Dual incidences arising from a subsets of spaces*

Kristijan Tabak

Rochester Institute of Technology, Zagreb campus

Rijeka Conference on Combinatorial Objects and Their Applications July 3 – 7, 2023, Rijeka, Croatia RICCOTA 2023

* This work was fully supported by the Croatian Science Foundation under the project 9752.

A design with parameters $t - (v, k, \lambda)$ is a collection \mathcal{B} of k-element subsets (blocks) of a v-element set \mathcal{P} , such that each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B} . A design with parameters $t - (v, k, \lambda)$ is a collection \mathcal{B} of k-element subsets (blocks) of a v-element set \mathcal{P} , such that each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B} .

Definition

Let V be a *n*-dimensional vector space over \mathbb{F}_q . The pair (V, \mathcal{H}) is a $t - (n, k, \lambda)_q$ design if $\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$ and if for every $T \in \begin{bmatrix} V \\ t \end{bmatrix}_q$ there are exactly λ subspaces $H \in \mathcal{H}$ such that $T \leq H$.

The set of all *s*-dimensional subspaces of *V* will be denoted by $\begin{bmatrix} V \\ s \end{bmatrix}_q$

3/10

The set of all *s*-dimensional subspaces of *V* will be denoted by $\begin{bmatrix} V \\ s \end{bmatrix}_q$

Let
$$\mathcal{H} \subseteq igg\lfloor k \\ k \end{bmatrix}_q$$
 and let $M < V$ be an arbitrary hyperplane

3/10

The set of all *s*-dimensional subspaces of *V* will be denoted by $\begin{bmatrix} V \\ s \end{bmatrix}_q$

Let
$$\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$$
 and let $M < V$ be an arbitrary hyperplane

then we define $\mathcal{H}_M = \{H \in \mathcal{H} \mid H \leq M\}.$

The set of all *s*-dimensional subspaces of *V* will be denoted by $\begin{bmatrix} V \\ s \end{bmatrix}_q$

Let
$$\mathcal{H} \subseteq igg\lfloor k \\ k \end{bmatrix}_q$$
 and let $M < V$ be an arbitrary hyperplane

then we define $\mathcal{H}_M = \{H \in \mathcal{H} \mid H \leq M\}.$

Let $W \leq V$ be an arbitrary 1-dimensional subspace,

3/10

The set of all *s*-dimensional subspaces of *V* will be denoted by $\begin{bmatrix} V \\ s \end{bmatrix}_q$

Let
$$\mathcal{H} \subseteq egin{bmatrix} V \ k \end{bmatrix}_q$$
 and let $M < V$ be an arbitrary hyperplane

then we define $\mathcal{H}_M = \{ H \in \mathcal{H} \mid H \leq M \}.$

Let $W \leq V$ be an arbitrary 1-dimensional subspace,

then we define $\mathcal{H}_W = \{ H \in \mathcal{H} \mid W \leq H \}.$

Definition:

Let
$$\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$$
. The incidence structures $(\mathcal{H}, \mathcal{D}_{max}(\mathcal{H}))$ and $(\mathcal{H}, \mathcal{D}_{min}(\mathcal{H}))$
are given with their respective blocks,
 $\mathcal{D}_{max}(\mathcal{H}) = \{\mathcal{H}_M \mid M \leq V, \text{ dim } M = n - 1\}$ and
 $\mathcal{D}_{min}(\mathcal{H}) = \{\mathcal{H}_W \mid W \leq V, \text{ dim } W = 1\}.$

Image: A matrix

æ

Definition:

Let
$$\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$$
. The incidence structures $(\mathcal{H}, \mathcal{D}_{max}(\mathcal{H}))$ and $(\mathcal{H}, \mathcal{D}_{min}(\mathcal{H}))$
are given with their respective blocks,
 $\mathcal{D}_{max}(\mathcal{H}) = \{\mathcal{H}_M \mid M \leq V, \text{ dim } M = n - 1\}$ and
 $\mathcal{D}_{min}(\mathcal{H}) = \{\mathcal{H}_W \mid W \leq V, \text{ dim } W = 1\}.$

 $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$ stand as two extreme antipodes mutually connected with some arbitrary subset \mathcal{H} of k-dimensional subspaces of V.

Definition:

Let
$$\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$$
. The incidence structures $(\mathcal{H}, \mathcal{D}_{max}(\mathcal{H}))$ and $(\mathcal{H}, \mathcal{D}_{min}(\mathcal{H}))$
are given with their respective blocks,
 $\mathcal{D}_{max}(\mathcal{H}) = \{\mathcal{H}_M \mid M \leq V, \text{ dim } M = n - 1\}$ and
 $\mathcal{D}_{min}(\mathcal{H}) = \{\mathcal{H}_W \mid W \leq V, \text{ dim } W = 1\}.$

 $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$ stand as two extreme antipodes mutually connected with some arbitrary subset \mathcal{H} of k-dimensional subspaces of V.

The main goal is to establish the connection between their respective incidence matrices,

Definition:

Let
$$\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$$
. The incidence structures $(\mathcal{H}, \mathcal{D}_{max}(\mathcal{H}))$ and $(\mathcal{H}, \mathcal{D}_{min}(\mathcal{H}))$
are given with their respective blocks,
 $\mathcal{D}_{max}(\mathcal{H}) = \{\mathcal{H}_M \mid M \leq V, \text{ dim } M = n - 1\}$ and
 $\mathcal{D}_{min}(\mathcal{H}) = \{\mathcal{H}_W \mid W \leq V, \text{ dim } W = 1\}.$

 $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$ stand as two extreme antipodes mutually connected with some arbitrary subset \mathcal{H} of k-dimensional subspaces of V.

The main goal is to establish the connection between their respective incidence matrices,

especially in the case when \mathcal{H} is a $t - (n, k, \lambda)_q$ design.

æ

 $Der_W(\mathcal{H}) = (V/W, \{H/W \mid W \leq H \in \mathcal{H}\}).$

 $Der_W(\mathcal{H}) = (V/W, \{H/W \mid W \leq H \in \mathcal{H}\}).$

The **residual** design is defined as $Res_M(\mathcal{H}) = (M, \{H \mid H \in \mathcal{H}, H \leq M\})$ for some $M \in \begin{bmatrix} V \\ n-1 \end{bmatrix}_q$.

 $Der_W(\mathcal{H}) = (V/W, \{H/W \mid W \leq H \in \mathcal{H}\}).$

The **residual** design is defined as $Res_M(\mathcal{H}) = (M, \{H \mid H \in \mathcal{H}, H \leq M\})$ for some $M \in {V \brack n-1}_q$.

Notice that $Der_W(\mathcal{H}) = (V/W, \mathcal{H}_W/W)$, where $\mathcal{H}_W/W = \{H/W \mid H \in \mathcal{H}_W\}$. Furthermore,

 $Der_W(\mathcal{H}) = (V/W, \{H/W \mid W \leq H \in \mathcal{H}\}).$

The **residual** design is defined as $Res_M(\mathcal{H}) = (M, \{H \mid H \in \mathcal{H}, H \leq M\})$ for some $M \in \begin{bmatrix} V \\ n-1 \end{bmatrix}_q$.

Notice that $Der_W(\mathcal{H}) = (V/W, \mathcal{H}_W/W)$, where $\mathcal{H}_W/W = \{H/W \mid H \in \mathcal{H}_W\}$. Furthermore,

 $Res_M(\mathcal{H}) = (M, \mathcal{H}_M).$

Let $\mathcal{H} = \{H_j \mid j = 1, \dots, m\}$, where $m = |\mathcal{H}|$.

イロト イポト イヨト イヨト 二日

Let $\mathcal{H} = \{H_j \mid j = 1, \dots, m\}$, where $m = |\mathcal{H}|$.

Let
$$\begin{bmatrix} V \\ 1 \end{bmatrix}_q = \{ W_i \mid i = 1, \dots, \begin{bmatrix} n \\ 1 \end{bmatrix}_q \}$$
 and $\begin{bmatrix} V \\ n-1 \end{bmatrix}_q = \{ M_i \mid i = 1, \dots, \begin{bmatrix} n \\ 1 \end{bmatrix}_q \}.$

イロト イポト イヨト イヨト 二日

Let $\mathcal{H} = \{H_j \mid j = 1, \dots, m\}$, where $m = |\mathcal{H}|$.

Let
$$\begin{bmatrix} V\\1\end{bmatrix}_q = \{W_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}$$
 and $\begin{bmatrix} V\\n-1\end{bmatrix}_q = \{M_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}.$

Matrices $A = (A_{ij})$ and $B = (B_{ij})$, with the entries from the set $\{0, 1\}$,

Image: A matrix and a matrix

æ

Let
$$\mathcal{H} = \{H_j \mid j = 1, \dots, m\}$$
, where $m = |\mathcal{H}|$.

Let
$$\begin{bmatrix} V\\1\end{bmatrix}_q = \{W_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}$$
 and $\begin{bmatrix} V\\n-1\end{bmatrix}_q = \{M_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}.$

Matrices $A = (A_{ii})$ and $B = (B_{ii})$, with the entries from the set $\{0, 1\}$,

where $A_{ii} = 1$ if $W_i \leq H_i$ and $B_{ii} = 1$ if $H_i \leq M_i$ are

Image: A matrix and a matrix

æ

Let
$$\mathcal{H} = \{H_j \mid j = 1, \dots, m\}$$
, where $m = |\mathcal{H}|$.

Let
$$\begin{bmatrix} V\\1\end{bmatrix}_q = \{W_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}$$
 and $\begin{bmatrix} V\\n-1\end{bmatrix}_q = \{M_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}.$

Matrices $A = (A_{ij})$ and $B = (B_{ij})$, with the entries from the set $\{0, 1\}$,

where
$${\sf A}_{ij}=1$$
 if ${\sf W}_i\leq {\sf H}_j$ and ${\sf B}_{ij}=1$ if ${\sf H}_j\leq {\sf M}_i$ are

incidence matrices of incidence structures $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$.

Image: A matrix and a matrix

2

Let
$$\mathcal{H} = \{H_j \mid j = 1, \dots, m\}$$
, where $m = |\mathcal{H}|$.

Let
$$\begin{bmatrix} V\\1\end{bmatrix}_q = \{W_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}$$
 and $\begin{bmatrix} V\\n-1\end{bmatrix}_q = \{M_i \mid i = 1, \dots, \begin{bmatrix} n\\1\end{bmatrix}_q\}.$

Matrices $A = (A_{ij})$ and $B = (B_{ij})$, with the entries from the set $\{0, 1\}$,

where
$$A_{ij}=1$$
 if $W_i \leq H_j$ and $B_{ij}=1$ if $H_j \leq M_i$ are

incidence matrices of incidence structures $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$.

Let $C = (C_{ij})$ be a matrix, with the entries from the set $\{0, 1\}$, such that $C_{ij} = 1$ if $M_j \cap W_i = \{0\}$ (trivial intersection).

Theorem (duality):

Let $\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$, where A and B are incidence matrices of $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$. Then the following holds:

$$A = J - \frac{1}{q^{n-k-1}}CB,$$

$$B = J - \frac{1}{q^{k-1}}C^{t}A.$$

Theorem (duality):

Let $\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$, where A and B are incidence matrices of $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$. Then the following holds:

the following holds (in the group ring $\mathbb{Q}[V]$):

$$\mathcal{H}_{M_i} = \mathcal{H} - \frac{1}{q^{k-1}} \sum_{W_j \cap M_i = \{0\}} \mathcal{H}_{W_j}, \ \mathcal{H}_{W_j} = \mathcal{H} - \frac{1}{q^{n-k-1}} \sum_{W_j \cap M_i = \{0\}} \mathcal{H}_{M_i}.$$

Theorem (duality):

Let $\mathcal{H} \subseteq {[{}^V_k]}_q$, where A and B are incidence matrices of $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$${\mathcal D}_{max}({\mathcal H})+q^{n-k}{\mathcal D}_{min}({\mathcal H})=egin{bmatrix}n\1\end{bmatrix}_q{\mathcal H}.$$

8/10

Theorem (duality):

Let $\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$, where A and B are incidence matrices of $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$${\mathcal D}_{max}({\mathcal H})+q^{n-k}{\mathcal D}_{min}({\mathcal H})=egin{bmatrix}n\1\end{bmatrix}_q{\mathcal H}.$$

Using the results from M. Kiermaier, M.-O. Pavčević, Intersection Numbers For Subspace Designs, Journal of Combinatorial Designs, (23), 11 (2015), pp 463-480

Theorem (duality):

Let $\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$, where A and B are incidence matrices of $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$${\mathcal D}_{max}({\mathcal H}) + q^{n-k} {\mathcal D}_{min}({\mathcal H}) = egin{bmatrix} n \ 1 \end{bmatrix}_q {\mathcal H}.$$

Using the results from M. Kiermaier, M.-O. Pavčević, Intersection Numbers For Subspace Designs, Journal of Combinatorial Designs, (23), 11 (2015), pp 463-480

$$|\mathcal{H}| = \lambda \begin{bmatrix} n \\ t \end{bmatrix}_q / \begin{bmatrix} k \\ t \end{bmatrix}_q, \ |\mathcal{H}_{W_j}| = \lambda \begin{bmatrix} n-1 \\ t-1 \end{bmatrix}_q / \begin{bmatrix} k-1 \\ t-1 \end{bmatrix}_q, \text{ and }$$

Theorem (duality):

Let $\mathcal{H} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$, where A and B are incidence matrices of $\mathcal{D}_{min}(\mathcal{H})$ and $\mathcal{D}_{max}(\mathcal{H})$. Then in the group ring $\mathbb{Q}[V]$ the following holds:

$${\mathcal D}_{max}({\mathcal H}) + q^{n-k} {\mathcal D}_{min}({\mathcal H}) = egin{bmatrix} n \ 1 \end{bmatrix}_q {\mathcal H}_{min}$$

Using the results from M. Kiermaier, M.-O. Pavčević, Intersection Numbers For Subspace Designs, Journal of Combinatorial Designs, (23), 11 (2015), pp 463-480

$$\begin{aligned} |\mathcal{H}| &= \lambda \begin{bmatrix} n \\ t \end{bmatrix}_{q} / \begin{bmatrix} k \\ t \end{bmatrix}_{q}, \ |\mathcal{H}_{W_{j}}| &= \lambda \begin{bmatrix} n-1 \\ t-1 \end{bmatrix}_{q} / \begin{bmatrix} k-1 \\ t-1 \end{bmatrix}_{q}, \text{ and} \\ |\mathcal{H}_{W_{j}} \cap \mathcal{H}_{W_{s}}| &= \lambda \begin{bmatrix} n-2 \\ t-2 \end{bmatrix}_{q} / \begin{bmatrix} k-2 \\ t-2 \end{bmatrix}_{q}, \text{ where } W_{j} \neq W_{s}. \end{aligned}$$

Duality and incidence matrices

Theorem:

Let \mathcal{H} be a $t - (n, k, \lambda)_q$. The incidence matrix A of $\mathcal{D}_{min}(\mathcal{H})$ satisfies the following:

$$AA^{t} = (\alpha_{1} - \alpha_{2})\lambda I + \alpha_{2}\lambda J,$$

$$JA = \begin{bmatrix} k \\ 1 \end{bmatrix}_{q} J.$$

Duality and incidence matrices

Theorem:

Let \mathcal{H} be a $t - (n, k, \lambda)_q$. The incidence matrix A of $\mathcal{D}_{min}(\mathcal{H})$ satisfies the following:

$$AA^{t} = (\alpha_{1} - \alpha_{2})\lambda I + \alpha_{2}\lambda J,$$
$$JA = \begin{bmatrix} k \\ 1 \end{bmatrix}_{q} J.$$

Lemma:

If \mathcal{H} is a $t - (n, k, \lambda)_q$ design and M is a hyperplane, then $|\mathcal{H}_M| = \frac{(\alpha_0 - \alpha_1)}{q^k} \cdot \lambda$. If M and N are distinct hyperplanes, then $|\mathcal{H}_M \cap \mathcal{H}_N| = \frac{\binom{n-2}{k}_q}{\binom{n-t}{k-t}_q} \cdot \lambda.$

Theorem:

Let \mathcal{H} be a $t - (n, k, \lambda)_q$ design. The incidence matrix B of $\mathcal{D}_{max}(\mathcal{H})$ satisfies the following:

$$BB^{t} = \lambda(\alpha_{0} - \beta)I + \beta\lambda J, \text{ where } \beta = \begin{bmatrix} n-2 \\ k \end{bmatrix}_{q} / \begin{bmatrix} n-t \\ k-t \end{bmatrix}_{q},$$

$$JB = \begin{bmatrix} n-k \\ J. \end{bmatrix} J.$$

| 1

10 / 10

Theorem:

Let \mathcal{H} be a $t - (n, k, \lambda)_q$ design. The incidence matrix B of $\mathcal{D}_{max}(\mathcal{H})$ satisfies the following:

Thank you!

10 / 10