Normalized difference sets tiling generalizations
 Kristijan Tabak

Rochester Institute of Technology, Zagreb Campus

Norcom 2022, 14th Nordic Combinatorial Conference, Tromsø, June 7-9 2022

This work has been fully supported by
Croatian Science Foundation under the projects 6732 and 9752

A k-element subset D of a group G of order v is a (v, k, λ) difference set

$\mathbf{~} 4$
\downarrow
$\mathbf{\Delta}$
\downarrow
Back
Close

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.
in a context of a group ring $\mathbb{Z}[G]$

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.
in a context of a group ring $\mathbb{Z}[G]$

$$
D D^{(-1)}=k \cdot 1_{G}+\lambda G^{*}
$$

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.
in a context of a group ring $\mathbb{Z}[G]$

$$
D D^{(-1)}=k \cdot 1_{G}+\lambda G^{*}
$$

$\{g D \mid g \in G\}$ is called a development of a difference set D

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.
in a context of a group ring $\mathbb{Z}[G]$

$$
D D^{(-1)}=k \cdot 1_{G}+\lambda G^{*}
$$

$\{g D \mid g \in G\}$ is called a development of a difference set D
A difference set tiling is a collection of (v, k, λ) difference sets $\left\{D_{i}\right\}$

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.
in a context of a group ring $\mathbb{Z}[G]$

$$
D D^{(-1)}=k \cdot 1_{G}+\lambda G^{*}
$$

$\{g D \mid g \in G\}$ is called a development of a difference set D
A difference set tiling is a collection of (v, k, λ) difference sets $\left\{D_{i}\right\}$ such that $G^{*}=\sum D_{i}$.

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.
in a context of a group ring $\mathbb{Z}[G]$

$$
D D^{(-1)}=k \cdot 1_{G}+\lambda G^{*}
$$

$\{g D \mid g \in G\}$ is called a development of a difference set D
A difference set tiling is a collection of (v, k, λ) difference sets $\left\{D_{i}\right\}$ such that $G^{*}=\sum D_{i}$.

Example in a group $G=\langle a\rangle \cong \mathbb{Z}_{31}$ (A.Ćustić, V. Krčadinac, Y. Zhou).

A k-element subset D of a group G of order v is a (v, k, λ) difference set
if a collection $d_{1} d_{2}^{-1}$, where $d_{1}, d_{2} \in D$ contains exactly λ copies of every element from $G^{*}=G \backslash 1$.
in a context of a group ring $\mathbb{Z}[G]$

$$
D D^{(-1)}=k \cdot 1_{G}+\lambda G^{*}
$$

$\{g D \mid g \in G\}$ is called a development of a difference set D
A difference set tiling is a collection of (v, k, λ) difference sets $\left\{D_{i}\right\}$ such that $G^{*}=\sum D_{i}$.

Example in a group $G=\langle a\rangle \cong \mathbb{Z}_{31}$ (A.Ćustić, V. Krčadinac, Y. Zhou).

Let $D_{j}=\sum_{i=1}^{6} a^{\alpha_{i j}}$ where

Let $D_{j}=\sum_{i=1}^{6} a^{\alpha_{i j}}$ where

$$
\left[\begin{array}{l}
a^{\alpha_{i 1}} \\
a^{\alpha_{i 2}} \\
a^{\alpha_{i 3}} \\
a^{\alpha_{i 4}} \\
a^{\alpha_{i 5}}
\end{array}\right]=\left[\begin{array}{cccccc}
a^{1} & a^{5} & a^{11} & a^{24} & a^{25} & a^{27} \\
a^{2} & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\
a^{3} & a^{4} & a^{7} & a^{13} & a^{15} & a^{20} \\
a^{6} & a^{8} & a^{9} & a^{14} & a^{26} & a^{30} \\
a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29}
\end{array}\right]
$$

Let $D_{j}=\sum_{i=1}^{6} a^{\alpha_{i j}}$ where

$$
\left[\begin{array}{l}
a^{\alpha_{i 1}} \\
a^{\alpha_{i 2}} \\
a^{\alpha_{i 3}} \\
a^{\alpha_{i 4}} \\
a^{\alpha_{i 5}}
\end{array}\right]=\left[\begin{array}{cccccc}
a^{1} & a^{5} & a^{11} & a^{24} & a^{25} & a^{27} \\
a^{2} & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\
a^{3} & a^{4} & a^{7} & a^{13} & a^{15} & a^{20} \\
a^{6} & a^{8} & a^{9} & a^{14} & a^{26} & a^{30} \\
a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29}
\end{array}\right]
$$

Each D_{i} is a $(31,6,1)$ difference set and $G^{*}=\sum_{j=1}^{5} D_{j}$.

Let $D_{j}=\sum_{i=1}^{6} a^{\alpha_{i j}}$ where

$$
\left[\begin{array}{l}
a^{\alpha_{i 1}} \\
a^{\alpha_{i 2}} \\
a^{\alpha_{i 3}} \\
a^{\alpha_{i 4}} \\
a^{\alpha_{i 5}}
\end{array}\right]=\left[\begin{array}{cccccc}
a^{1} & a^{5} & a^{11} & a^{24} & a^{25} & a^{27} \\
a^{2} & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\
a^{3} & a^{4} & a^{7} & a^{13} & a^{15} & a^{20} \\
a^{6} & a^{8} & a^{9} & a^{14} & a^{26} & a^{30} \\
a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29}
\end{array}\right]
$$

Each D_{i} is a $(31,6,1)$ difference set and $G^{*}=\sum_{j=1}^{5} D_{j}$.
On the other hand $\prod_{i=1}^{6} a^{\alpha_{i j}}=1$.

Let $D_{j}=\sum_{i=1}^{6} a^{\alpha_{i j}}$ where

$$
\left[\begin{array}{l}
a^{\alpha_{i 1}} \\
a^{\alpha_{i 2}} \\
a^{\alpha_{i 3}} \\
a^{\alpha_{i 4}} \\
a^{\alpha_{i 5}}
\end{array}\right]=\left[\begin{array}{cccccc}
a^{1} & a^{5} & a^{11} & a^{24} & a^{25} & a^{27} \\
a^{2} & a^{10} & a^{17} & a^{19} & a^{22} & a^{23} \\
a^{3} & a^{4} & a^{7} & a^{13} & a^{15} & a^{20} \\
a^{6} & a^{8} & a^{9} & a^{14} & a^{26} & a^{30} \\
a^{12} & a^{16} & a^{18} & a^{21} & a^{28} & a^{29}
\end{array}\right]
$$

Each D_{i} is a $(31,6,1)$ difference set and $G^{*}=\sum_{j=1}^{5} D_{j}$.
On the other hand $\prod_{i=1}^{6} a^{\alpha_{i j}}=1$.
motivation to make a conjecture that difference sets in a tiling of an abelian group must be normalized

Conjecture was posted in (A.Ćustić, V. Krčadinac, Y. Zhou)

Conjecture was posted in (A.Ćustić, V. Krčadinac, Y. Zhou)
We use couple of lemmas.

Conjecture was posted in (A.Ćustić, V. Krčadinac, Y. Zhou)
We use couple of lemmas.
It is known that if $D \in G(v, k, \lambda)_{D S}$ and χ is some nontrivial character from dual group \widehat{G}, then $|\chi(D)|=\sqrt{k-\lambda}$.

Conjecture was posted in (A.Ćustić, V. Krčadinac, Y. Zhou)

We use couple of lemmas.
It is known that if $D \in G(v, k, \lambda)_{D S}$ and χ is some nontrivial character from dual group \widehat{G}, then $|\chi(D)|=\sqrt{k-\lambda}$.

Definition: Let G be an abelian group and $D \in G(v, k, \lambda)_{D S}$. Let $\sigma: G \rightarrow G$ be a map given by $g^{\sigma}=g^{t}$ where $(t, v)=1$. If $D^{\sigma}=s D$ for some $s \in G$, then σ is called a (numerical) multiplier of D.

Conjecture was posted in (A.Ćustić, V. Krčadinac, Y. Zhou)
We use couple of lemmas.
It is known that if $D \in G(v, k, \lambda)_{D S}$ and χ is some nontrivial character from dual group \widehat{G}, then $|\chi(D)|=\sqrt{k-\lambda}$.

Definition: Let G be an abelian group and $D \in G(v, k, \lambda)_{D S}$. Let $\sigma: G \rightarrow G$ be a map given by $g^{\sigma}=g^{t}$ where $(t, v)=1$. If $D^{\sigma}=s D$ for some $s \in G$, then σ is called a (numerical) multiplier of D.

Theorem: Let G be an abelian group of order v. Let p be a prime that divides $k-\lambda$ and $(p, v)=1$ where $p>\lambda$. If $D \in G(v, k, \lambda)_{D S}$ then a map $\sigma(x)=x^{p}$ is a multiplier of D. Furthermore, there is always a difference set from $\operatorname{Dev}(D)$ that is fixed by a multiplier σ.

Lemma (shifted orbits): Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ for an odd prime p and $\psi \in \operatorname{Aut}(G)$ is an automorphism of order m. Then there is a decomposition of G^{*} in ψ-orbits which can be represented in a group

$$
(p-1) / m
$$

ring $\mathbb{Z}[G]$ as $G^{*}=\sum_{i=1} x_{i}^{\langle\psi\rangle}$ where $x_{i}^{\langle\psi\rangle}=x_{i}+x_{i}^{\psi}+\cdots+x_{i}^{\psi^{m-1}}$.

Lemma (shifted orbits): Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ for an odd prime p and $\psi \in \operatorname{Aut}(G)$ is an automorphism of order m. Then there is a decomposition of G^{*} in ψ-orbits which can be represented in a group

$$
(p-1) / m
$$

$$
\text { ring } \mathbb{Z}[G] \text { as } G^{*}=\sum_{i=1}^{\langle p-1)} x_{i}^{\langle\psi\rangle} \text { where } x_{i}^{\langle\psi\rangle}=x_{i}+x_{i}^{\psi}+\cdots+x_{i}^{\psi^{m-1}}
$$

Shifted orbits are not possible

Lemma (shifted orbits): Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ for an odd prime p and $\psi \in \operatorname{Aut}(G)$ is an automorphism of order m. Then there is a decomposition of G^{*} in ψ-orbits which can be represented in a group

$$
(p-1) / m
$$

$$
\operatorname{ring} \mathbb{Z}[G] \text { as } G^{*}=\sum_{i=1}^{\mid p-1)} x_{i}^{\langle\psi\rangle} \text { where } x_{i}^{\langle\psi\rangle}=x_{i}+x_{i}^{\psi}+\cdots+x_{i}^{\psi^{m-1}}
$$

Shifted orbits are not possible
Theorem (K.T. (JCD)) Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ where p is an odd prime and $\psi \in \operatorname{Aut}(G)$ is given by $x^{\psi}=x^{q}$ for a prime q. If the order of ψ is m and if $G^{*}=\sum_{j=1}^{(p-1) / m} x_{j}^{\langle\psi\rangle}=\sum_{j=1}^{(p-1) / m} x^{i_{j}} x_{j}^{\langle\psi\rangle}$, then $x^{i_{j}}=1$ for all i_{j}.

Lemma (shifted orbits): Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ for an odd prime p and $\psi \in \operatorname{Aut}(G)$ is an automorphism of order m. Then there is a decomposition of G^{*} in ψ-orbits which can be represented in a group

$$
(p-1) / m
$$

ring $\mathbb{Z}[G]$ as $G^{*}=\sum_{i=1} x_{i}^{\langle\psi\rangle}$ where $x_{i}^{\langle\psi\rangle}=x_{i}+x_{i}^{\psi}+\cdots+x_{i}^{\psi^{m-1}}$.
Shifted orbits are not possible
Theorem (K.T. (JCD)) Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ where p is an odd prime and $\psi \in \operatorname{Aut}(G)$ is given by $x^{\psi}=x^{q}$ for a prime q. If the order of ψ is m and if $G^{*}=\sum_{j=1}^{(p-1) / m} x_{j}^{\langle\psi\rangle}=\sum_{j=1}^{(p-1) / m} x^{i_{j}} x_{j}^{\langle\psi\rangle}$, then $x^{i_{j}}=1$ for all i_{j}.

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p}$ where $\lambda=1$.

Lemma (shifted orbits): Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ for an odd prime p and $\psi \in \operatorname{Aut}(G)$ is an automorphism of order m. Then there is a decomposition of G^{*} in ψ-orbits which can be represented in a group

$$
(p-1) / m
$$

ring $\mathbb{Z}[G]$ as $G^{*}=\sum_{i=1} x_{i}^{\langle\psi\rangle}$ where $x_{i}^{\langle\psi\rangle}=x_{i}+x_{i}^{\psi}+\cdots+x_{i}^{\psi^{m-1}}$.
Shifted orbits are not possible
Theorem (K.T. (JCD)) Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ where p is an odd prime and $\psi \in \operatorname{Aut}(G)$ is given by $x^{\psi}=x^{q}$ for a prime q. If the order of ψ is m and if $G^{*}=\sum_{j=1}^{(p-1) / m} x_{j}^{\langle\psi\rangle}=\sum_{j=1}^{(p-1) / m} x^{i_{j}} x_{j}^{\langle\psi\rangle}$, then $x^{i_{j}}=1$ for all i_{j}.

Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p}$ where $\lambda=1$.
General abelian case...

Theorem (K.T. (JCD)) Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle$ where $\left\langle x_{j}\right\rangle \cong \mathbb{Z}_{p_{j}^{n_{j}}}, p_{j}>2$ for all j. Let $\psi \in \operatorname{Aut}(G)$ such that $x_{j}^{\psi} \in\left\langle x_{j}\right\rangle$ for any j. Let m be an order of ψ. If ψ has no fixed points on G^{*}, then $G^{*}=\sum_{i=1}^{(v-1) / m} g_{i}^{\langle\psi\rangle}$. If $G^{*}=\sum_{i=1}^{(v-1) / m} h_{i} g_{i}^{\langle\psi\rangle}$, then $h_{i}=1$ for all i.

Theorem (K.T. (JCD)) Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle$ where $\left\langle x_{j}\right\rangle \cong \mathbb{Z}_{p_{j}^{n_{j}}}, p_{j}>2$ for all j. Let $\psi \in \operatorname{Aut}(G)$ such that $x_{j}^{\psi} \in\left\langle x_{j}\right\rangle$ for any j. Let m be an order of ψ. If ψ has no fixed points on G^{*}, then $G^{*}=\sum_{i=1}^{(v-1) / m} g_{i}^{\langle\psi\rangle}$. If $G^{*}=\sum_{i=1}^{(v-1) / m} h_{i} g_{i}^{\langle\psi\rangle}$, then $h_{i}=1$ for all i.
Combining these results we can prove following:

Theorem (K.T. (JCD)) Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle$ where $\left\langle x_{j}\right\rangle \cong \mathbb{Z}_{p_{j}^{n_{j}}}, p_{j}>2$ for all j. Let $\psi \in \operatorname{Aut}(G)$ such that $x_{j}^{\psi} \in\left\langle x_{j}\right\rangle$ for any j. Let m be an order of ψ. If ψ has no fixed points on G^{*}, then $G^{*}=\sum_{i=1}^{(v-1) / m} g_{i}^{\langle\psi\rangle}$. If $G^{*}=\sum_{i=1}^{(v-1) / m} h_{i} g_{i}^{\langle\psi\rangle}$, then $h_{i}=1$ for all i.
Combining these results we can prove following:
Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{s}^{n_{s}}}$ and $\lambda=1$ where all $p_{j}>2$ are primes.

Theorem (K.T. (JCD)) Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle$ where $\left\langle x_{j}\right\rangle \cong \mathbb{Z}_{p_{j}^{n_{j}}}, p_{j}>2$ for all j. Let $\psi \in \operatorname{Aut}(G)$ such that $x_{j}^{\psi} \in\left\langle x_{j}\right\rangle$ for any j. Let m be an order of ψ. If ψ has no fixed points on G^{*}, then $G^{*}=\sum_{i=1}^{(v-1) / m} g_{i}^{\langle\psi\rangle}$. If $G^{*}=\sum_{i=1}^{(v-1) / m} h_{i} g_{i}^{\langle\psi\rangle}$, then $h_{i}=1$ for all i.
Combining these results we can prove following:
Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{s}^{n_{s}}}$ and $\lambda=1$ where all $p_{j}>2$ are primes.

Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Theorem (K.T. (JCD)) Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle$ where $\left\langle x_{j}\right\rangle \cong \mathbb{Z}_{p_{j}^{n_{j}}}, p_{j}>2$ for all j. Let $\psi \in \operatorname{Aut}(G)$ such that $x_{j}^{\psi} \in\left\langle x_{j}\right\rangle$ for any j. Let m be an order of ψ. If ψ has no fixed points on G^{*}, then $G^{*}=\sum_{i=1}^{(v-1) / m} g_{i}^{\langle\psi\rangle}$. If $G^{*}=\sum_{i=1}^{(v-1) / m} h_{i} g_{i}^{\langle\psi\rangle}$, then $h_{i}=1$ for all i.
Combining these results we can prove following:
Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{s}^{n_{s}}}$ and $\lambda=1$ where all $p_{j}>2$ are primes.

Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Possible direction for generalizations...

Theorem (K.T. (JCD)) Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle$ where $\left\langle x_{j}\right\rangle \cong \mathbb{Z}_{p_{j}^{n_{j}}}, p_{j}>2$ for all j. Let $\psi \in \operatorname{Aut}(G)$ such that $x_{j}^{\psi} \in\left\langle x_{j}\right\rangle$ for any j. Let m be an order of ψ. If ψ has no fixed points on G^{*}, then $G^{*}=\sum_{i=1}^{(v-1) / m} g_{i}^{\langle\psi\rangle}$. If $G^{*}=\sum_{i=1}^{(v-1) / m} h_{i} g_{i}^{\langle\psi\rangle}$, then $h_{i}=1$ for all i.
Combining these results we can prove following:
Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{s}^{n_{s}}}$ and $\lambda=1$ where all $p_{j}>2$ are primes.
Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Possible direction for generalizations...
So far, the main assumption is that $\langle\psi\rangle \hookrightarrow \operatorname{Dev}(D)=\{g D \mid g \in G\}$. This means that ψ operates on $\operatorname{Dev}(D)$.

Theorem (K.T. (JCD)) Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle$ where $\left\langle x_{j}\right\rangle \cong \mathbb{Z}_{p_{j}^{n_{j}}}, p_{j}>2$ for all j. Let $\psi \in \operatorname{Aut}(G)$ such that $x_{j}^{\psi} \in\left\langle x_{j}\right\rangle$ for any j. Let m be an order of ψ. If ψ has no fixed points on G^{*}, then $G^{*}=\sum_{i=1}^{(v-1) / m} g_{i}^{\langle\psi\rangle}$. If $G^{*}=\sum_{i=1}^{(v-1) / m} h_{i} g_{i}^{\langle\psi\rangle}$, then $h_{i}=1$ for all i.
Combining these results we can prove following:
Theorem (K.T. (JCD)) NTC is true for $G \cong \mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{s}^{n_{s}}}$ and $\lambda=1$ where all $p_{j}>2$ are primes.
Theorem (K.T. (JCD)) NTC is true for all abelian tiling assuming that difference set has a multiplier and group is of odd order.

Possible direction for generalizations...
So far, the main assumption is that $\langle\psi\rangle \hookrightarrow \operatorname{Dev}(D)=\{g D \mid g \in G\}$. This means that ψ operates on $\operatorname{Dev}(D)$.

Also, ψ fixes some $g D$, i.e. $\operatorname{Fix}(\psi, \operatorname{Dev}(D) \neq \phi$.

The question is what if G is abelian group of order v and D is (v, k, λ) difference set such that

The question is what if G is abelian group of order v and D is (v, k, λ) difference set such that
$D=\sum_{i=1}^{t} g_{i}^{\left\langle\varphi_{i}\right\rangle}, \varphi_{i} \in \operatorname{Aut}(G), \operatorname{Fix}\left(\varphi_{i}, D^{*}\right)=\phi$.

The question is what if G is abelian group of order v and D is (v, k, λ) difference set such that
$D=\sum_{i=1}^{t} g_{i}^{\left\langle\varphi_{i}\right\rangle}, \varphi_{i} \in \operatorname{Aut}(G), \operatorname{Fix}\left(\varphi_{i}, D^{*}\right)=\phi$.
Then one can see that D is normalized or $\prod_{d \in D} d=1$.

The question is what if G is abelian group of order v and D is (v, k, λ) difference set such that
$D=\sum_{i=1}^{t} g_{i}^{\left\langle\varphi_{i}\right\rangle}, \varphi_{i} \in \operatorname{Aut}(G), \operatorname{Fix}\left(\varphi_{i}, D^{*}\right)=\phi$.
Then one can see that D is normalized or $\prod_{d \in D} d=1$.
We can generalize 'the shifted orbits' result for this case as well.

The question is what if G is abelian group of order v and D is (v, k, λ) difference set such that
$D=\sum_{i=1}^{t} g_{i}^{\left\langle\varphi_{i}\right\rangle}, \varphi_{i} \in \operatorname{Aut}(G), \operatorname{Fix}\left(\varphi_{i}, D^{*}\right)=\phi$.
Then one can see that D is normalized or $\prod_{d \in D} d=1$.
We can generalize 'the shifted orbits' result for this case as well.
Theorem: Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ for odd prime p. Let $G^{*}=\sum_{j=1}^{t} x_{j}^{\left\langle\varphi_{j}\right\rangle}$ for
$\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} x^{i_{j}} x_{j}^{\left\langle\varphi_{j}\right\rangle}$ then $x^{i_{j}}=1$ for all $j \in[t]$.

The question is what if G is abelian group of order v and D is (v, k, λ) difference set such that
$D=\sum_{i=1}^{t} g_{i}^{\left\langle\varphi_{i}\right\rangle}, \varphi_{i} \in \operatorname{Aut}(G), \operatorname{Fix}\left(\varphi_{i}, D^{*}\right)=\phi$.
Then one can see that D is normalized or $\prod_{d \in D} d=1$.
We can generalize 'the shifted orbits' result for this case as well.
Theorem: Let $G=\langle x\rangle \cong \mathbb{Z}_{p}$ for odd prime p. Let $G^{*}=\sum_{j=1}^{t} x_{j}^{\left\langle\varphi_{j}\right\rangle}$ for
$\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} x^{i_{j}} x_{j}^{\left\langle\varphi_{j}\right\rangle}$ then $x^{i_{j}}=1$ for all $j \in[t]$.
It is possible to prove even more general result

Theorem: Let $G=\prod_{i=1}^{s}\left\langle x_{i}\right\rangle$, where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{p_{i}^{n_{i}}}$ and p_{i} odd prime for
$i \in[s]$. Let $G^{*}=\sum_{j=1}^{t} g_{j}^{\left\langle\varphi_{j}\right\rangle}$ for $\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} h_{j} g_{j}^{\left\langle\varphi_{j}\right\rangle}$, then $h_{j}=1$ for all $j \in[t]$.

Theorem: Let $G=\prod_{i=1}^{s}\left\langle x_{i}\right\rangle$, where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{p_{i}^{n_{i}}}$ and p_{i} odd prime for
$i \in[s]$. Let $G^{*}=\sum_{j=1}^{t} g_{j}^{\left\langle\varphi_{j}\right\rangle}$ for $\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} h_{j} g_{j}^{\left\langle\varphi_{j}\right\rangle}$, then
$h_{j}=1$ for all $j \in[t]$.
Some notations...

Theorem: Let $G=\prod_{i=1}^{s}\left\langle x_{i}\right\rangle$, where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{p_{i}^{n_{i}}}$ and p_{i} odd prime for $i \in[s]$. Let $G^{*}=\sum_{j=1}^{t} g_{j}^{\left\langle\varphi_{j}\right\rangle}$ for $\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} h_{j} g_{j}^{\left\langle\varphi_{j}\right\rangle}$, then $h_{j}=1$ for all $j \in[t]$.

Some notations...
$G(v, k, \lambda)_{D S}=$ collection of all (v, k, λ) difference sets in G of order v,

Theorem: Let $G=\prod_{i=1}^{s}\left\langle x_{i}\right\rangle$, where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{p_{i}^{n_{i}}}$ and p_{i} odd prime for $i \in[s]$. Let $G^{*}=\sum_{j=1}^{t} g_{j}^{\left\langle\varphi_{j}\right\rangle}$ for $\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} h_{j} g_{j}^{\left\langle\varphi_{j}\right\rangle}$, then $h_{j}=1$ for all $j \in[t]$.

Some notations...
$G(v, k, \lambda)_{D S}=$ collection of all (v, k, λ) difference sets in G of order v,
$G(v, k, \lambda)_{N D S}=$ collection of all normalized (v, k, λ) difference sets in G of order v,

Theorem: Let $G=\prod_{i=1}^{s}\left\langle x_{i}\right\rangle$, where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{p_{i}^{n_{i}}}$ and p_{i} odd prime for
$i \in[s]$. Let $G^{*}=\sum_{j=1}^{t} g_{j}^{\left\langle\varphi_{j}\right\rangle}$ for $\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} h_{j} g_{j}^{\left\langle\varphi_{j}\right\rangle}$, then $h_{j}=1$ for all $j \in[t]$.

Some notations...
$G(v, k, \lambda)_{D S}=$ collection of all (v, k, λ) difference sets in G of order v,
$G(v, k, \lambda)_{N D S}=$ collection of all normalized (v, k, λ) difference sets in G of order v,
$T G(v, k, \lambda)=$ tiling of G made of (v, k, λ) difference sets in G

Theorem: Let $G=\prod_{i=1}^{s}\left\langle x_{i}\right\rangle$, where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{p_{i}^{n_{i}}}$ and p_{i} odd prime for $i \in[s]$. Let $G^{*}=\sum_{j=1}^{t} g_{j}^{\left\langle\varphi_{j}\right\rangle}$ for $\varphi_{j} \in \operatorname{Aut}(G)$. If $G^{*}=\sum_{j=1}^{t} h_{j} g_{j}^{\left\langle\varphi_{j}\right\rangle}$, then $h_{j}=1$ for all $j \in[t]$.

Some notations...
$G(v, k, \lambda)_{D S}=$ collection of all (v, k, λ) difference sets in G of order v,
$G(v, k, \lambda)_{N D S}=$ collection of all normalized (v, k, λ) difference sets in G of order v,
$T G(v, k, \lambda)=$ tiling of G made of (v, k, λ) difference sets in G
$T G(v, k, \lambda)_{n}=$ tiling of G made of (v, k, λ) normalized difference sets in G, all from $G(v, k, \lambda)_{N D S}$

Definition: Let $D \in G(v, k, \lambda)_{D S}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}(D)$.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}(D)$.

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is normalizable if $\left\{\widetilde{D}_{i}\right\} \in$ $T G(v, k, \lambda)$ where $\widetilde{D}_{i} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}\left(D_{i}\right)$.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}(D)$.

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is normalizable if $\left\{\widetilde{D}_{i}\right\} \in$ $T G(v, k, \lambda)$ where $\widetilde{D}_{i} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}\left(D_{i}\right)$.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. We will say that difference set D is $A u t(G)$-normalizable if D is normalizable and $\widetilde{D}=\sum g_{i}^{\left\langle\varphi_{i}\right\rangle}$ (union of $\operatorname{Aut}(G)$-orbits).

Definition: Let $D \in G(v, k, \lambda)_{D S}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}(D)$.

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is normalizable if $\left\{\widetilde{D}_{i}\right\} \in$ $T G(v, k, \lambda)$ where $\widetilde{D}_{i} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}\left(D_{i}\right)$.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. We will say that difference set D is $A u t(G)$-normalizable if D is normalizable and $\widetilde{D}=\sum g_{i}^{\left\langle\varphi_{i}\right\rangle}$ (union of $\operatorname{Aut}(G)$-orbits).

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is $\operatorname{Aut}(G)$-normalizable if it is normalizable and \widetilde{D}_{i} is $\operatorname{Aut}(G)$-normalizable for all i.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}(D)$.

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is normalizable if $\left\{\widetilde{D}_{i}\right\} \in$ $T G(v, k, \lambda)$ where $\widetilde{D}_{i} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}\left(D_{i}\right)$.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. We will say that difference set D is $A u t(G)$-normalizable if D is normalizable and $\widetilde{D}=\sum g_{i}^{\left\langle\varphi_{i}\right\rangle}$ (union of $\operatorname{Aut}(G)$-orbits).

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is $\operatorname{Aut}(G)$-normalizable if it is normalizable and \widetilde{D}_{i} is $\operatorname{Aut}(G)$-normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order v. If every DS-tiling is $\operatorname{Aut}(G)$-normalizable then NTC is true.
$\underset{\sim}{\text { Definition: Let }} D \in G(v, k, \lambda)_{D S}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}(D)$.

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is normalizable if $\left\{\widetilde{D}_{i}\right\} \in$ $T G(v, k, \lambda)$ where $\widetilde{D}_{i} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}\left(D_{i}\right)$.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. We will say that difference set D is $A u t(G)$-normalizable if D is normalizable and $\widetilde{D}=\sum g_{i}^{\left\langle\varphi_{i}\right\rangle}$ (union of $\operatorname{Aut}(G)$-orbits).

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is $\operatorname{Aut}(G)$-normalizable if it is normalizable and \widetilde{D}_{i} is $\operatorname{Aut}(G)$-normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order v. If every DS-tiling is $\operatorname{Aut}(G)$-normalizable then $N T C$ is true.

Thank you!!!

Definition: Let $D \in G(v, k, \lambda)_{D S}$. Then D is normalizable if there is $\widetilde{D} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}(D)$.

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is normalizable if $\left\{\widetilde{D}_{i}\right\} \in$ $T G(v, k, \lambda)$ where $\widetilde{D}_{i} \in G(v, k, \lambda)_{D S} \cap \operatorname{Dev}\left(D_{i}\right)$.

Definition: Let $D \in G(v, k, \lambda)_{D S}$. We will say that difference set D is $A u t(G)$-normalizable if D is normalizable and $\widetilde{D}=\sum g_{i}^{\left\langle\varphi_{i}\right\rangle}$ (union of $\operatorname{Aut}(G)$-orbits).

Definition: A tiling $\left\{D_{i}\right\} \in T G(v, k, \lambda)$ is $\operatorname{Aut}(G)$-normalizable if it is normalizable and \widetilde{D}_{i} is $\operatorname{Aut}(G)$-normalizable for all i.

Theorem: (main generalization) Let G be abelian group of odd order v. If every DS-tiling is $\operatorname{Aut}(G)$-normalizable then $N T C$ is true.

Thank you!!!

Questions?

