美 1/9

Normalized difference sets tiling - generalizations

Kristijan Tabak

Rochester Institute of Technology, Zagreb Campus

Norcom 2022, 14th Nordic Combinatorial Conference, Tromsø, June 7-9 2022

This work has been fully supported by Croatian Science Foundation under the projects 6732 and 9752

2/9

A k-element subset D of a group G of order v is a (v,k,λ) difference set

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

in a context of a group ring $\mathbb{Z}[G]$

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

in a context of a group ring $\mathbb{Z}[G]$

$$DD^{(-1)} = k \cdot 1_G + \lambda G^*$$

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

in a context of a group ring $\mathbb{Z}[G]$

$$DD^{(-1)} = k \cdot 1_G + \lambda G^*$$

 $\{gD \mid g \in G\}$ is called a development of a difference set D

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

in a context of a group ring $\mathbb{Z}[G]$

$$DD^{(-1)} = k \cdot 1_G + \lambda G^*$$

 $\{gD \mid g \in G\}$ is called a development of a difference set D

A difference set tiling is a collection of (v, k, λ) difference sets $\{D_i\}$

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

in a context of a group ring $\mathbb{Z}[G]$

$$DD^{(-1)} = k \cdot 1_G + \lambda G^*$$

 $\{gD \mid g \in G\}$ is called a development of a difference set DA difference set tiling is a collection of (v, k, λ) difference sets $\{D_i\}$ such that $G^* = \sum D_i$.

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

in a context of a group ring $\mathbb{Z}[G]$

$$DD^{(-1)} = k \cdot 1_G + \lambda G^*$$

 $\{gD \mid g \in G\}$ is called a development of a difference set DA difference set tiling is a collection of (v, k, λ) difference sets $\{D_i\}$ such that $G^* = \sum D_i$.

Example in a group $G = \langle a \rangle \cong \mathbb{Z}_{31}$ (A.Ćustić, V. Krčadinac, Y. Zhou).

if a collection $d_1d_2^{-1}$, where $d_1, d_2 \in D$ contains exactly λ copies of every element from $G^* = G \setminus 1$.

in a context of a group ring $\mathbb{Z}[G]$

$$DD^{(-1)} = k \cdot 1_G + \lambda G^*$$

 $\{gD \mid g \in G\}$ is called a development of a difference set DA difference set tiling is a collection of (v, k, λ) difference sets $\{D_i\}$ such that $G^* = \sum D_i$.

Example in a group $G = \langle a \rangle \cong \mathbb{Z}_{31}$ (A.Ćustić, V. Krčadinac, Y. Zhou).

Let
$$D_j = \sum_{i=1}^6 a^{lpha_{ij}}$$
 where

Let
$$D_j = \sum_{i=1}^6 a^{lpha_{ij}}$$
 where

$$\begin{bmatrix} a^{\alpha_{i1}} \\ a^{\alpha_{i2}} \\ a^{\alpha_{i3}} \\ a^{\alpha_{i4}} \\ a^{\alpha_{i5}} \end{bmatrix} = \begin{bmatrix} a^1 & a^5 & a^{11} & a^{24} & a^{25} & a^{27} \\ a^2 & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\ a^3 & a^4 & a^7 & a^{13} & a^{15} & a^{20} \\ a^6 & a^8 & a^9 & a^{14} & a^{26} & a^{30} \\ a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29} \end{bmatrix}$$

Let
$$D_j = \sum_{i=1}^{6} a^{\alpha_{ij}}$$
 where
$$\begin{bmatrix} a^{\alpha_{i1}} \\ a^{\alpha_{i2}} \\ a^{\alpha_{i3}} \\ a^{\alpha_{i4}} \\ a^{\alpha_{i5}} \end{bmatrix} = \begin{bmatrix} a^1 & a^5 & a^{11} & a^{24} & a^{25} & a^{27} \\ a^2 & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\ a^3 & a^4 & a^7 & a^{13} & a^{15} & a^{20} \\ a^6 & a^8 & a^9 & a^{14} & a^{26} & a^{30} \\ a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29} \end{bmatrix}$$

Each
$$D_i$$
 is a $(31, 6, 1)$ difference set and $G^* = \sum_{j=1}^5 D_j$.

Let
$$D_j = \sum_{i=1}^{6} a^{\alpha_{ij}}$$
 where

$$\begin{bmatrix} a^{\alpha_{i1}} \\ a^{\alpha_{i2}} \\ a^{\alpha_{i3}} \\ a^{\alpha_{i4}} \\ a^{\alpha_{i5}} \end{bmatrix} = \begin{bmatrix} a^1 & a^5 & a^{11} & a^{24} & a^{25} & a^{27} \\ a^2 & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\ a^3 & a^4 & a^7 & a^{13} & a^{15} & a^{20} \\ a^6 & a^8 & a^9 & a^{14} & a^{26} & a^{30} \\ a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29} \end{bmatrix}$$

Each D_i is a (31, 6, 1) difference set and $G^* = \sum_{j=1}^5 D_j$.

On the other hand $\prod_{i=1}^{6} a^{\alpha_{ij}} = 1.$

↓
↓
Back
Close

Let
$$D_j = \sum_{i=1}^{6} a^{\alpha_{ij}}$$
 where

$$\begin{bmatrix} a^{\alpha_{i1}} \\ a^{\alpha_{i2}} \\ a^{\alpha_{i3}} \\ a^{\alpha_{i4}} \\ a^{\alpha_{i5}} \end{bmatrix} = \begin{bmatrix} a^1 & a^5 & a^{11} & a^{24} & a^{25} & a^{27} \\ a^2 & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\ a^3 & a^4 & a^7 & a^{13} & a^{15} & a^{20} \\ a^6 & a^8 & a^9 & a^{14} & a^{26} & a^{30} \\ a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29} \end{bmatrix}$$

Each D_i is a (31, 6, 1) difference set and $G^* = \sum_{j=1}^5 D_j$.

On the other hand $\prod_{i=1}^{6} a^{\alpha_{ij}} = 1$.

motivation to make a conjecture that difference sets in a tiling of an abelian group must be normalized

We use couple of lemmas.

We use couple of lemmas.

It is known that if $D \in G(v, k, \lambda)_{DS}$ and χ is some nontrivial character from dual group \widehat{G} , then $|\chi(D)| = \sqrt{k - \lambda}$.

We use couple of lemmas.

It is known that if $D \in G(v, k, \lambda)_{DS}$ and χ is some nontrivial character from dual group \widehat{G} , then $|\chi(D)| = \sqrt{k - \lambda}$.

Definition: Let G be an abelian group and $D \in G(v, k, \lambda)_{DS}$. Let $\sigma : G \to G$ be a map given by $g^{\sigma} = g^t$ where (t, v) = 1. If $D^{\sigma} = sD$ for some $s \in G$, then σ is called a (numerical) multiplier of D.

We use couple of lemmas.

It is known that if $D \in G(v, k, \lambda)_{DS}$ and χ is some nontrivial character from dual group \widehat{G} , then $|\chi(D)| = \sqrt{k - \lambda}$.

Definition: Let G be an abelian group and $D \in G(v, k, \lambda)_{DS}$. Let $\sigma : G \to G$ be a map given by $g^{\sigma} = g^t$ where (t, v) = 1. If $D^{\sigma} = sD$ for some $s \in G$, then σ is called a (numerical) multiplier of D.

Theorem: Let G be an abelian group of order v. Let p be a prime that divides $k - \lambda$ and (p, v) = 1 where $p > \lambda$. If $D \in G(v, k, \lambda)_{DS}$ then a map $\sigma(x) = x^p$ is a multiplier of D. Furthermore, there is always a difference set from $\mathcal{D}ev(D)$ that is fixed by a multiplier σ .

ALC ALLAN

Shifted orbits are not possible

Shifted orbits are not possible

Theorem (K.T. (JCD)) Let $G = \langle x \rangle \cong \mathbb{Z}_p$ where p is an odd prime and $\psi \in Aut(G)$ is given by $x^{\psi} = x^q$ for a prime q. If the order of ψ is m and if $G^* = \sum_{j=1}^{(p-1)/m} x_j^{\langle \psi \rangle} = \sum_{j=1}^{(p-1)/m} x^{i_j} x_j^{\langle \psi \rangle}$, then $x^{i_j} = 1$ for all i_j .

Shifted orbits are not possible

Theorem (K.T. (JCD)) Let $G = \langle x \rangle \cong \mathbb{Z}_p$ where p is an odd prime and $\psi \in Aut(G)$ is given by $x^{\psi} = x^q$ for a prime q. If the order of ψ is m and if $G^* = \sum_{j=1}^{(p-1)/m} x_j^{\langle \psi \rangle} = \sum_{j=1}^{(p-1)/m} x^{i_j} x_j^{\langle \psi \rangle}$, then $x^{i_j} = 1$ for all i_j .

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_p$ where $\lambda = 1$.

Shifted orbits are not possible

Theorem (K.T. (JCD)) Let $G = \langle x \rangle \cong \mathbb{Z}_p$ where p is an odd prime and $\psi \in Aut(G)$ is given by $x^{\psi} = x^q$ for a prime q. If the order of ψ is m and if $G^* = \sum_{j=1}^{(p-1)/m} x_j^{\langle \psi \rangle} = \sum_{j=1}^{(p-1)/m} x^{i_j} x_j^{\langle \psi \rangle}$, then $x^{i_j} = 1$ for all i_j .

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_p$ where $\lambda = 1$.

General abelian case...

Combining these results we can prove following:

Combining these results we can prove following:

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_s^{n_s}}$ and $\lambda = 1$ where all $p_j > 2$ are primes.

金金子

Combining these results we can prove following:

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_s^{n_s}}$ and $\lambda = 1$ where all $p_j > 2$ are primes.

Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Combining these results we can prove following:

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_s^{n_s}}$ and $\lambda = 1$ where all $p_j > 2$ are primes.

Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Possible direction for generalizations...

A A

Combining these results we can prove following:

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_s^{n_s}}$ and $\lambda = 1$ where all $p_j > 2$ are primes.

Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Possible direction for generalizations...

So far, the main assumption is that $\langle \psi \rangle \hookrightarrow Dev(D) = \{gD \mid g \in G\}$. This means that ψ operates on Dev(D).

▲
▲
▲
Back
Close

金金子

Combining these results we can prove following:

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_s^{n_s}}$ and $\lambda = 1$ where all $p_j > 2$ are primes.

Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Possible direction for generalizations...

So far, the main assumption is that $\langle \psi \rangle \hookrightarrow Dev(D) = \{gD \mid g \in G\}$. This means that ψ operates on Dev(D).

Also, ψ fixes some gD, i.e. $Fix(\psi, Dev(D) \neq \phi$.

↓
↓
Back
Close

A A

$$D = \sum_{i=1}^{t} g_i^{\langle \varphi_i \rangle}, \ \varphi_i \in Aut(G), \ Fix(\varphi_i, D^*) = \phi.$$

$$D = \sum_{i=1}^{t} g_i^{\langle \varphi_i \rangle}, \ \varphi_i \in Aut(G), \ Fix(\varphi_i, D^*) = \phi.$$

Then one can see that D is normalized or $\prod_{d \in D} d = 1$.

$$D = \sum_{i=1}^{t} g_i^{\langle \varphi_i \rangle}, \ \varphi_i \in Aut(G), \ Fix(\varphi_i, D^*) = \phi.$$

Then one can see that D is normalized or $\prod_{d \in D} d = 1$.

We can generalize 'the shifted orbits' result for this case as well.

The question is what if G is abelian group of order v and D is (v,k,λ) difference set such that

$$D = \sum_{i=1}^{t} g_i^{\langle \varphi_i \rangle}, \ \varphi_i \in Aut(G), \ Fix(\varphi_i, D^*) = \phi.$$

Then one can see that D is normalized or $\prod_{d \in D} d = 1$.

We can generalize 'the shifted orbits' result for this case as well.

Theorem: Let
$$G = \langle x \rangle \cong \mathbb{Z}_p$$
 for odd prime p . Let $G^* = \sum_{j=1}^t x_j^{\langle \varphi_j \rangle}$ for $\varphi_j \in Aut(G)$. If $G^* = \sum_{j=1}^t x^{i_j} x_j^{\langle \varphi_j \rangle}$ then $x^{i_j} = 1$ for all $j \in [t]$.

••	
•••	
•	
Back	
Close	

The question is what if G is abelian group of order v and D is (v,k,λ) difference set such that

$$D = \sum_{i=1}^{t} g_i^{\langle \varphi_i \rangle}, \ \varphi_i \in Aut(G), \ Fix(\varphi_i, D^*) = \phi.$$

Then one can see that D is normalized or $\prod_{d \in D} d = 1$.

We can generalize 'the shifted orbits' result for this case as well.

Theorem: Let
$$G = \langle x \rangle \cong \mathbb{Z}_p$$
 for odd prime p . Let $G^* = \sum_{j=1}^t x_j^{\langle \varphi_j \rangle}$ for $\varphi_j \in Aut(G)$. If $G^* = \sum_{j=1}^t x^{i_j} x_j^{\langle \varphi_j \rangle}$ then $x^{i_j} = 1$ for all $j \in [t]$.

It is possible to prove even more general result

↓
↓
Back
Close

安美子

Some notations...

Theorem: Let
$$G = \prod_{i=1}^{s} \langle x_i \rangle$$
, where $\langle x_i \rangle \cong \mathbb{Z}_{p_i^{n_i}}$ and p_i odd prime for $i \in [s]$. Let $G^* = \sum_{j=1}^{t} g_j^{\langle \varphi_j \rangle}$ for $\varphi_j \in Aut(G)$. If $G^* = \sum_{j=1}^{t} h_j g_j^{\langle \varphi_j \rangle}$, then $h_j = 1$ for all $j \in [t]$.

Some notations...

 $G(v, k, \lambda)_{DS} =$ collection of all (v, k, λ) difference sets in G of order v,

Some notations...

 $G(v, k, \lambda)_{DS}$ = collection of all (v, k, λ) difference sets in G of order v, $G(v, k, \lambda)_{NDS}$ = collection of all **normalized** (v, k, λ) difference sets in G of order v,

ないので

Some notations...

 $G(v, k, \lambda)_{DS}$ = collection of all (v, k, λ) difference sets in G of order v, $G(v, k, \lambda)_{NDS}$ = collection of all **normalized** (v, k, λ) difference sets in G of order v,

 $TG(v,k,\lambda)={\rm tiling}\ {\rm of}\ G$ made of (v,k,λ) difference sets in G

なく不

Some notations...

 $G(v,k,\lambda)_{DS} =$ collection of all (v,k,λ) difference sets in G of order v,

 $G(v,k,\lambda)_{NDS}=$ collection of all normalized (v,k,λ) difference sets in G of order v,

 $TG(v,k,\lambda) = tiling \text{ of } G \text{ made of } (v,k,\lambda) \text{ difference sets in } G$

 $TG(v,k,\lambda)_n=$ tiling of G made of (v,k,λ) normalized difference sets in G, all from $G(v,k,\lambda)_{NDS}$

なく不

Definition: Let $D \in G(v, k, \lambda)_{DS}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{DS} \cap Dev(D)$.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{DS} \cap Dev(D)$.

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is normalizable if $\{\widetilde{D}_i\} \in TG(v, k, \lambda)$ where $\widetilde{D}_i \in G(v, k, \lambda)_{DS} \cap Dev(D_i)$.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{DS} \cap Dev(D)$.

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is normalizable if $\{\widetilde{D}_i\} \in TG(v, k, \lambda)$ where $\widetilde{D}_i \in G(v, k, \lambda)_{DS} \cap Dev(D_i)$.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. We will say that difference set D is Aut(G)-normalizable if D is normalizable and $\widetilde{D} = \sum g_i^{\langle \varphi_i \rangle}$ (union of Aut(G)-orbits).

Definition: Let $D \in G(v, k, \lambda)_{DS}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{DS} \cap Dev(D)$.

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is normalizable if $\{\widetilde{D}_i\} \in TG(v, k, \lambda)$ where $\widetilde{D}_i \in G(v, k, \lambda)_{DS} \cap Dev(D_i)$.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. We will say that difference set D is Aut(G)-normalizable if D is normalizable and $\widetilde{D} = \sum g_i^{\langle \varphi_i \rangle}$ (union of Aut(G)-orbits).

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is Aut(G)-normalizable if it is normalizable and \widetilde{D}_i is Aut(G)-normalizable for all i.

美国大 9/9

Definition: Let $D \in G(v, k, \lambda)_{DS}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{DS} \cap Dev(D)$.

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is normalizable if $\{\widetilde{D}_i\} \in TG(v, k, \lambda)$ where $\widetilde{D}_i \in G(v, k, \lambda)_{DS} \cap Dev(D_i)$.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. We will say that difference set D is Aut(G)-normalizable if D is normalizable and $\widetilde{D} = \sum g_i^{\langle \varphi_i \rangle}$ (union of Aut(G)-orbits).

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is Aut(G)-normalizable if it is normalizable and \widetilde{D}_i is Aut(G)-normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order v. If every DS-tiling is Aut(G)-normalizable then NTC is true.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{DS} \cap Dev(D)$.

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is normalizable if $\{\widetilde{D}_i\} \in TG(v, k, \lambda)$ where $\widetilde{D}_i \in G(v, k, \lambda)_{DS} \cap Dev(D_i)$.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. We will say that difference set D is Aut(G)-normalizable if D is normalizable and $\widetilde{D} = \sum g_i^{\langle \varphi_i \rangle}$ (union of Aut(G)-orbits).

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is Aut(G)-normalizable if it is normalizable and \widetilde{D}_i is Aut(G)-normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order v. If every DS-tiling is Aut(G)-normalizable then NTC is true.

Thank you!!!

李子丁 9/9

Back Close

Definition: Let $D \in G(v, k, \lambda)_{DS}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{DS} \cap Dev(D)$.

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is normalizable if $\{\widetilde{D}_i\} \in TG(v, k, \lambda)$ where $\widetilde{D}_i \in G(v, k, \lambda)_{DS} \cap Dev(D_i)$.

Definition: Let $D \in G(v, k, \lambda)_{DS}$. We will say that difference set D is Aut(G)-normalizable if D is normalizable and $\widetilde{D} = \sum g_i^{\langle \varphi_i \rangle}$ (union of Aut(G)-orbits).

Definition: A tiling $\{D_i\} \in TG(v, k, \lambda)$ is Aut(G)-normalizable if it is normalizable and \widetilde{D}_i is Aut(G)-normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order v. If every DS-tiling is Aut(G)-normalizable then NTC is true.

Thank you!!!

Questions?