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2-designs

Definition
A 2-(v, k, λ) design is a pair (V,B) such that

I V is a set of v points;

I B is a collection of k-subsets of V (called blocks);

I each 2-subset of V is contained in λ blocks.

Figure: The Fano plane. 2-(7, 3, 1) design.

I A 2-design is symmetric if |V | = |B|.

I A Steiner system is a design with λ = 1.
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Additive 2-designs

Definition (Cageggi, Falcone, Pavone, 2017)
A design (V,B) is additive under an abelian group G if

I V ⊆ G and

I
∑
x∈B

x = 0, ∀B ∈ B.

Examples:

Parameters Group Description

(pmn, pm, 1) Zmnp AG1(n, pm), points-lines design of AG(n, pm)

([n]2, 3, 1) Zn2 PG1(n−1, 2), points-lines design of PG(n−1, 2)

The number of points of PG(n− 1, q) is denoted by [n]q = qn−1
q−1
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Designs over Finite Fields ⇒ Additive Designs

Definition (Cameron, 1974. Delsarte, 1976.)
A 2-(v, k, λ) design over Fq is a pair (V,B) such that

I V is the set of points of PG(v − 1, q)

I B is a collection of (k − 1)-dimensional subspaces PG(v − 1, q) (blocks)

I each line is contained in λ blocks.

Properties:

I (v, k, λ) design over Fq is a classical ([v]q , [k]q , λ) design

I (v, k, λ) design over F2 is additive under Zv2

Parameters Description Reference

([v]2, 7, 7) (v, 3, 7) design over F2 for
all v odd

Thomas, 1987 + Buratti, A.N., 2019

(8191, 7, 1) (13, 3, 1) design over F2 Braun, Etzion, Ostergaard, Vardy,
Wassermann, 2017
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Strongly Additive 2-designs

Definition
(V,B) is additive under an abelian group G if V ⊆ G and

∑
x∈B x = 0, ∀B ∈ B.

I strongly additive if B = {B ∈
(V
k

)
|
∑
x∈B x = 0}

I strictly additive if V = G

I almost strictly additive if V = G \ {0}

[Cageggi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

(pmn, pm, 1) Zmnp X AG1(n, p
m)

(p2, p, 1) Z
p(p−1)

2
p X AG1(2, p)

(v, k, λ) G X symmetric design

(v, k, λ) Zk × Z
v−1
2

k−λ X symmetric design,
k − λ 6 | k, prime
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Additive Steiner 2-Designs

Known inifinite families of additive Steiner designs [Cageggi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(pmn, pm, 1) Zmnp X AG1(n, p
m)

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

([2]q, q + 1, 1) Z
p(p−1)

2
p X PG1(2, q)

New examples [Buratti, A.N., 2023]

Parameters Group Strongly Strictly Almost str. Description

(53, 5, 1) F53 X not isomorphic to AG1(3, 5)

(73, 7, 1) F73 X not isomorphic to AG1(3, 7)

(pn, p, 1) Fpn X p ∈ {5, 7}, n ≥ 3, not iso-
morphic to AG1(n, p)
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Steiner G-super-regular 2-Designs

Definition
A Steiner 2-design is G-super-regular if it is

I is strictly additive under an abelian group G (the point set is exactly G) and

I G-regular (any translate of any block is a block as well)

Theorem (Buratti, A.N., 2023)
Let k ≥ 3, k 6≡ 2 (mod 4) and k 6= 2n · 3 ≥ 12.
There are infinitely many values of v for which there exists a super-regular (v, k, 1)
design.

I Group is G× Fq , where G is a non-binary group of order k and q a power of a
prime divisor of k

Group G is binary when G has exactly one involution. Otherwise we say that G is
non-binary group.
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Additive Steiner 2-Designs

Theorem (Buratti, A.N., 2023)
Let k ≥ 3, k 6≡ 2 (mod 4) and k 6= 2n · 3 ≥ 12.
There are infinitely many values of v for which there exists a super-regular (v, k, 1)
design.

Constructing examples is computationally hard!

k 3 4 5
AG1(n, 3) AG1(n, 4) AG1(n, 5)

k 6 7 8 9 10
21 · 3 AG1(n, 7) AG1(n, 8) AG1(n, 9) 2 (mod 4)

k 11 12 13 14
15

AG1(n, 11) 22 · 3 AG1(n, 13) 2 (mod 4)
?

I v = 15 · 5n, n ≥ 107
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New results on additive designs

Theorem (Buratti, A.N., 202?)
I Every design PGd(n, q) is additive under Fn+1

q .

I Every design PGd(n, q) is strongly additive under Z[n+1]q

qd
.

[Cageggi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(2n − 1, 3, 1) Zn2 X X PG1(n− 1, 2)

([2]q, q + 1, 1) Z
p(p−1)

2
p X PG1(2, q)
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New results on additive designs

Theorem (Buratti, A.N., 202?)
I A symmetric (v, k, λ) design is strongly additive under Zvk−λ.

I Let D be a cyclic symmetric (v, k, λ) design and let p be a prime dividing k − λ
but not v. Then D is additive under Ztp with t = ordv(p).

[Cageggi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(v, k, λ) G X symmetric design

(v, k, λ) Zk × Z
v−1
2

k−λ X symmetric design,
k − λ 6 | k, prime
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Additivity of cyclic symmetric designs

Definition (Cageggi, Falcone, Pavone, 2017)
A design (V,B) is additive under an abelian group G if there exists an injective map

f : V → G

such that f(B) is zero-sum for every block B ∈ B.

Every cyclic symmetric (v, k, λ) design is of the form

(Zv , {D + i | 0 ≤ i ≤ v − 1})

where D is a cyclic (v, k, λ) difference set.

An incidences structure (V,B) is cyclic if there exists a cyclic permutation on V
leaving B invariant.
A k-subset D of an additive group G is a (G, k, λ) difference set if each non-zero
element of G is covered λ times by the list of differences of D: ∆Dλ (G \ {0})
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Additivity of cyclic symmetric designs

Theorem (Buratti, A.N., 202?)
Let D be a cyclic symmetric (v, k, λ) design and let p be a prime dividing k − λ but
not v. Then D is additive under Ztp with t = ordv(p).

Proof:

I Let g be a generator of the subgroup of F∗
pt

of order v and consider the injective

maps f1 and f−1 defined as follows:

f1 : x ∈ Zv −→ gx ∈ Fpt , f−1 : x ∈ Zv −→ g−x ∈ Fpt .

I Consider the two sums

σ1 :=
∑
d∈D

f1(d) =
∑
d∈D

gd, σ−1 :=
∑
d∈D

f−1(d) =
∑
d∈D

g−d

I Calculate their product σ1 · σ−1 = (k − λ) + λ g
v−1
g−1

= 0

I Therefore
σ1 = 0, or σ−1 = 0

I Since∑
b∈B

f1(b) =
∑
d∈D

gd+i = σ1 · gi and
∑
b∈B

f−1(b) =
∑
d∈D

g−(d+i) = σ−1 · g−i

I Either f1 or f−1 is the map we are looking for
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Additivity of cyclic symmetric designs

Example
The point-hyperplane design of PG(2, 3), the projective plane of order 3, is additive
under Z3

3 that is the additive group of F33 .

I Singer (13, 4, 1) difference set D = {0, 1, 3, 9}
I (Z13,B) is cyclic symmetric design with parameters (13, 4, 1)

{D + i | 0 ≤ i ≤ 12}
I Let r be a root of the primitive polynomial x3 + 2x2 + 1 over F3
I Taking r as primitive element of F33 , a generator of the subgroup of F∗

33
of order

13 is g = r2

I We check

σ1 =
∑
d∈D

gd = g0 + g1 + g3 + g9 = r0 + r2 + r6 + r18 =

= (0, 0, 1) + (1, 0, 0) + (2, 2, 0) + (0, 1, 1) = (0, 0, 2)

I and

σ−1 =
∑
d∈D

g−d = g0 + g−1 + g−3 + g−9 = r0 + r−2 + r−6 + r−18 =

= (0, 0, 1) + (0, 2, 1) + (2, 0, 2) + (1, 1, 2) = (0, 0, 0)

I f−1 : x ∈ Z13 −→ g−x ∈ F33
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Additivity of cyclic symmetric designs

The point-hyperplane design of PG(2, 3) is additive under Z3
3.

I In other words PG(2, 3) can be seen as the design (V,B) where

V = {001, 100, 122, 220, 112, 121, 120, 020, 201, 011, 202, 111, 021}

I and where B consists of the following zero-sum blocks

{001, 021, 202, 112}, {021, 111, 011, 220}, {111, 202, 201, 122},

{202, 011, 020, 100}, {011, 201, 120, 001}, {201, 020, 121, 021},

{020, 120, 112, 111}, {120, 121, 220, 202}, {121, 112, 122, 011},

{112, 220, 100, 201}, {220, 122, 001, 020}, {122, 100, 021, 120},

{100, 001, 111, 121}
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Additivity of cyclic symmetric designs

I There is a (143, 71, 35) difference set ⇒ cyclic symmetric (143, 71, 35) design

I The prime divisor of the order k − λ = 71− 35 = 36 = 22 · 32 are 2 and 3

I ord143(2) = 60

I ord143(3) = 15

Example
The cyclic symmetric (143, 71, 35) design is additive under Z60

2 and under Z15
3 at the

same time.

[Cageggi, Falcone, Pavone, 2017]

Parameters Group Strongly Strictly Almost str. Description

(v, k, λ) G X symmetric design

(v, k, λ) Zk × Z
v−1
2

k−λ X symmetric design,
k − λ 6 | k, prime
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New results on additive designs

I New examples [Buratti, A.N., 2023, 202?]

Parameters Group Strongly Strictly Al. str. Description

(pn, p, 1) Fpn X p ∈ {5, 7}, n ≥ 3, not iso-
morphic to AG1(n, p)

(v, k, 1) G× Fq X k 6≡ 2 (mod 4), k 6=
23 ≥ 12

([n]q, [d]q, 1) Z[n+1]q

qd
X PGd(n, q)

([n]q, [d]q, 1) Fn+1
q PGd(n, q)

(v, k, λ) Zvk−λ X symmetric design

cyclic symmetric design,
(v, k, λ) Ztp p a prime dividing k−λ but

not v, t = ordv(p).
Paley design,

(4λ+ 3, 2λ+ 1, λ) Ztp v = 4λ + 3 prime, p
prime divisor of λ + 1, t =
ordv(p)

(4λ+ 3, 2λ+ 1, λ) Zt2 X v = 2t − 1 is a Mersenne
prime
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Thank you for your attention!
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