 1\right)$	$\mathbb{Z}_{p}^{m n}$		\checkmark		$\mathrm{AG}_{1}\left(n, p^{m}\right)$
$\left(2^{n}-1,3,1\right)$	\mathbb{Z}_{2}^{n}	\checkmark		\checkmark	$\mathrm{PG}_{1}(n-1,2)$
$\left([2]_{q}, q+1,1\right)$	$\mathbb{Z}_{p}^{p(p-1)}{ }^{p(p)}$	\checkmark			$\mathrm{PG}_{1}(2, q)$

New examples [Buratti, A.N., 2023]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$\left(5^{3}, 5,1\right)$	$\mathbb{F}_{5} 3$		$\sqrt{ }$		not isomorphic to $\mathrm{AG}_{1}(3,5)$
$\left(7^{3}, 7,1\right)$	$\mathbb{F}_{7} 3$		$\sqrt{ }$		not isomorphic to $\mathrm{AG}_{1}(3,7)$
$\left(p^{n}, p, 1\right)$	$\mathbb{F}_{p^{n}}$		$\sqrt{ }$		$p \in\{5,7\}, n \geq 3$, not iso- morphic to $\mathrm{AG}_{1}(n, p)$

Definition

A Steiner 2-design is G-super-regular if it is

- is strictly additive under an abelian group G (the point set is exactly G) and
- G-regular (any translate of any block is a block as well)

Theorem (Buratti, A.N., 2023)
Let $k \geq 3, k \not \equiv 2(\bmod 4)$ and $k \neq 2^{n} \cdot 3 \geq 12$.
There are infinitely many values of v for which there exists a super-regular $(v, k, 1)$ design.

- Group is $G \times \mathbb{F}_{q}$, where G is a non-binary group of order k and q a power of a prime divisor of k

Group G is binary when G has exactly one involution. Otherwise we say that G is non-binary group.

Theorem (Buratti, A.N., 2023)
Let $k \geq 3, k \neq 2(\bmod 4)$ and $k \neq 2^{n} \cdot 3 \geq 12$.
There are infinitely many values of v for which there exists a super-regular $(v, k, 1)$ design.

Constructing examples is computationally hard!

k	3	4	5
	$\mathrm{AG}_{1}(n, 3)$	$\mathrm{AG}_{1}(n, 4)$	$\mathrm{AG}_{1}(n, 5)$

k	6	7	8	9	10
	$2^{1} \cdot 3$	$\mathrm{AG}_{1}(n, 7)$	$\mathrm{AG}_{1}(n, 8)$	$\mathrm{AG}_{1}(n, 9)$	$2(\bmod 4)$

k	11	12	13	14	15
	$\mathrm{AG}_{1}(n, 11)$	$2^{2} \cdot 3$	$\mathrm{AG}_{1}(n, 13)$	$2(\bmod 4)$	$?$

- $v=15 \cdot 5^{n}, n \geq 10^{7}$

Theorem (Buratti, A.N., 202?)

- Every design $P G_{d}(n, q)$ is additive under \mathbb{F}_{q}^{n+1}.
- Every design $P G_{d}(n, q)$ is strongly additive under $\mathbb{Z}_{q^{d}}^{[n+1]_{q}}$.
[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$\left(2^{n}-1,3,1\right)$	\mathbb{Z}_{2}^{n}	$\sqrt{2}$		$\sqrt{ }$	$\operatorname{PG}_{1}(n-1,2)$
$\left([2]_{q}, q+1,1\right)$	$\mathbb{Z}_{p}^{\frac{p(p-1)}{2}}$	$\sqrt{2}$			$\operatorname{PG}_{1}(2, q)$

Theorem (Buratti, A.N., 202?)

- A symmetric (v, k, λ) design is strongly additive under $\mathbb{Z}_{k-\lambda}^{v}$.
- Let \mathcal{D} be a cyclic symmetric (v, k, λ) design and let p be a prime dividing $k-\lambda$ but not v. Then \mathcal{D} is additive under \mathbb{Z}_{p}^{t} with $t=\operatorname{ord}_{v}(p)$.
[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
(v, k, λ)	G	$\sqrt{2}$			symmetric design
(v, k, λ)	$\mathbb{Z}_{k} \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	$\sqrt{ }$			symmetric design, $k-\lambda \nmid k$, prime

Definition (Cageggi, Falcone, Pavone, 2017)
A design (V, \mathcal{B}) is additive under an abelian group G if there exists an injective map

$$
f: V \rightarrow G
$$

such that $f(B)$ is zero-sum for every block $B \in \mathcal{B}$.

Every cyclic symmetric (v, k, λ) design is of the form

$$
\left(\mathbb{Z}_{v},\{D+i \mid 0 \leq i \leq v-1\}\right)
$$

where D is a cyclic (v, k, λ) difference set.

An incidences structure (V, \mathcal{B}) is cyclic if there exists a cyclic permutation on V leaving \mathcal{B} invariant.
A k-subset D of an additive group G is a (G, k, λ) difference set if each non-zero element of G is covered λ times by the list of differences of $D: \Delta D \lambda(G \backslash\{0\})$

Theorem (Buratti, A.N., 202?)
Let \mathcal{D} be a cyclic symmetric (v, k, λ) design and let p be a prime dividing $k-\lambda$ but not v. Then \mathcal{D} is additive under \mathbb{Z}_{p}^{t} with $t=\operatorname{ord}_{v}(p)$.

Proof:

- Let g be a generator of the subgroup of $\mathbb{F}_{p^{t}}^{*}$ of order v and consider the injective maps f_{1} and f_{-1} defined as follows:

$$
f_{1}: x \in \mathbb{Z}_{v} \longrightarrow g^{x} \in \mathbb{F}_{p^{t}}, \quad f_{-1}: x \in \mathbb{Z}_{v} \longrightarrow g^{-x} \in \mathbb{F}_{p^{t}}
$$

- Consider the two sums

$$
\sigma_{1}:=\sum_{d \in D} f_{1}(d)=\sum_{d \in D} g^{d}, \quad \sigma_{-1}:=\sum_{d \in D} f_{-1}(d)=\sum_{d \in D} g^{-d}
$$

- Calculate their product $\sigma_{1} \cdot \sigma_{-1}=(k-\lambda)+\lambda \frac{g^{v}-1}{g-1}=0$
- Therefore

$$
\sigma_{1}=0, \quad \text { or } \quad \sigma_{-1}=0
$$

- Since

$$
\sum_{b \in B} f_{1}(b)=\sum_{d \in D} g^{d+i}=\sigma_{1} \cdot g^{i} \quad \text { and } \quad \sum_{b \in B} f_{-1}(b)=\sum_{d \in D} g^{-(d+i)}=\sigma_{-1} \cdot g^{-i}
$$

- Either f_{1} or f_{-1} is the map we are looking for

Example

The point-hyperplane design of $\operatorname{PG}(2,3)$, the projective plane of order 3 , is additive under \mathbb{Z}_{3}^{3} that is the additive group of $\mathbb{F}_{3^{3}}$.

- Singer $(13,4,1)$ difference set $D=\{0,1,3,9\}$
- $\left(\mathbb{Z}_{13}, \mathcal{B}\right)$ is cyclic symmetric design with parameters $(13,4,1)$

$$
\{D+i \mid 0 \leq i \leq 12\}
$$

- Let r be a root of the primitive polynomial $x^{3}+2 x^{2}+1$ over \mathbb{F}_{3}
- Taking r as primitive element of $\mathbb{F}_{3^{3}}$, a generator of the subgroup of $\mathbb{F}_{3^{3}}^{*}$ of order 13 is $g=r^{2}$
- We check

$$
\begin{aligned}
\sigma_{1} & =\sum_{d \in D} g^{d}=g^{0}+g^{1}+g^{3}+g^{9}=r^{0}+r^{2}+r^{6}+r^{18}= \\
& =(0,0,1)+(1,0,0)+(2,2,0)+(0,1,1)=(0,0,2)
\end{aligned}
$$

$>$ and

$$
\begin{gathered}
\sigma_{-1}=\sum_{d \in D} g^{-d}=g^{0}+g^{-1}+g^{-3}+g^{-9}=r^{0}+r^{-2}+r^{-6}+r^{-18}= \\
=(0,0,1)+(0,2,1)+(2,0,2)+(1,1,2)=(0,0,0)
\end{gathered}
$$

- $f_{-1}: x \in \mathbb{Z}_{13} \longrightarrow g^{-x} \in \mathbb{F}_{3^{3}}$

The point-hyperplane design of $\operatorname{PG}(2,3)$ is additive under \mathbb{Z}_{3}^{3}.

- In other words $\mathrm{PG}(2,3)$ can be seen as the design (V, \mathcal{B}) where

$$
V=\{001,100,122,220,112,121,120,020,201,011,202,111,021\}
$$

- and where \mathcal{B} consists of the following zero-sum blocks

$$
\begin{array}{lll}
\{001,021,202,112\}, & \{021,111,011,220\}, & \{111,202,201,122\}, \\
\{202,011,020,100\}, & \{011,201,120,001\}, & \{201,020,121,021\}, \\
\{020,120,112,111\}, & \{120,121,220,202\}, & \{121,112,122,011\}, \\
\{112,220,100,201\}, & \{220,122,001,020\}, & \{122,100,021,120\}, \\
& \{100,001,111,121\} &
\end{array}
$$

- There is a $(143,71,35)$ difference set \Rightarrow cyclic symmetric $(143,71,35)$ design
- The prime divisor of the order $k-\lambda=71-35=36=2^{2} \cdot 3^{2}$ are 2 and 3
$-\operatorname{ord}_{143}(2)=60$
$-\operatorname{ord}_{143}(3)=15$

Example

The cyclic symmetric $(143,71,35)$ design is additive under \mathbb{Z}_{2}^{60} and under \mathbb{Z}_{3}^{15} at the same time.
[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
(v, k, λ)	G	$\sqrt{\prime}$			symmetric design
(v, k, λ)	$\mathbb{Z}_{k} \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	$\sqrt{ }$			symmetric design, $k-\lambda \nmid k$, prime

- New examples [Buratti, A.N., 2023, 202?]

Parameters	Group	Strongly	Strictly	Al. str.	Description
($\left.p^{n}, p, 1\right)$	$\mathbb{F}_{p}{ }^{n}$		$\sqrt{7}$		$p \in\{5,7\}, n \geq 3$, not isomorphic to $\mathrm{AG}_{1}(n, p)$
$(v, k, 1)$	$G \times \mathbb{F}_{q}$		$\sqrt{ }$		$\begin{aligned} & k \not \equiv 2(\bmod 4), \quad k \neq \\ & 2^{3} \geq 12 \end{aligned}$
$\left([n]_{q},[d]_{q}, 1\right)$	$\mathbb{Z}_{q^{d}}^{[n+1]_{q}}$	$\sqrt{ }$			$\mathrm{PG}_{d}(n, q)$
$\left([n]_{q},[d]_{q}, 1\right)$	\mathbb{F}_{q}^{n+1}				$\mathrm{PG}_{d}(n, q)$
(v, k, λ)	$\mathbb{Z}_{k-\lambda}^{v}$	$\sqrt{ }$			symmetric design
(v, k, λ)	\mathbb{Z}_{p}^{t}				cyclic symmetric design, p a prime dividing $k-\lambda$ but not $v, t=\operatorname{ord}_{v}(p)$.
$(4 \lambda+3,2 \lambda+1, \lambda)$	\mathbb{Z}_{p}^{t}				$\begin{aligned} & \text { Paley design, } \\ & v=4 \lambda+3 \text { prime, } p \\ & \text { prime divisor of } \lambda+1, t= \\ & \operatorname{ord}_{v}(p) \end{aligned}$
$(4 \lambda+3,2 \lambda+1, \lambda)$	\mathbb{Z}_{2}^{t}			$\sqrt{ }$	$v=2^{t}-1$ is a Mersenne prime

Thank you for your attention!

