New constructions of higher dimensional Hadamard matrices and SBIBDs*

Vedran Krčadinac
University of Zagreb, Croatia
(joint work with Mario Osvin Pavčević and Kristijan Tabak)

> 10th Rijeka Conference on Combinatorial Objects and Their Applications (RICCOTA2023) 3-7 July, 2023, Rijeka, Croatia

[^0]
Outline

(1) What is a higher dimensional design?
(2) A brief survey
(3) Known constructions
(9) Paley-type Hadamard matrices
(3) Higher dimensional SBIBDs

What is a higher dimensional design?

What is a higher dimensional design?

A Hadamard matrix:
$\left[\begin{array}{rrrr}-1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right]$

What is a higher dimensional design?

A Hadamard matrix:

What is a higher dimensional design?

A Hadamard matrix:

What is a higher dimensional design?

A Hadamard matrix:

A Hadamard matrix of dimension n and order v is a function

$$
H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}
$$

such that all $(n-1)$-dimensional parallel layers are mutually orthogonal:

$$
\sum_{1 \leq i_{1}, \ldots, \hat{i}_{j}, \ldots, i_{n} \leq v} H\left(i_{1}, \ldots, a, \ldots, i_{n}\right) H\left(i_{1}, \ldots, b, \ldots, i_{n}\right)=v^{n-1} \delta_{a b}
$$

What is a higher dimensional design?

A Hadamard matrix:

A proper Hadamard matrix of dimension n and order v is a function

$$
H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}
$$

such that all 2-dimensional layers have orthogonal rows and columns (i.e. are Hadamard matrices in the usual sense).

What is a higher dimensional design?

A symmetric design (SBIBD):

What is a higher dimensional design?

A symmetric design (SBIBD):

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

What is a higher dimensional design?

A symmetric design (SBIBD):

What is a higher dimensional design?

A symmetric design (SBIBD):

What is a higher dimensional design?

A symmetric design (SBIBD):

An n-dimensional cube of symmetric (v, k, λ) designs is a function

$$
C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}
$$

such that all 2-dimensional layers ("slices") are incidence matrices of (v, k, λ) designs.

A brief survey

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

A brief survey

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.
J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices, Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), pp. 220-223, Lecture Notes in Math. 829, Springer, Berlin, 1980.
J. Hammer, J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices II, Proceedings of the Ninth Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1979), pp. 23-29, Congress. Numer. XXVII, Utilitas Math., Winnipeg, Man., 1980.

A brief survey

Y. X. Yang, Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

A brief survey

Y. X. Yang, Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.
W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67-81.
W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75-87.

A brief survey

Y. X. Yang, Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.
W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67-81.
W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75-87.
D. L. Flannery, Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra 192 (1997), no. 2, 749-779.
W. de Launey, D. L. Flannery, K. J. Horadam, Cocyclic Hadamard matrices and difference sets, Coding, cryptography and computer security (Lethbridge, AB, 1998), Discrete Appl. Math. 102 (2000), no. 1-2, 47-61.

A brief survey

Kenneth Ma, Equivalence classes of n-dimensional proper Hadamard matrices, Australas. J. Combin. 25 (2002), 3-17.
W. de Launey, R. M. Stafford, Automorphisms of higher-dimensional Hadamard matrices, J. Combin. Des. 16 (2008), no. 6, 507-544.

A brief survey

Kenneth Ma, Equivalence classes of n-dimensional proper Hadamard matrices, Australas. J. Combin. 25 (2002), 3-17.
W. de Launey, R. M. Stafford, Automorphisms of higher-dimensional Hadamard matrices, J. Combin. Des. 16 (2008), no. 6, 507-544.
Y. X. Yang, X. X. Niu, C. Q. Xu, Theory and applications of higherdimensional Hadamard matrices, Second edition, CRC Press, 2010.
K. J. Horadam, Hadamard matrices and their applications, Princeton University Press, Princeton, NJ, 2007.
W. de Launey, D. Flannery, Algebraic design theory, Mathematical Surveys and Monographs 175, American Math. Society, Providence, RI, 2011.

Known constructions

Theorem (Y. X. Yang, 1986): Product construction

Let $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ be a Hadamard matrix of order v. Then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is a proper n-dimensional Hadamard matrix of order v.

Known constructions

Theorem (Y. X. Yang, 1986): Product construction

Let $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ be a Hadamard matrix of order v. Then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1} h\left(i_{j}, i_{k}\right)
$$

is a proper n-dimensional Hadamard matrix of order v.
Y. X. Yang: 3D Hadamard matrix of order 6 (improper)

Known constructions

Theorem (Y. X. Yang, 1986): Product construction

Let $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ be a Hadamard matrix of order v. Then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is a proper n-dimensional Hadamard matrix of order v.
Y. X. Yang: 3D Hadamard matrix of order 6 (improper)

Known constructions

Theorem (Y. X. Yang, 1986): Product construction

Let $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ be a Hadamard matrix of order v. Then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1} h\left(i_{j}, i_{k}\right)
$$

is a proper n-dimensional Hadamard matrix of order v.
Y. X. Yang: 3D Hadamard matrix of order 6 (improper)

Known constructions

Theorem (Y. X. Yang, 1986): Product construction

Let $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ be a Hadamard matrix of order v. Then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is a proper n-dimensional Hadamard matrix of order v.
Y. X. Yang: 3D Hadamard matrix of order 6 (improper)

Known constructions

Theorem (Y. X. Yang): Dimension++

If h is an n-dimensional Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}, i_{n+1}\right)=h\left(i_{1}, \ldots, i_{n-1}, i_{n}+i_{n+1} \bmod v\right)
$$

is an $(n+1)$-dimensional Hadamard matrix of order v.

Known constructions

Theorem (Y. X. Yang): Dimension++

If h is an n-dimensional Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}, i_{n+1}\right)=h\left(i_{1}, \ldots, i_{n-1}, i_{n}+i_{n+1} \bmod v\right)
$$

is an $(n+1)$-dimensional Hadamard matrix of order v.

Theorem (Y. X. Yang): Digit construction

If h is a 2-dimensional Hadamard matrix of order $v=(2 t)^{s}, s>1$, then
$H\left(i_{0}, \ldots, i_{s-1}, j_{0}, \ldots, j_{s-1}\right)=$

$$
=h\left(i_{0}+(2 t) i_{1}+\ldots+(2 t)^{s-1} i_{s-1}, j_{0}+(2 t) j_{1}+\ldots+(2 t)^{s-1} j_{s-1}\right)
$$

is a (2s)-dimensional Hadamard matrix of order $2 t$.

Known constructions

Theorem (Y. X. Yang): Dimension++

If h is an n-dimensional Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}, i_{n+1}\right)=h\left(i_{1}, \ldots, i_{n-1}, i_{n}+i_{n+1} \bmod v\right)
$$

is an $(n+1)$-dimensional Hadamard matrix of order v.

Theorem (Y. X. Yang): Digit construction

If h is a 2-dimensional Hadamard matrix of order $v=(2 t)^{s}, s>1$, then

$$
\begin{aligned}
& H\left(i_{0}, \ldots, i_{s-1}, j_{0}, \ldots, j_{s-1}\right)= \\
& \quad=h\left(i_{0}+(2 t) i_{1}+\ldots+(2 t)^{s-1} i_{s-1}, j_{0}+(2 t) j_{1}+\ldots+(2 t)^{s-1} j_{s-1}\right)
\end{aligned}
$$

is a (2s)-dimensional Hadamard matrix of order $2 t$.

Corollary.

If the Hadamard conjecture is true, then n-dimensional Hadamard matrices exist for all even orders v and all $n \geq 4$.

Known constructions

Theorem (Y. X. Yang)

There exist 3-dimensional Hadamard matrices of orders $v=2 \cdot 3^{m}, m \geq 1$.

Known constructions

Theorem (Y. X. Yang)

There exist 3-dimensional Hadamard matrices of orders $v=2 \cdot 3^{m}, m \geq 1$.
Existence: $v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$

Known constructions

Theorem (Y. X. Yang)

There exist 3-dimensional Hadamard matrices of orders $v=2 \cdot 3^{m}, m \geq 1$. Existence: $v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$

Questions (Y. X. Yang's book)

5. Prove or disprove the existence of 3-dimensional Hadamard matrices of orders $4 k+2 \neq 2 \cdot 3^{m}$.
6. Construct more 3-dimensional Hadamard matrices of orders $4 k+2$.

Known constructions

Theorem (Y. X. Yang)

There exist 3-dimensional Hadamard matrices of orders $v=2 \cdot 3^{m}, m \geq 1$.
Existence: $v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$

Questions (Y. X. Yang's book)

5. Prove or disprove the existence of 3-dimensional Hadamard matrices of orders $4 k+2 \neq 2 \cdot 3^{m}$.
6. Construct more 3-dimensional Hadamard matrices of orders $4 k+2$.
R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics 12 (1933), 311-320.

Theorem (Paley, 1933)

Let q be an odd prime power. If $q \equiv 3(\bmod 4)$, there is a Hadamard matrix of order $v=q+1$. If $q \equiv 1(\bmod 4)$, there is a Hadamard matrix of order $v=2(q+1)$.

Paley-type Hadamard matrices

$$
\chi: \mathbb{F}_{q}^{*} \rightarrow\{1,-1\}, \quad \chi(a)= \begin{cases}1, & \text { if } a \text { is a square in } \mathbb{F}_{q}^{*} \\ -1, & \text { otherwise }\end{cases}
$$

Paley-type Hadamard matrices

$\chi: \mathbb{F}_{q}^{*} \rightarrow\{1,-1\}, \quad \chi(a)= \begin{cases}1, & \text { if } a \text { is a square in } \mathbb{F}_{q}^{*} \\ -1, & \text { otherwise }\end{cases}$
Paley type I matrix: $q \equiv 3(\bmod 4)$, indexed by $P G\left(1, \mathbb{F}_{q}\right)=\{\infty\} \cup \mathbb{F}_{q}$

$$
H(x, y)= \begin{cases}-1, & \text { if } x=y=\infty \\ 1, & \text { if } x=y \neq \infty \text { or } x=\infty \neq y \text { or } y=\infty \neq x \\ \chi(y-x), & \text { otherwise }\end{cases}
$$

Paley-type Hadamard matrices

$\chi: \mathbb{F}_{q}^{*} \rightarrow\{1,-1\}, \quad \chi(a)= \begin{cases}1, & \text { if } a \text { is a square in } \mathbb{F}_{q}^{*} \\ -1, & \text { otherwise }\end{cases}$
Paley type I matrix: $q \equiv 3(\bmod 4)$, indexed by $P G\left(1, \mathbb{F}_{q}\right)=\{\infty\} \cup \mathbb{F}_{q}$

$$
H(x, y)= \begin{cases}-1, & \text { if } x=y=\infty \\ 1, & \text { if } x=y \neq \infty \text { or } x=\infty \neq y \text { or } y=\infty \neq x \\ \chi(y-x), & \text { otherwise }\end{cases}
$$

J. Hammer, J. R. Seberry, Higher-dimensional orthogonal designs and applications, IEEE Trans. Inform. Theory 27 (1981), no. 6, 772-779.

Paley cube: $q \equiv 3(\bmod 4), \chi(0)=-1$

$$
H\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1, & \text { if } x_{i}=\infty \text { for at least one } i \\ \chi\left(x_{1}+\ldots+x_{n}\right), & \text { otherwise }\end{cases}
$$

Paley-type Hadamard matrices

$$
n=3, q=7:
$$

Paley-type Hadamard matrices

V. Krčadinac, M. O. Pavčević, K. Tabak, Three-dimensional Hadamard matrices of Paley type, 2023. https://arxiv.org/abs/2305. 12415
$H: P G(1, q)^{3} \rightarrow\{1,-1\}, q \equiv 1$ or $3(\bmod 4)$,

$$
H(x, y, z)= \begin{cases}-1, & \text { if } x=y=z \\ 1, & \text { if } x=y \neq z \\ & \text { or } x=z \neq y \\ \chi(z-y), & \text { or } y=z \neq x, \\ \chi(x-z), & \text { if } x=\infty, \\ \chi(y-x), & \text { if } y=\infty, \\ \chi((x-y)(y-z)(z-x)), & \text { otherwise }\end{cases}
$$

Paley-type Hadamard matrices

$$
n=3, q=7
$$

Paley-type Hadamard matrices

$$
n=3, q=9
$$

Paley-type Hadamard matrices

Theorem (V.K., M.O.Pavčević, K.Tabak, 2023)
 $H(x, y, z)$ is a 3-dimensional Hadamard matrix of order $v=q+1$ for every odd prime power q. If $q \equiv 3(\bmod 4)$, it is proper with all 2-dimensional layers equivalent to the Paley type I matrix.

Paley-type Hadamard matrices

Theorem (V.K., M.O.Pavčević, K.Tabak, 2023)

$H(x, y, z)$ is a 3-dimensional Hadamard matrix of order $v=q+1$ for every odd prime power q. If $q \equiv 3(\bmod 4)$, it is proper with all 2-dimensional layers equivalent to the Paley type I matrix.

Existence: $v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$

Paley-type Hadamard matrices

Theorem (V.K., M.O.Pavčević, K.Tabak, 2023)

$H(x, y, z)$ is a 3-dimensional Hadamard matrix of order $v=q+1$ for every odd prime power q. If $q \equiv 3(\bmod 4)$, it is proper with all 2-dimensional layers equivalent to the Paley type I matrix.

Existence: $v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots$

$$
v=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62, \ldots
$$

Higher dimensional SBIBDs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

Higher dimensional SBIBDs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

Theorem: Difference cubes

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group of order v and $D \subseteq G$ a (v, k, λ) difference set. Then $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}, C\left(i_{1}, \ldots, i_{n}\right)=$ [$g_{i_{1}} \cdots g_{i_{n}} \in D$] is an n-dimensional cube of symmetric (v, k, λ) designs.

Here and in the sequel, [.] is the Iverson bracket.

Higher dimensional SBIBDs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

Theorem: Difference cubes

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group of order v and $D \subseteq G$ a (v, k, λ) difference set. Then $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}, C\left(i_{1}, \ldots, i_{n}\right)=$ [$g_{i_{1}} \cdots g_{i_{n}} \in D$] is an n-dimensional cube of symmetric (v, k, λ) designs.

Here and in the sequel, [.] is the Iverson bracket.

There is no product construction for higher dimensional SBIBDs!

Higher dimensional SBIBDs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

Theorem: Difference cubes

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group of order v and $D \subseteq G$ a (v, k, λ) difference set. Then $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}, C\left(i_{1}, \ldots, i_{n}\right)=$ [$g_{i_{1}} \cdots g_{i_{n}} \in D$] is an n-dimensional cube of symmetric (v, k, λ) designs.

Here and in the sequel, [.] is the Iverson bracket.

There is no product construction for higher dimensional SBIBDs!
For parameters $(25,9,3)$ there are exactly 78 designs, but no difference sets.

Higher dimensional SBIBDs

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

Theorem: Difference cubes

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group of order v and $D \subseteq G$ a (v, k, λ) difference set. Then $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}, C\left(i_{1}, \ldots, i_{n}\right)=$ [$g_{i_{1}} \cdots g_{i_{n}} \in D$] is an n-dimensional cube of symmetric (v, k, λ) designs.

Here and in the sequel, [.] is the Iverson bracket.

There is no product construction for higher dimensional SBIBDs!
For parameters $(25,9,3)$ there are exactly 78 designs, but no difference sets. Are there higher dimensional cubes of $(25,9,3)$ designs?

Higher dimensional SBIBDs

The constructions described so far (known and new) give rise to n-dimensional designs such that all 2-dimensional slices are equivalent.

Higher dimensional SBIBDs

The constructions described so far (known and new) give rise to n-dimensional designs such that all 2-dimensional slices are equivalent.

Example. There are three $(16,6,2)$ designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

Higher dimensional SBIBDs

The constructions described so far (known and new) give rise to n-dimensional designs such that all 2-dimensional slices are equivalent.

Example. There are three $(16,6,2)$ designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

The three designs can be obtained from difference sets in some of the 14 groups of order 16 .

Higher dimensional SBIBDs

ID	Structure	Nds	$\operatorname{dev} D$
1	\mathbb{Z}_{16}	0	-
2	\mathbb{Z}_{4}^{2}	3	\mathcal{D}_{1}
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	\mathcal{D}_{1}
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	\mathcal{D}_{1}
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	\mathcal{D}_{1}
7	D_{16}	0	-
8	$Q D_{16}$	2	\mathcal{D}_{1}
9	Q_{16}	2	\mathcal{D}_{1}
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	\mathcal{D}_{1}
11	$\mathbb{Z}_{2} \times D_{8}$	2	\mathcal{D}_{1}
12	$\mathbb{Z}_{2} \times Q_{8}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
14	\mathbb{Z}_{2}^{4}	1	\mathcal{D}_{1}

Higher dimensional SBIBDs

ID	Structure	Nds	$\operatorname{dev} D$
1	\mathbb{Z}_{16}	0	-
2	\mathbb{Z}_{4}^{2}	3	\mathcal{D}_{1}
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	\mathcal{D}_{1}
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	\mathcal{D}_{1}
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	\mathcal{D}_{1}
7	D_{16}	0	-
8	$Q D_{16}$	2	\mathcal{D}_{1}
9	Q_{16}	2	\mathcal{D}_{1}
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	\mathcal{D}_{1}
11	$\mathbb{Z}_{2} \times D_{8}$	2	\mathcal{D}_{1}
12	$\mathbb{Z}_{2} \times Q_{8}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
14	\mathbb{Z}_{2}^{4}	1	\mathcal{D}_{1}

Higher dimensional SBIBDs

ID	Structure	Nds	$\operatorname{dev} D$
1	\mathbb{Z}_{16}	0	-
2	\mathbb{Z}_{4}^{2}	3	\mathcal{D}_{1}
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	\mathcal{D}_{1}
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	\mathcal{D}_{1}
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	\mathcal{D}_{1}
7	D_{16}	0	-
8	$Q D_{16}$	2	\mathcal{D}_{1}
9	Q_{16}	2	\mathcal{D}_{1}
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	\mathcal{D}_{1}
11	$\mathbb{Z}_{2} \times D_{8}$	2	\mathcal{D}_{1}
12	$\mathbb{Z}_{2} \times Q_{8}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
14	\mathbb{Z}_{2}^{4}	1	\mathcal{D}_{1}

$$
\operatorname{dev} D=\mathcal{D}_{1}
$$

Higher dimensional SBIBDs

ID	Structure	Nds	$\operatorname{dev} D$
1	\mathbb{Z}_{16}	0	-
2	\mathbb{Z}_{4}^{2}	3	\mathcal{D}_{1}
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	\mathcal{D}_{1}
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	\mathcal{D}_{1}
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	\mathcal{D}_{1}
7	D_{16}	0	-
8	$Q D_{16}$	2	\mathcal{D}_{1}
9	Q_{16}	2	\mathcal{D}_{1}
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	\mathcal{D}_{1}
11	$\mathbb{Z}_{2} \times D_{8}$	2	\mathcal{D}_{1}
12	$\mathbb{Z}_{2} \times Q_{8}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
14	\mathbb{Z}_{2}^{4}	1	\mathcal{D}_{1}

Higher dimensional SBIBDs

ID	Structure	Nds	$\operatorname{dev} D$
1	\mathbb{Z}_{16}	0	-
2	\mathbb{Z}_{4}^{2}	3	\mathcal{D}_{1}
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	\mathcal{D}_{1}
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	\mathcal{D}_{1}
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	\mathcal{D}_{1}
7	D_{16}	0	-
8	$Q D_{16}$	2	\mathcal{D}_{1}
9	Q_{16}	2	\mathcal{D}_{1}
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	\mathcal{D}_{1}
11	$\mathbb{Z}_{2} \times D_{8}$	2	\mathcal{D}_{1}
12	$\mathbb{Z}_{2} \times Q_{8}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
14	\mathbb{Z}_{2}^{4}	1	\mathcal{D}_{1}

Higher dimensional SBIBDs

ID	Structure	Nds	$\operatorname{dev} D$
1	\mathbb{Z}_{16}	0	-
2	\mathbb{Z}_{4}^{2}	3	\mathcal{D}_{1}
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	\mathcal{D}_{1}
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	\mathcal{D}_{1}
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	\mathcal{D}_{1}
7	D_{16}	0	-
8	$Q D_{16}$	2	\mathcal{D}_{1}
9	Q_{16}	2	\mathcal{D}_{1}
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	\mathcal{D}_{1}
11	$\mathbb{Z}_{2} \times D_{8}$	2	\mathcal{D}_{1}
12	$\mathbb{Z}_{2} \times Q_{8}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$
14	\mathbb{Z}_{2}^{4}	1	\mathcal{D}_{1}

Higher dimensional SBIBDs

> Theorem: Group cubes
> If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ $\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Higher dimensional SBIBDs

Theorem: Group cubes
 If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ $\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Group $\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{16}\right\}$

Higher dimensional SBIBDs

Theorem: Group cubes
If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ [$\left.g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Group $\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{16}\right\}$

Higher dimensional SBIBDs

Theorem: Group cubes
If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ [$\left.g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Group $\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{3}=\left\{B_{1}, \ldots, B_{16}\right\}$

Higher dimensional SBIBDs

Theorem: Group cubes
If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ [$\left.g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Group $\mathbb{Z}_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{3}=\left\{B_{1}, \ldots, B_{8}, B_{9}, \ldots, B_{16}\right\}$

Higher dimensional SBIBDs

Theorem: Group cubes

If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ $\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Group $Q_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{8}, B_{9}, \ldots, B_{16}\right\}$

Higher dimensional SBIBDs

Theorem: Group cubes

If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ $\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Group $Q_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{4}, B_{5}, \ldots, B_{16}\right\}$

Higher dimensional SBIBDs

Theorem: Group cubes
If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then $C\left(i_{1}, \ldots, i_{n}\right)=$ [$\left.g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]$ is an n-dimensional cube of symmetric designs.

Group $Q_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{12}, B_{13}, \ldots, B_{16}\right\}$

Higher dimensional SBIBDs

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Higher dimensional SBIBDs

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Theorem.

The set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent non-difference group cubes constructed in $\mathbb{Z}_{2}^{2 m}$ for every $m \geq 2$ and $n \geq 3$.

Higher dimensional SBIBDs

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Theorem.

The set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent non-difference group cubes constructed in $\mathbb{Z}_{2}^{2 m}$ for every $m \geq 2$ and $n \geq 3$.

The parameters are of Menon type. Thus, by exchanging $0 \rightarrow-1$ the cubes are transformed to n-dimensional Hadamard matrices with inequivalent slices. These could not have been obtained by previously known construction.

Higher dimensional SBIBDs

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Higher dimensional SBIBDs

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Non-group cubes?

Higher dimensional SBIBDs

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Non-group cubes?

Higher dimensional SBIBDs

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Non-group cubes?

Higher dimensional SBIBDs

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Non-group cubes?

Proposition.

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.

That's all!

Commercial

Constructions Conference April 7-13, 2024, Dubrovnik, Croatia

Combinatorial Constructions Conference (CCC) will take place at the Centre for Advanced Academic Studies in Dubrovnik, Croatia.
April 7-13, 2024

Invited speakers: Marco Buratti, Italy
Eimear Byrne, Ireland
Dean Crnković, Croatia
Daniel Horsley, Australia

Michael Kiermaier, Germany Patric Östergård, Finland Kai-Uwe Schmidt, Germany
https://web.math.pmf.unizg.hr/acco/meetings.php

[^0]: * This work was fully supported by the Croatian Science Foundation under the project 9752.

