Dual incidences arising from a subsets of spaces*

Kristijan Tabak

Rochester Institute of Technology, Zagreb campus

Rijeka Conference on Combinatorial Objects and Their Applications

$$
\begin{gathered}
\text { July } 3-7,2023 \text {, Rijeka, Croatia } \\
\text { RICCOTA } 2023
\end{gathered}
$$

[^0]
Motivation and definitions

A design with parameters $t-(v, k, \lambda)$ is a collection \mathcal{B} of k-element subsets (blocks) of a v-element set \mathcal{P}, such that each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.

Motivation and definitions

A design with parameters $t-(v, k, \lambda)$ is a collection \mathcal{B} of k-element subsets (blocks) of a v-element set \mathcal{P}, such that each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.

Definition

Let V be a n-dimensional vector space over \mathbb{F}_{q}. The pair (V, \mathcal{H}) is a $t-(n, k, \lambda)_{q}$ design if $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ and if for every $T \in\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ there are exactly λ subspaces $H \in \mathcal{H}$ such that $T \leq H$.

Motivation and definitions

V will denote an n-dimensional vector space over a finite field \mathbb{F}_{q}

Motivation and definitions

V will denote an n-dimensional vector space over a finite field \mathbb{F}_{q}
The set of all s-dimensional subspaces of V will be denoted by $\left[\begin{array}{l}V \\ s\end{array}\right]_{q}$

Motivation and definitions

V will denote an n-dimensional vector space over a finite field \mathbb{F}_{q}
The set of all s-dimensional subspaces of V will be denoted by $\left[\begin{array}{l}V \\ s\end{array}\right]_{q}$
Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ and let $M<V$ be an arbitrary hyperplane

Motivation and definitions

V will denote an n-dimensional vector space over a finite field \mathbb{F}_{q}
The set of all s-dimensional subspaces of V will be denoted by $\left[\begin{array}{l}V \\ s\end{array}\right]_{q}$
Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ and let $M<V$ be an arbitrary hyperplane
then we define $\mathcal{H}_{M}=\{H \in \mathcal{H} \mid H \leq M\}$.

Motivation and definitions

V will denote an n-dimensional vector space over a finite field \mathbb{F}_{q}
The set of all s-dimensional subspaces of V will be denoted by $\left[\begin{array}{l}V \\ s\end{array}\right]_{q}$
Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ and let $M<V$ be an arbitrary hyperplane
then we define $\mathcal{H}_{M}=\{H \in \mathcal{H} \mid H \leq M\}$.

Let $W \leq V$ be an arbitrary 1-dimensional subspace,

Motivation and definitions

V will denote an n-dimensional vector space over a finite field \mathbb{F}_{q}
The set of all s-dimensional subspaces of V will be denoted by $\left[\begin{array}{l}V \\ s\end{array}\right]_{q}$
Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ and let $M<V$ be an arbitrary hyperplane
then we define $\mathcal{H}_{M}=\{H \in \mathcal{H} \mid H \leq M\}$.

Let $W \leq V$ be an arbitrary 1-dimensional subspace,
then we define $\mathcal{H}_{W}=\{H \in \mathcal{H} \mid W \leq H\}$.

The main definition

Definition:

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$. The incidence structures $\left(\mathcal{H}, \mathcal{D}_{\max }(\mathcal{H})\right)$ and $\left(\mathcal{H}, \mathcal{D}_{\min }(\mathcal{H})\right)$ are given with their respective blocks, $\mathcal{D}_{\text {max }}(\mathcal{H})=\left\{\mathcal{H}_{M} \mid M \leq V, \operatorname{dim} M=n-1\right\}$ and $\mathcal{D}_{\text {min }}(\mathcal{H})=\left\{\mathcal{H}_{W} \mid W \leq V, \operatorname{dim} W=1\right\}$.

The main definition

Definition:

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$. The incidence structures $\left(\mathcal{H}, \mathcal{D}_{\max }(\mathcal{H})\right)$ and $\left(\mathcal{H}, \mathcal{D}_{\min }(\mathcal{H})\right)$ are given with their respective blocks, $\mathcal{D}_{\text {max }}(\mathcal{H})=\left\{\mathcal{H}_{M} \mid M \leq V, \operatorname{dim} M=n-1\right\}$ and $\mathcal{D}_{\text {min }}(\mathcal{H})=\left\{\mathcal{H}_{W} \mid W \leq V, \operatorname{dim} W=1\right\}$.
$\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\text {max }}(\mathcal{H})$ stand as two extreme antipodes mutually connected with some arbitrary subset \mathcal{H} of k-dimensional subspaces of V.

The main definition

Definition:

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$. The incidence structures $\left(\mathcal{H}, \mathcal{D}_{\max }(\mathcal{H})\right)$ and $\left(\mathcal{H}, \mathcal{D}_{\min }(\mathcal{H})\right)$ are given with their respective blocks, $\mathcal{D}_{\text {max }}(\mathcal{H})=\left\{\mathcal{H}_{M} \mid M \leq V, \operatorname{dim} M=n-1\right\}$ and $\mathcal{D}_{\text {min }}(\mathcal{H})=\left\{\mathcal{H}_{W} \mid W \leq V, \operatorname{dim} W=1\right\}$.
$\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\text {max }}(\mathcal{H})$ stand as two extreme antipodes mutually connected with some arbitrary subset \mathcal{H} of k-dimensional subspaces of V.

The main goal is to establish the connection between their respective incidence matrices,

The main definition

Definition:

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$. The incidence structures $\left(\mathcal{H}, \mathcal{D}_{\text {max }}(\mathcal{H})\right)$ and $\left(\mathcal{H}, \mathcal{D}_{\text {min }}(\mathcal{H})\right)$ are given with their respective blocks, $\mathcal{D}_{\text {max }}(\mathcal{H})=\left\{\mathcal{H}_{M} \mid M \leq V, \operatorname{dim} M=n-1\right\}$ and $\mathcal{D}_{\text {min }}(\mathcal{H})=\left\{\mathcal{H}_{W} \mid W \leq V, \operatorname{dim} W=1\right\}$.
$\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\text {max }}(\mathcal{H})$ stand as two extreme antipodes mutually connected with some arbitrary subset \mathcal{H} of k-dimensional subspaces of V.

The main goal is to establish the connection between their respective incidence matrices,
especially in the case when \mathcal{H} is a $t-(n, k, \lambda)_{q}$ design.

Derived and Residual design

Let $W \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$. The derived design $\operatorname{Der}_{W}(\mathcal{H})$ is defined as

Derived and Residual design

Let $W \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$. The derived design $\operatorname{Der}_{W}(\mathcal{H})$ is defined as
$\operatorname{Der}_{W}(\mathcal{H})=(V / W,\{H / W \mid W \leq H \in \mathcal{H}\})$.

Derived and Residual design

Let $W \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$. The derived design $\operatorname{Der}_{W}(\mathcal{H})$ is defined as
$\operatorname{Der}_{W}(\mathcal{H})=(V / W,\{H / W \mid W \leq H \in \mathcal{H}\})$.

The residual design is defined as $\operatorname{Res}_{M}(\mathcal{H})=(M,\{H \mid H \in \mathcal{H}, H \leq M\})$ for some $M \in\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}$.

Derived and Residual design

Let $W \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$. The derived design $\operatorname{Der} w(\mathcal{H})$ is defined as
$\operatorname{Der}_{W}(\mathcal{H})=(V / W,\{H / W \mid W \leq H \in \mathcal{H}\})$.

The residual design is defined as $\operatorname{Res}_{M}(\mathcal{H})=(M,\{H \mid H \in \mathcal{H}, H \leq M\})$ for some $M \in\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}$.

Notice that $\operatorname{Der}_{W}(\mathcal{H})=\left(V / W, \mathcal{H}_{W} / W\right)$, where $\mathcal{H}_{W} / W=\left\{H / W \mid H \in \mathcal{H}_{W}\right\}$. Furthermore,

Derived and Residual design

Let $W \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$. The derived design $\operatorname{Der} w(\mathcal{H})$ is defined as
$\operatorname{Der}_{W}(\mathcal{H})=(V / W,\{H / W \mid W \leq H \in \mathcal{H}\})$.

The residual design is defined as $\operatorname{Res}_{M}(\mathcal{H})=(M,\{H \mid H \in \mathcal{H}, H \leq M\})$ for some $M \in\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}$.

Notice that $\operatorname{Der}_{W}(\mathcal{H})=\left(V / W, \mathcal{H}_{W} / W\right)$, where $\mathcal{H}_{W} / W=\left\{H / W \mid H \in \mathcal{H}_{W}\right\}$. Furthermore,
$\operatorname{Res}_{M}(\mathcal{H})=\left(M, \mathcal{H}_{M}\right)$.

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Let $\mathcal{H}=\left\{H_{j} \mid j=1, \ldots, m\right\}$, where $m=|\mathcal{H}|$.

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Let $\mathcal{H}=\left\{H_{j} \mid j=1, \ldots, m\right\}$, where $m=|\mathcal{H}|$.
Let $\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}=\left\{W_{i} \mid i=1, \ldots,\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}\right\}$ and $\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}=\left\{M_{i} \mid i=1, \ldots,\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}\right\}$.

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Let $\mathcal{H}=\left\{H_{j} \mid j=1, \ldots, m\right\}$, where $m=|\mathcal{H}|$.
Let $\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}=\left\{W_{i} \mid i=1, \ldots,\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}\right\}$ and $\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}=\left\{M_{i} \mid i=1, \ldots,\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}\right\}$.
Matrices $A=\left(A_{i j}\right)$ and $B=\left(B_{i j}\right)$, with the entries from the set $\{0,1\}$,

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\text {min }}(\mathcal{H})$

Let $\mathcal{H}=\left\{H_{j} \mid j=1, \ldots, m\right\}$, where $m=|\mathcal{H}|$.
Let $\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}=\left\{W_{i} \mid i=1, \ldots,\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}\right\}$ and $\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}=\left\{M_{i} \mid i=1, \ldots,\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}\right\}$.
Matrices $A=\left(A_{i j}\right)$ and $B=\left(B_{i j}\right)$, with the entries from the set $\{0,1\}$,
where $A_{i j}=1$ if $W_{i} \leq H_{j}$ and $B_{i j}=1$ if $H_{j} \leq M_{i}$ are

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Let $\mathcal{H}=\left\{H_{j} \mid j=1, \ldots, m\right\}$, where $m=|\mathcal{H}|$.
Let $\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}=\left\{W_{i} \mid i=1, \ldots,\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}\right\}$ and $\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}=\left\{M_{i} \mid i=1, \ldots,\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}\right\}$.
Matrices $A=\left(A_{i j}\right)$ and $B=\left(B_{i j}\right)$, with the entries from the set $\{0,1\}$,
where $A_{i j}=1$ if $W_{i} \leq H_{j}$ and $B_{i j}=1$ if $H_{j} \leq M_{i}$ are
incidence matrices of incidence structures $\mathcal{D}_{\min }(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$.

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Let $\mathcal{H}=\left\{H_{j} \mid j=1, \ldots, m\right\}$, where $m=|\mathcal{H}|$.
Let $\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}=\left\{W_{i} \mid i=1, \ldots,\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}\right\}$ and $\left[\begin{array}{c}V \\ n-1\end{array}\right]_{q}=\left\{M_{i} \mid i=1, \ldots,\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}\right\}$.
Matrices $A=\left(A_{i j}\right)$ and $B=\left(B_{i j}\right)$, with the entries from the set $\{0,1\}$,
where $A_{i j}=1$ if $W_{i} \leq H_{j}$ and $B_{i j}=1$ if $H_{j} \leq M_{i}$ are
incidence matrices of incidence structures $\mathcal{D}_{\min }(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$.

Let $C=\left(C_{i j}\right)$ be a matrix, with the entries from the set $\{0,1\}$, such that $C_{i j}=1$ if $M_{j} \cap W_{i}=\{0\}$ (trivial intersection).

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Theorem (duality):

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$, where A and B are incidence matrices of $\mathcal{D}_{\min }(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$. Then the following holds:
(1) $A=J-\frac{1}{q^{n-k-1}} C B$,
(1) $B=J-\frac{1}{q^{k-1}} C^{t} A$.

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Theorem (duality):

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$, where A and B are incidence matrices of $\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$. Then the following holds:
(1) $A=J-\frac{1}{q^{n-k-1}} C B$,
(大) $B=J-\frac{1}{q^{k-1}} C^{t} A$.
the following holds (in the group ring $\mathbb{Q}[V]$):

$$
\mathcal{H}_{M_{i}}=\mathcal{H}-\frac{1}{q^{k-1}} \sum_{W_{j} \cap M_{i}=\{0\}} \mathcal{H}_{W_{j}}, \mathcal{H}_{W_{j}}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{W_{j} \cap M_{i}=\{0\}} \mathcal{H}_{M_{i}} .
$$

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\text {min }}(\mathcal{H})$

Theorem (duality):

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$, where A and B are incidence matrices of $\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$$
\mathcal{D}_{\max }(\mathcal{H})+q^{n-k} \mathcal{D}_{\min }(\mathcal{H})=\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q} \mathcal{H} .
$$

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Theorem (duality):

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$, where A and B are incidence matrices of $\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$$
\mathcal{D}_{\max }(\mathcal{H})+q^{n-k} \mathcal{D}_{\min }(\mathcal{H})=\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q} \mathcal{H} .
$$

Using the results from M. Kiermaier, M.-O. Pavčević, Intersection Numbers For Subspace Designs, Journal of Combinatorial Designs, (23), 11 (2015), pp 463-480

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\text {min }}(\mathcal{H})$

Theorem (duality):

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$, where A and B are incidence matrices of $\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$$
\mathcal{D}_{\max }(\mathcal{H})+q^{n-k} \mathcal{D}_{\min }(\mathcal{H})=\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q} \mathcal{H} .
$$

Using the results from M. Kiermaier, M.-O. Pavčević, Intersection Numbers For Subspace Designs, Journal of Combinatorial Designs, (23), 11 (2015), pp 463-480
$|\mathcal{H}|=\lambda\left[\begin{array}{l}n \\ t\end{array}\right]_{q} /\left[\begin{array}{l}k \\ t\end{array}\right]_{q},\left|\mathcal{H}_{W_{j}}\right|=\lambda\left[\begin{array}{l}n-1 \\ t-1\end{array}\right]_{q} /\left[\begin{array}{l}k-1 \\ t-1\end{array}\right]_{q}$, and

Duality of $\mathcal{D}_{\max }(\mathcal{H})$ and $\mathcal{D}_{\min }(\mathcal{H})$

Theorem (duality):

Let $\mathcal{H} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$, where A and B are incidence matrices of $\mathcal{D}_{\text {min }}(\mathcal{H})$ and $\mathcal{D}_{\max }(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$$
\mathcal{D}_{\max }(\mathcal{H})+q^{n-k} \mathcal{D}_{\min }(\mathcal{H})=\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q} \mathcal{H} .
$$

Using the results from M. Kiermaier, M.-O. Pavčević, Intersection Numbers For Subspace Designs, Journal of Combinatorial Designs, (23), 11 (2015), pp 463-480
$|\mathcal{H}|=\lambda\left[\begin{array}{l}n \\ t\end{array}\right]_{q} /\left[\begin{array}{l}k \\ t\end{array}\right]_{q},\left|\mathcal{H}_{W_{j}}\right|=\lambda\left[\begin{array}{l}n-1 \\ t-1\end{array}\right]_{q} /\left[\begin{array}{l}k-1 \\ t-1\end{array}\right]_{q}$, and
$\left|\mathcal{H}_{W_{j}} \cap \mathcal{H}_{W_{s}}\right|=\lambda\left[\begin{array}{l}n-2 \\ t-2\end{array}\right]_{q} /\left[\begin{array}{l}k-2 \\ t-2\end{array}\right]_{q}$, where $W_{j} \neq W_{s}$.

Duality and incidence matrices

Theorem:

Let \mathcal{H} be a $t-(n, k, \lambda)_{q}$. The incidence matrix A of $\mathcal{D}_{\text {min }}(\mathcal{H})$ satisfies the following:
(1) $A A^{t}=\left(\alpha_{1}-\alpha_{2}\right) \lambda I+\alpha_{2} \lambda J$,
(1) $J A=\left[\begin{array}{l}k \\ 1\end{array}\right]_{q} J$.

Duality and incidence matrices

Theorem:

Let \mathcal{H} be a $t-(n, k, \lambda)_{q}$. The incidence matrix A of $\mathcal{D}_{\text {min }}(\mathcal{H})$ satisfies the following:
(1) $\boldsymbol{A} A^{t}=\left(\alpha_{1}-\alpha_{2}\right) \lambda I+\alpha_{2} \lambda J$,
(1) $J A=\left[\begin{array}{l}k \\ 1\end{array}\right]_{q} J$.

Lemma:

If \mathcal{H} is a $t-(n, k, \lambda)_{q}$ design and M is a hyperplane, then $\left|\mathcal{H}_{M}\right|=\frac{\left(\alpha_{0}-\alpha_{1}\right)}{q^{k}} \cdot \lambda$. If M and N are distinct hyperplanes, then
$\left|\mathcal{H}_{M} \cap \mathcal{H}_{N}\right|=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}} \cdot \lambda$.

Duality and incidence matrices

Theorem:

Let \mathcal{H} be a $t-(n, k, \lambda)_{q}$ design. The incidence matrix B of $\mathcal{D}_{\max }(\mathcal{H})$ satisfies the following:
(1) $B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J$, where $\beta=\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q} /\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}$,
(1) $J B=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Duality and incidence matrices

Theorem:

Let \mathcal{H} be a $t-(n, k, \lambda)_{q}$ design. The incidence matrix B of $\mathcal{D}_{\max }(\mathcal{H})$ satisfies the following:
(1) $B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J$, where $\beta=\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q} /\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}$,
(木) $J B=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Thank you!

[^0]: * This work was fully supported by the Croatian Science Foundation under the project 9752.

