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Each Di is a (31, 6, 1) difference set and G∗ =
5∑
j=1

Dj.

On the other hand
6∏
i=1

aαij = 1.

motivation to make a conjecture that difference sets in a tiling of an
abelian group must be normalized
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We use couple of lemmas.



4/9

JJ
II
J
I

Back

Close

Conjecture was posted in (A.Ćustić, V. Krčadinac, Y. Zhou)
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We use couple of lemmas.

It is known that if D ∈ G(v, k, λ)DS and χ is some nontrivial character

from dual group Ĝ, then |χ(D)| =
√
k − λ.

Definition: Let G be an abelian group and D ∈ G(v, k, λ)DS. Let
σ : G → G be a map given by gσ = gt where (t, v) = 1. If Dσ = sD
for some s ∈ G, then σ is called a (numerical) multiplier of D.

Theorem: Let G be an abelian group of order v. Let p be a prime
that divides k − λ and (p, v) = 1 where p > λ. If D ∈ G(v, k, λ)DS
then a map σ(x) = xp is a multiplier of D. Furthermore, there is always
a difference set from Dev(D) that is fixed by a multiplier σ.
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Lemma (shifted orbits): Let G = 〈x〉 ∼= Zp for an odd prime
p and ψ ∈ Aut(G) is an automorphism of order m. Then there is a
decomposition of G∗ in ψ-orbits which can be represented in a group

ring Z[G] as G∗ =
(p−1)/m∑
i=1

x
〈ψ〉
i where x〈ψ〉i = xi + xψi + · · · + xψ

m−1

i .
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Theorem (K.T. (JCD)) NTC is true for G ∼= Zp where λ = 1.

General abelian case...
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Theorem (K.T. (JCD)) Let G = 〈x1〉 × 〈x2〉 × · · · × 〈xs〉 where
〈xj〉 ∼= Zpnjj , pj > 2 for all j. Let ψ ∈ Aut(G) such that xψj ∈ 〈xj〉
for any j. Let m be an order of ψ. If ψ has no fixed points on G∗, then

G∗ =

(v−1)/m∑
i=1

g
〈ψ〉
i . If G∗ =

(v−1)/m∑
i=1

hig
〈ψ〉
i , then hi = 1 for all i.
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λ = 1 where all pj > 2 are primes.

Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming
that difference set has a multiplier and group is of odd order.

Possible direction for generalizations...

So far, the main assumption is that 〈ψ〉 ↪→ Dev(D) = {gD | g ∈ G}.
This means that ψ operates on Dev(D).

Also, ψ fixes some gD, i.e. Fix(ψ,Dev(D) 6= φ.
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j=1

xijx
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j then xij = 1 for all j ∈ [t].

It is possible to prove even more general result
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hjg
〈ϕj〉
j , then

hj = 1 for all j ∈ [t].

Some notations...

G(v, k, λ)DS = collection of all (v, k, λ) difference sets in G of order v,

G(v, k, λ)NDS = collection of all normalized (v, k, λ) difference sets
in G of order v,

TG(v, k, λ) = tiling of G made of (v, k, λ) difference sets in G

TG(v, k, λ)n = tiling of G made of (v, k, λ) normalized difference sets
in G, all from G(v, k, λ)NDS
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Definition: Let D ∈ G(v, k, λ)DS. Then D is normalizable if there is

D̃ ∈ G(v, k, λ)DS ∩Dev(D).
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Definition: Let D ∈ G(v, k, λ)DS. Then D is normalizable if there is

D̃ ∈ G(v, k, λ)DS ∩Dev(D).

Definition: A tiling {Di} ∈ TG(v, k, λ) is normalizable if {D̃i} ∈
TG(v, k, λ) where D̃i ∈ G(v, k, λ)DS ∩Dev(Di).
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Definition: Let D ∈ G(v, k, λ)DS. Then D is normalizable if there is

D̃ ∈ G(v, k, λ)DS ∩Dev(D).

Definition: A tiling {Di} ∈ TG(v, k, λ) is normalizable if {D̃i} ∈
TG(v, k, λ) where D̃i ∈ G(v, k, λ)DS ∩Dev(Di).

Definition: Let D ∈ G(v, k, λ)DS. We will say that difference set D

is Aut(G)−normalizable if D is normalizable and D̃ =
∑

g
〈ϕi〉
i (union

of Aut(G)−orbits).
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Definition: Let D ∈ G(v, k, λ)DS. Then D is normalizable if there is

D̃ ∈ G(v, k, λ)DS ∩Dev(D).

Definition: A tiling {Di} ∈ TG(v, k, λ) is normalizable if {D̃i} ∈
TG(v, k, λ) where D̃i ∈ G(v, k, λ)DS ∩Dev(Di).

Definition: Let D ∈ G(v, k, λ)DS. We will say that difference set D

is Aut(G)−normalizable if D is normalizable and D̃ =
∑

g
〈ϕi〉
i (union

of Aut(G)−orbits).

Definition: A tiling {Di} ∈ TG(v, k, λ) is Aut(G)−normalizable if

it is normalizable and D̃i is Aut(G)−normalizable for all i.
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Definition: Let D ∈ G(v, k, λ)DS. Then D is normalizable if there is

D̃ ∈ G(v, k, λ)DS ∩Dev(D).

Definition: A tiling {Di} ∈ TG(v, k, λ) is normalizable if {D̃i} ∈
TG(v, k, λ) where D̃i ∈ G(v, k, λ)DS ∩Dev(Di).

Definition: Let D ∈ G(v, k, λ)DS. We will say that difference set D

is Aut(G)−normalizable if D is normalizable and D̃ =
∑

g
〈ϕi〉
i (union

of Aut(G)−orbits).

Definition: A tiling {Di} ∈ TG(v, k, λ) is Aut(G)−normalizable if

it is normalizable and D̃i is Aut(G)−normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order
v. If every DS-tiling is Aut(G)−normalizable then NTC is true.
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Definition: Let D ∈ G(v, k, λ)DS. Then D is normalizable if there is

D̃ ∈ G(v, k, λ)DS ∩Dev(D).

Definition: A tiling {Di} ∈ TG(v, k, λ) is normalizable if {D̃i} ∈
TG(v, k, λ) where D̃i ∈ G(v, k, λ)DS ∩Dev(Di).

Definition: Let D ∈ G(v, k, λ)DS. We will say that difference set D

is Aut(G)−normalizable if D is normalizable and D̃ =
∑

g
〈ϕi〉
i (union

of Aut(G)−orbits).

Definition: A tiling {Di} ∈ TG(v, k, λ) is Aut(G)−normalizable if

it is normalizable and D̃i is Aut(G)−normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order
v. If every DS-tiling is Aut(G)−normalizable then NTC is true.

Thank you!!!
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Definition: Let D ∈ G(v, k, λ)DS. Then D is normalizable if there is

D̃ ∈ G(v, k, λ)DS ∩Dev(D).

Definition: A tiling {Di} ∈ TG(v, k, λ) is normalizable if {D̃i} ∈
TG(v, k, λ) where D̃i ∈ G(v, k, λ)DS ∩Dev(Di).

Definition: Let D ∈ G(v, k, λ)DS. We will say that difference set D

is Aut(G)−normalizable if D is normalizable and D̃ =
∑

g
〈ϕi〉
i (union

of Aut(G)−orbits).

Definition: A tiling {Di} ∈ TG(v, k, λ) is Aut(G)−normalizable if

it is normalizable and D̃i is Aut(G)−normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order
v. If every DS-tiling is Aut(G)−normalizable then NTC is true.

Thank you!!!

Questions?


