New results on additive designs

Anamari Nakic

University of Zagreb

Joint work with Marco Buratti

Kranjska Gora, June 2023 This work has been supported by HRZZ grant no. 9752

> <ロト < 部ト < 言ト < 言ト 言の < で 1/17

Definition

A 2-($v,k,\lambda)$ design is a pair (V,\mathcal{B}) such that

- V is a set of v points;
- B is a collection of k-subsets of V (called blocks);
- each 2-subset of V is contained in λ blocks.

Figure: The Fano plane. 2-(7, 3, 1) design.

A 2-design is symmetric if $|V| = |\mathcal{B}|$.

• A Steiner system is a design with $\lambda = 1$.

Definition (Cageggi, Falcone, Pavone, 2017) A design (V, \mathcal{B}) is *additive* under an abelian group G if

 \blacktriangleright $V \subseteq G$ and

$$\sum_{x \in B} x = 0, \quad \forall B \in \mathcal{B}.$$

Examples:

Parameters	Group	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}	$AG_1(n,p^m)$, points-lines design of $AG(n,p^m)$
$([n]_2, 3, 1)$	\mathbb{Z}_2^n	$PG_1(n-1,2)$, points-lines design of $PG(n-1,2)$

The number of points of PG(n-1,q) is denoted by $[n]_q = \frac{q^n-1}{q-1}$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition (Cameron, 1974. Delsarte, 1976.) A 2- (v, k, λ) design over \mathbb{F}_q is a pair (V, \mathcal{B}) such that

- ▶ V is the set of points of PG(v 1, q)
- ▶ \mathcal{B} is a collection of (k-1)-dimensional subspaces PG(v-1,q) (blocks)
- each line is contained in λ blocks.

Properties:

- $\blacktriangleright~(v,k,\lambda)$ design over \mathbb{F}_q is a classical $([v]_q,[k]_q,\lambda)$ design
- (v, k, λ) design over \mathbb{F}_2 is additive under \mathbb{Z}_2^v

Parameters	Description	Reference
$([v]_2, 7, 7)$	$(v,3,7)$ design over \mathbb{F}_2 for all v odd	Thomas, 1987 + Buratti, A.N., 2019
(8191, 7, 1)	$(13,3,1)$ design over \mathbb{F}_2	Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017

Definition

 (V, \mathcal{B}) is additive under an abelian group G if $V \subseteq G$ and $\sum_{x \in B} x = 0, \forall B \in \mathcal{B}$.

- strongly additive if $\mathcal{B} = \{B \in {V \choose k} \mid \sum_{x \in B} x = 0\}$
- strictly additive if V = G
- almost strictly additive if $V = G \setminus \{0\}$

[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		$AG_1(n,p^m)$
$(p^2, p, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			$AG_1(2,p)$
(v,k,λ)	G	\checkmark			symmetric design
(v,k,λ)	$\mathbb{Z}_k \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k-\lambda mid k$, prime

Known inifinite families of additive Steiner designs [Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(p^{mn}, p^m, 1)$	\mathbb{Z}_p^{mn}		\checkmark		$AG_1(n,p^m)$
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$([2]_q, q+1, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			$PG_1(2,q)$

New examples [Buratti, A.N., 2023]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(5^3, 5, 1)$	\mathbb{F}_{53}		\checkmark		not isomorphic to $AG_1(3,5)$
$(7^3, 7, 1)$	\mathbb{F}_{7^3}		\checkmark		not isomorphic to $AG_1(3,7)$
$(p^n, p, 1)$	$\mathbb{F}_{p^{n}}$		\checkmark		$p \in \{5,7\}, n \geq 3$, not isomorphic to $AG_1(n,p)$

Definition

A Steiner 2-design is G-super-regular if it is

 \blacktriangleright is strictly additive under an abelian group G (the point set is exactly G) and

G-regular (any translate of any block is a block as well)

Theorem (Buratti, A.N., 2023)

Let $k \ge 3$, $k \ne 2 \pmod{4}$ and $k \ne 2^n \cdot 3 \ge 12$. There are infinitely many values of v for which there exists a super-regular (v, k, 1) design.

• Group is $G \times \mathbb{F}_q$, where G is a non-binary group of order k and q a power of a prime divisor of k

Group G is binary when G has exactly one involution. Otherwise we say that G is non-binary group.

Theorem (Buratti, A.N., 2023)

Let $k \ge 3$, $k \ne 2 \pmod{4}$ and $k \ne 2^n \cdot 3 \ge 12$. There are infinitely many values of v for which there exists a super-regular (v, k, 1) design.

Constructing examples is computationally hard!

k	3	4	5
	$AG_1(n,3)$	$AG_1(n,4)$	$AG_1(n,5)$

k	6	7	8	9	10
	$2^{1} \cdot 3$	$AG_1(n,7)$	$AG_1(n,8)$	$AG_1(n,9)$	$2 \pmod{4}$

k	11	12	13	14	15
	$AG_1(n,11)$	$2^2 \cdot 3$	$AG_1(n,13)$	$2 \pmod{4}$?

 $\blacktriangleright \ v = 15 \cdot 5^n, n \geq 10^7$

Theorem (Buratti, A.N., 202?)

• Every design $PG_d(n,q)$ is additive under \mathbb{F}_q^{n+1} .

• Every design $PG_d(n,q)$ is strongly additive under $\mathbb{Z}_{q^d}^{[n+1]_q}$.

[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
$(2^n - 1, 3, 1)$	\mathbb{Z}_2^n	\checkmark		\checkmark	$PG_1(n-1, 2)$
$([2]_q, q+1, 1)$	$\mathbb{Z}_p^{\frac{p(p-1)}{2}}$	\checkmark			$PG_1(2,q)$

Theorem (Buratti, A.N., 202?)

• A symmetric (v, k, λ) design is strongly additive under $\mathbb{Z}_{k-\lambda}^{v}$.

• Let \mathcal{D} be a cyclic symmetric (v, k, λ) design and let p be a prime dividing $k - \lambda$ but not v. Then \mathcal{D} is additive under \mathbb{Z}_p^t with $t = ord_v(p)$.

[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
(v,k,λ)	G	\checkmark			symmetric design
(v,k,λ)	$\mathbb{Z}_k \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k - \lambda \not k$, prime

Definition (Cageggi, Falcone, Pavone, 2017)

A design (V, \mathcal{B}) is additive under an abelian group G if there exists an injective map

 $f:V\to G$

such that f(B) is zero-sum for every block $B \in \mathcal{B}$.

Every cyclic symmetric $(\boldsymbol{v},\boldsymbol{k},\boldsymbol{\lambda})$ design is of the form

 $(\mathbb{Z}_v, \{D+i \mid 0 \le i \le v-1\})$

where D is a cyclic (v, k, λ) difference set.

An incidences structure (V, \mathcal{B}) is *cyclic* if there exists a cyclic permutation on V leaving \mathcal{B} invariant.

A k-subset D of an additive group G is a (G, k, λ) difference set if each non-zero element of G is covered λ times by the list of differences of D: $\Delta D\lambda (G \setminus \{0\})$

Theorem (Buratti, A.N., 202?)

Let \mathcal{D} be a cyclic symmetric (v, k, λ) design and let p be a prime dividing $k - \lambda$ but not v. Then \mathcal{D} is additive under \mathbb{Z}_p^t with $t = ord_v(p)$.

Proof:

Let g be a generator of the subgroup of $\mathbb{F}_{p^t}^*$ of order v and consider the injective maps f_1 and f_{-1} defined as follows:

$$f_1: x \in \mathbb{Z}_v \longrightarrow g^x \in \mathbb{F}_{p^t}, \qquad f_{-1}: x \in \mathbb{Z}_v \longrightarrow g^{-x} \in \mathbb{F}_{p^t}$$

Consider the two sums

$$\sigma_1 := \sum_{d \in D} f_1(d) = \sum_{d \in D} g^d, \qquad \sigma_{-1} := \sum_{d \in D} f_{-1}(d) = \sum_{d \in D} g^{-d}$$

► Calculate their product $\sigma_1 \cdot \sigma_{-1} = (k - \lambda) + \lambda \frac{g^v - 1}{g - 1} = 0$

Therefore

$$\sigma_1 = 0, \quad \text{or} \quad \sigma_{-1} = 0$$

Since

$$\sum_{b \in B} f_1(b) = \sum_{d \in D} g^{d+i} = \sigma_1 \cdot g^i \quad \text{and} \quad \sum_{b \in B} f_{-1}(b) = \sum_{d \in D} g^{-(d+i)} = \sigma_{-1} \cdot g^{-i}$$

• Either f_1 or f_{-1} is the map we are looking for

12/17

Example

The point-hyperplane design of PG(2,3), the projective plane of order 3, is additive under \mathbb{Z}_3^3 that is the additive group of \mathbb{F}_{3^3} .

- Singer (13, 4, 1) difference set $D = \{0, 1, 3, 9\}$
- $(\mathbb{Z}_{13}, \mathcal{B})$ is cyclic symmetric design with parameters (13, 4, 1)

$$\{D+i \mid 0 \le i \le 12\}$$

- Let r be a root of the primitive polynomial $x^3 + 2x^2 + 1$ over \mathbb{F}_3
- \blacktriangleright Taking r as primitive element of $\mathbb{F}_{3^3},$ a generator of the subgroup of $\mathbb{F}_{3^3}^*$ of order 13 is $g=r^2$
- We check

$$\sigma_1 = \sum_{d \in D} g^d = g^0 + g^1 + g^3 + g^9 = r^0 + r^2 + r^6 + r^{18} =$$
$$= (0, 0, 1) + (1, 0, 0) + (2, 2, 0) + (0, 1, 1) = (0, 0, 2)$$

and

$$\sigma_{-1} = \sum_{d \in D} g^{-d} = g^0 + g^{-1} + g^{-3} + g^{-9} = r^0 + r^{-2} + r^{-6} + r^{-18} =$$
$$= (0, 0, 1) + (0, 2, 1) + (2, 0, 2) + (1, 1, 2) = (0, 0, 0)$$

Additivity of cyclic symmetric designs

The point-hyperplane design of PG(2,3) is additive under \mathbb{Z}_3^3 .

▶ In other words PG(2,3) can be seen as the design (V, B) where

 $V = \{001, 100, 122, 220, 112, 121, 120, 020, 201, 011, 202, 111, 021\}$

 \blacktriangleright and where ${\cal B}$ consists of the following zero-sum blocks

$\{001, 021, 202, 112\},\$	$\{021, 111, 011, 220\},\$	$\{111, 202, 201, 122\},\$
$\{202, 011, 020, 100\},\$	$\{011, 201, 120, 001\},$	$\{201, 020, 121, 021\},\$
$\{020, 120, 112, 111\},\$	$\{120, 121, 220, 202\},$	$\{121, 112, 122, 011\},\$
$\{112, 220, 100, 201\},\$	$\{220, 122, 001, 020\},$	$\{122, 100, 021, 120\},\$
	$\{100, 001, 111, 121\}$	

Additivity of cyclic symmetric designs

- There is a (143, 71, 35) difference set \Rightarrow cyclic symmetric (143, 71, 35) design
- The prime divisor of the order $k \lambda = 71 35 = 36 = 2^2 \cdot 3^2$ are 2 and 3
- $ord_{143}(2) = 60$

• $ord_{143}(3) = 15$

Example

The cyclic symmetric (143,71,35) design is additive under \mathbb{Z}_2^{60} and under \mathbb{Z}_3^{15} at the same time.

[Cageggi, Falcone, Pavone, 2017]

Parameters	Group	Strongly	Strictly	Almost str.	Description
(v,k,λ)	G	\checkmark			symmetric design
(v,k,λ)	$\mathbb{Z}_k \times \mathbb{Z}_{k-\lambda}^{\frac{v-1}{2}}$	\checkmark			symmetric design, $k-\lambda mid k$, prime

イロト イヨト イヨト イヨト 三日

Parameters	Group	Strongly	Strictly	Al. str.	Description
$(p^n, p, 1)$	$\mathbb{F}_p n$		\checkmark		$p\in\{5,7\},n\geq3,\mathrm{not}$ isomorphic to $\mathrm{AG}_1(n,p)$
(v, k, 1)	$G \times \mathbb{F}_q$		\checkmark		$\begin{array}{c} k \not\equiv 2 \pmod{4}, \ k \not= \\ 2^3 \geq 12 \end{array} $
$\left([n]_q,[d]_q,1\right)$	$\mathbb{Z}_{q^d}^{[n+1]q}$	\checkmark			$PG_d(n,q)$
$([n]_q, [d]_q, 1)$	\mathbb{F}_q^{n+1}				$PG_d(n,q)$
(v,k,λ)	$\mathbb{Z}_{k-\lambda}^v$	\checkmark			symmetric design
(v,k,λ)	\mathbb{Z}_p^t				cyclic symmetric design, p a prime dividing $k - \lambda$ but not $v, t = ord_v(p)$.
$(4\lambda + 3, 2\lambda + 1, \lambda)$	\mathbb{Z}_p^t				Paley design, $v = 4\lambda + 3$ prime, p prime divisor of $\lambda + 1$, $t = ord_v(p)$
$(4\lambda + 3, 2\lambda + 1, \lambda)$	\mathbb{Z}_2^t			\checkmark	$v = 2^t - 1$ is a Mersenne prime

New examples [Buratti, A.N., 2023, 202?]

16 / 17

Thank you for your attention!