On t-designs with three intersection numbers ${ }^{\star}$

Vedran Krčadinac
(Joint work with Renata Vlahović Kruc)
University of Zagreb, Croatia
9.6.2022.

* This work has been supported by the Croatian Science Foundation under the projects 6732 and 9752.

Combinatorial designs

"The concept of combinatorial t-design is to find subsets which approximate the whole space $\binom{V}{k}$ i.e., the set of k-element subsets of a set V of cardinality $|V|=v$."
E. Bannai, E. Bannai, H. Tanaka, Y. Zhu, Design theory from the viewpoint of algebraic combinatorics, Graphs Combin. 33 (2017), no. 1, 1-41.

Combinatorial designs

"The concept of combinatorial t-design is to find subsets which approximate the whole space $\binom{V}{k}$ i.e., the set of k-element subsets of a set V of cardinality $|V|=v$."
E. Bannai, E. Bannai, H. Tanaka, Y. Zhu, Design theory from the viewpoint of algebraic combinatorics, Graphs Combin. 33 (2017), no. 1, 1-41.

A $t-(v, k, \lambda)$ design is a family $\mathcal{B} \subseteq\binom{V}{k}$ of blocks such that every t-subset of V is contained in exactly λ blocks.

Combinatorial designs

"The concept of combinatorial t-design is to find subsets which approximate the whole space $\binom{V}{k}$ i.e., the set of k-element subsets of a set V of cardinality $|V|=v$."
E. Bannai, E. Bannai, H. Tanaka, Y. Zhu, Design theory from the viewpoint of algebraic combinatorics, Graphs Combin. 33 (2017), no. 1, 1-41.

A $t-(v, k, \lambda)$ design is a family $\mathcal{B} \subseteq\binom{V}{k}$ of blocks such that every t-subset of V is contained in exactly λ blocks.

$$
\lambda_{s}=\frac{\lambda \cdot\binom{v-s}{t-s}}{\binom{k-s}{t-s}}, \quad s=0, \ldots, t
$$

Combinatorial designs

"The concept of combinatorial t-design is to find subsets which approximate the whole space $\binom{V}{k}$ i.e., the set of k-element subsets of a set V of cardinality $|V|=v$."
E. Bannai, E. Bannai, H. Tanaka, Y. Zhu, Design theory from the viewpoint of algebraic combinatorics, Graphs Combin. 33 (2017), no. 1, 1-41.

A $t-(v, k, \lambda)$ design is a family $\mathcal{B} \subseteq\binom{V}{k}$ of blocks such that every t-subset of V is contained in exactly λ blocks.

$$
\lambda_{s}=\frac{\lambda \cdot\binom{v-s}{t-s}}{\binom{k-s}{t-s}}, \quad s=0, \ldots, t
$$

The strength of a design is the largest t for which it is a t-design.

The degree of a design

The degree of a design is the number of different block intersection cardinalities:

$$
d=\left|\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\}\right| .
$$

The degree of a design

The degree of a design is the number of different block intersection cardinalities:

$$
d=\left|\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\}\right| .
$$

The cardinalities $\left|B_{1} \cap B_{2}\right|$ are called intersection numbers of the design.

The degree of a design

The degree of a design is the number of different block intersection cardinalities:

$$
d=\left|\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\}\right|
$$

The cardinalities $\left|B_{1} \cap B_{2}\right|$ are called intersection numbers of the design.
D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.
The number of blocks $b=|\mathcal{B}|$ is bounded by $\binom{v}{\lfloor t / 2\rfloor} \leq b \leq\binom{ v}{d}$.

The degree of a design

The degree of a design is the number of different block intersection cardinalities:

$$
d=\left|\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\}\right| .
$$

The cardinalities $\left|B_{1} \cap B_{2}\right|$ are called intersection numbers of the design.
D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.
The number of blocks $b=|\mathcal{B}|$ is bounded by $\binom{v}{\lfloor t / 2\rfloor} \leq b \leq\binom{ v}{d}$.
$d=1 \Longrightarrow t \leq 2$

The degree of a design

The degree of a design is the number of different block intersection cardinalities:

$$
d=\left|\left\{\left|B_{1} \cap B_{2}\right|: B_{1}, B_{2} \in \mathcal{B}, B_{1} \neq B_{2}\right\}\right|
$$

The cardinalities $\left|B_{1} \cap B_{2}\right|$ are called intersection numbers of the design.
D. K. Ray-Chaudhuri, R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.
The number of blocks $b=|\mathcal{B}|$ is bounded by $\binom{v}{\lfloor t / 2\rfloor} \leq b \leq\binom{ v}{d}$.
$d=1 \Longrightarrow t \leq 2$
Equality $t=2$ holds for the symmetric designs, characterized by $v=b$. The single intersection number is λ.

Quasi-symmetric designs

Designs of degree $d=2$ are called quasi-symmetric and the intersection numbers are denoted by $x<y$. The strength is bounded by $t \leq 4$.

Quasi-symmetric designs

Designs of degree $d=2$ are called quasi-symmetric and the intersection numbers are denoted by $x<y$. The strength is bounded by $t \leq 4$.
$t=4 \rightsquigarrow$ The only example is the derived Witt design 4-(23,7,1), $x=1, y=3$ and its complement.
A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka J. Math. 16 (1979), 353-356.

Quasi-symmetric designs

Designs of degree $d=2$ are called quasi-symmetric and the intersection numbers are denoted by $x<y$. The strength is bounded by $t \leq 4$.
$t=4 \rightsquigarrow$ The only example is the derived Witt design 4-(23,7,1), $x=1, y=3$ and its complement.
A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka J. Math. 16 (1979), 353-356.
$t=3, x=0 \rightsquigarrow$ QSDs are extensions of symmetric designs:

$$
2-(v, k, \lambda) \hookrightarrow 3-(v+1, k+1, \lambda), x=0, y=\lambda+1
$$

Quasi-symmetric designs

Designs of degree $d=2$ are called quasi-symmetric and the intersection numbers are denoted by $x<y$. The strength is bounded by $t \leq 4$.
$t=4 \rightsquigarrow$ The only example is the derived Witt design 4-(23,7,1), $x=1, y=3$ and its complement.
A. Bremner, A Diophantine equation arising from tight 4-designs, Osaka J. Math. 16 (1979), 353-356.
$t=3, x=0 \rightsquigarrow$ QSDs are extensions of symmetric designs:

$$
2-(v, k, \lambda) \hookrightarrow 3-(v+1, k+1, \lambda), x=0, y=\lambda+1
$$

P. J. Cameron, Extending symmetric designs, J. Combin. Theory Ser. A 14 (1973), 215-220.
(1) $v=4 \lambda+3, k=2 \lambda+1$ (Hadamard designs)
(2) $v=(\lambda+2)\left(\lambda^{2}+4 \lambda+2\right), k=\lambda^{2}+3 \lambda+1$
(3) $v=495, k=39, \lambda=3$

Quasi-symmetric designs

$t=3, x>0 \rightsquigarrow$ The only examples are hypothesized to be the derived Witt design 3-(23, 7,5) and its residual 3-($22,7,4$) with $x=1, y=3$ and their complements.
S. S. Sane, M. S. Shrikhande, Quasisymmetric 2,3,4-designs, Combinatorica 7 (1987), 291-301.

Quasi-symmetric designs

$t=3, x>0 \rightsquigarrow$ The only examples are hypothesized to be the derived Witt design 3-(23, 7, 5) and its residual 3-(22, 7, 4) with $x=1, y=3$ and their complements.
S. S. Sane, M. S. Shrikhande, Quasisymmetric 2,3,4-designs, Combinatorica 7 (1987), 291-301.
$t=2 \rightsquigarrow$ Infinitely many feasible parameters, several known infinite series.

Quasi-symmetric designs

$t=3, x>0 \rightsquigarrow$ The only examples are hypothesized to be the derived Witt design 3-(23, 7, 5) and its residual 3-(22, 7, 4) with $x=1, y=3$ and their complements.
S. S. Sane, M. S. Shrikhande, Quasisymmetric 2,3,4-designs, Combinatorica 7 (1987), 291-301.
$t=2 \rightsquigarrow$ Infinitely many feasible parameters, several known infinite series.
A. Neumaier, Regular sets and quasi-symmetric 2-designs, Combinatorial theory (Schloss Rauischholzhausen, 1982), 258-275, Lecture Notes in Math. 969, Springer, 1982. $\rightsquigarrow v \leq 40$

Quasi-symmetric designs

$t=3, x>0 \rightsquigarrow$ The only examples are hypothesized to be the derived Witt design 3-(23, 7, 5) and its residual 3-(22, 7, 4) with $x=1, y=3$ and their complements.
S. S. Sane, M. S. Shrikhande, Quasisymmetric 2,3,4-designs, Combinatorica 7 (1987), 291-301.
$t=2 \rightsquigarrow$ Infinitely many feasible parameters, several known infinite series.
A. Neumaier, Regular sets and quasi-symmetric 2-designs, Combinatorial theory (Schloss Rauischholzhausen, 1982), 258-275, Lecture Notes in Math. 969, Springer, 1982. $\rightsquigarrow v \leq 40$
M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn, J. H. Dinitz), CRC Press, 2007, pp. 578-582. $\rightsquigarrow v \leq 70$

Quasi-symmetric designs

$t=3, x>0 \rightsquigarrow$ The only examples are hypothesized to be the derived Witt design 3-(23, 7, 5) and its residual 3-(22, 7, 4) with $x=1, y=3$ and their complements.
S. S. Sane, M. S. Shrikhande, Quasisymmetric 2,3,4-designs, Combinatorica 7 (1987), 291-301.
$t=2 \rightsquigarrow$ Infinitely many feasible parameters, several known infinite series.
A. Neumaier, Regular sets and quasi-symmetric 2-designs, Combinatorial theory (Schloss Rauischholzhausen, 1982), 258-275, Lecture Notes in Math. 969, Springer, 1982. $\rightsquigarrow v \leq 40$
M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn, J. H. Dinitz), CRC Press, 2007, pp. 578-582. $\rightsquigarrow v \leq 70$
A. E. Brouwer, H. Van Maldeghem, Strongly regular graphs, 2021. $\rightsquigarrow v \leq 100$

Designs of degree $d=3$

$$
d=3 \Longrightarrow t \leq 6
$$

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Intersection numbers: $x<y<z$.

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Intersection numbers: $x<y<z$.
$t=6 \rightsquigarrow$ Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Intersection numbers: $x<y<z$.
$t=6 \rightsquigarrow$ Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.
$t=5 \rightsquigarrow$ The Witt 5-(24, 8, 1) design with $x=0, y=2, z=4$ and its complement are hypothesized to be the only examples.
Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers,
J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.

Designs of degree $d=3$

$d=3 \Longrightarrow t \leq 6$. Intersection numbers: $x<y<z$.
$t=6 \rightsquigarrow$ Do not exist!
C. Peterson, On tight 6-designs, Osaka J. Math. 14 (1977), 417-435.
$t=5 \rightsquigarrow$ The Witt 5-(24, 8, 1) design with $x=0, y=2, z=4$ and its complement are hypothesized to be the only examples.
Y. J. Ionin, M. S. Shrikhande, 5-designs with three intersection numbers,
J. Combin. Theory Ser. A 69 (1995), no. 1, 36-50.
$t=4$
V. Krčadinac, R. Vlahović Kruc, Schematic 4-designs, preprint, 2022.

Schematic designs

Theorem (Cameron, Delsarte, 1973)

The blocks of a design of degree d and strength $t \geq 2 d-2$ form a symmetric association scheme with d classes.
P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973), vi+97 pp.

Schematic designs

Theorem (Cameron, Delsarte, 1973)

The blocks of a design of degree d and strength $t \geq 2 d-2$ form a symmetric association scheme with d classes.
P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973), vi+97 pp.
$d=2, t=2 \rightsquigarrow$ The block graph of a QSD is strongly regular.

Schematic designs

Theorem (Cameron, Delsarte, 1973)

The blocks of a design of degree d and strength $t \geq 2 d-2$ form a symmetric association scheme with d classes.
P. J. Cameron, Near-regularity conditions for designs, Geometriae Dedicata 2 (1973), 213-223.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973), vi+97 pp.
$d=2, t=2 \rightsquigarrow$ The block graph of a QSD is strongly regular.
$d=3, t=4 \rightsquigarrow$ The blocks form a 3-class association scheme.

Designs with $d=3, t=4$

Theorem (V.K., R. Vlahović Kruc)

The association scheme of a $4-(v, k, \lambda)$ design with three intersection numbers $x<y<z$ has the following eigenvalues:

$$
\begin{aligned}
& p_{1}(j)=\frac{y z \theta_{0}(j)+(1-y-z) \theta_{1}(j)+2 \theta_{2}(j)-(y-k)(z-k)}{(y-x)(z-x)}, \\
& p_{2}(j)=\frac{x z \theta_{0}(j)+(1-x-z) \theta_{1}(j)+2 \theta_{2}(j)-(x-k)(z-k)}{(x-y)(z-y)}, \\
& p_{3}(j)=\frac{x y \theta_{0}(j)+(1-x-y) \theta_{1}(j)+2 \theta_{2}(j)-(x-k)(y-k)}{(x-z)(y-z)}, \\
& \theta_{i}(j)=\frac{b}{\binom{v}{k}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j}=\frac{\lambda}{\binom{v-4}{k-4}}\binom{v-i-j}{v-k-j}\binom{k-j}{i-j}
\end{aligned}
$$

with multiplicities $m_{j}= \begin{cases}\binom{v}{j}-\binom{v}{j-1}, & \text { for } j=0,1,2, \\ b-\binom{v}{2}, & \text { for } j=3 .\end{cases}$

Designs with $d=3, t=4$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	
2	23	8	4	0	2	4	
3	23	11	48	3	5	7	
4	24	8	5	0	2	4	
5	47	11	8	1	3	5	
6	71	35	264	14	17	20	
7	199	99	2328	44	49	54	
8	391	195	9264	90	97	104	
9	647	323	25680	152	161	170	
10	659	329	390874	153	164	175	
11	967	483	57720	230	241	252	

Designs with $d=3, t=4$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	$?$
7	199	99	2328	44	49	54	$?$
8	391	195	9264	90	97	104	$?$
9	647	323	25680	152	161	170	$?$
10	659	329	390874	153	164	175	$?$
11	967	483	57720	230	241	252	$?$

Designs with $d=3, t=4$

\(\left.\begin{array}{|c|ccc|ccc|c|}\hline No. \& v \& k \& \lambda \& x \& y \& z \& \exists

\hline 1 \& 11 \& 5 \& 1 \& 1 \& 2 \& 3 \& \checkmark

2 \& 23 \& 8 \& 4 \& 0 \& 2 \& 4 \& \checkmark

3 \& 23 \& 11 \& 48 \& 3 \& 5 \& 7 \& \checkmark

4 \& 24 \& 8 \& 5 \& 0 \& 2 \& 4 \& \checkmark

5 \& 47 \& 11 \& 8 \& 1 \& 3 \& 5 \& \checkmark

6 \& 71 \& 35 \& 264 \& 14 \& 17 \& 20 \& ?

7 \& 199 \& 99 \& 2328 \& 44 \& 49 \& 54 \& ?

8 \& 391 \& 195 \& 9264 \& 90 \& 97 \& 104 \& ?

9 \& 647 \& 323 \& 25680 \& 152 \& 161 \& 170 \& ?

10 \& 659 \& 329 \& 390874 \& 153 \& 164 \& 175 \& ?

11 \& 967 \& 483 \& 57720 \& 230 \& 241 \& 252 \& ?\end{array}\right\}\)| QR codes + Assmus- |
| :--- |
| Mattson theorem. |

Designs with $d=3, t=4$

P. J. Cameron, J. H. van Lint, Designs, graphs, codes and their links, Cambridge University Press, 1991.

Chapter 14: Quadratic residue codes and the Assmus-Mattson theorem.

Designs with $d=3, t=4$

P. J. Cameron, J. H. van Lint, Designs, graphs, codes and their links, Cambridge University Press, 1991.

Chapter 14: Quadratic residue codes and the Assmus-Mattson theorem.
E. F. Assmus, Jr., H. F. Mattson, Jr., New 5-designs, J. Combinatorial Theory 6 (1969), 122-151.

Designs with $d=3, t=4$

\(\left.\begin{array}{|c|ccc|ccc|c|}\hline No. \& v \& k \& \lambda \& x \& y \& z \& \exists

\hline 1 \& 11 \& 5 \& 1 \& 1 \& 2 \& 3 \& \checkmark

2 \& 23 \& 8 \& 4 \& 0 \& 2 \& 4 \& \checkmark

3 \& 23 \& 11 \& 48 \& 3 \& 5 \& 7 \& \checkmark

4 \& 24 \& 8 \& 5 \& 0 \& 2 \& 4 \& \checkmark

5 \& 47 \& 11 \& 8 \& 1 \& 3 \& 5 \& \checkmark

6 \& 71 \& 35 \& 264 \& 14 \& 17 \& 20 \& ?

7 \& 199 \& 99 \& 2328 \& 44 \& 49 \& 54 \& ?

8 \& 391 \& 195 \& 9264 \& 90 \& 97 \& 104 \& ?

9 \& 647 \& 323 \& 25680 \& 152 \& 161 \& 170 \& ?

10 \& 659 \& 329 \& 390874 \& 153 \& 164 \& 175 \& ?

11 \& 967 \& 483 \& 57720 \& 230 \& 241 \& 252 \& ?\end{array}\right\}\)| QR codes + Assmus- |
| :--- |
| Mattson theorem. |

Designs with $d=3, t=4$

No.	v	k	λ	x	y	z	\exists
1	11	5	1	1	2	3	\checkmark
2	23	8	4	0	2	4	\checkmark
3	23	11	48	3	5	7	\checkmark
4	24	8	5	0	2	4	\checkmark
5	47	11	8	1	3	5	\checkmark
6	71	35	264	14	17	20	$?$
7	199	99	2328	44	49	54	$?$
8	391	195	9264	90	97	104	$?$
9	647	323	25680	152	161	170	$?$
10	659	329	390874	153	164	175	$?$
11	967	483	57720	230	241	252	$?$

Designs with $d=3, t=4$

Infinite series of admissible parameters:

$$
\begin{array}{ll}
v=8 n^{2}-1 \\
k & =4 n^{2}-1=(2 n-1)(2 n+1) \\
\lambda & =4 n^{4}-7 n^{2}+3=(n-1)(n+1)\left(4 n^{2}-3\right) \\
x=2 n^{2}-n-1=(n-1)(2 n+1) & n \geq 3 \text { odd } \\
y=2 n^{2}-1 & \\
z=2 n^{2}+n-1=(n+1)(2 n-1) & \\
z=2
\end{array}
$$

Designs with $d=3, t=4$

Infinite series of admissible parameters:

$$
\begin{aligned}
v & =8 n^{2}-1 \\
k & =4 n^{2}-1=(2 n-1)(2 n+1) \\
\lambda & =4 n^{4}-7 n^{2}+3=(n-1)(n+1)\left(4 n^{2}-3\right) \quad n \geq 3 \text { odd } \\
x & =2 n^{2}-n-1=(n-1)(2 n+1) \\
y & =2 n^{2}-1 \\
z & =2 n^{2}+n-1=(n+1)(2 n-1) \\
p_{33}^{3} & =\frac{1}{2}(n+1)(2 n+3)\left(4 n^{2}-2 n-1\right)
\end{aligned}
$$

Designs with $d=3, t=3$: work in progress

Cameron-Delsarte theorem does not apply!

Designs with $d=3, t=3$: work in progress

Cameron-Delsarte theorem does not apply!

Hundreds of admissible parameters for $v \leq 100$.

Designs with $d=3, t=3$: work in progress

Cameron-Delsarte theorem does not apply!

Hundreds of admissible parameters for $v \leq 100$.
(1) Steiner 3-designs: $x=0, y=1, z=2$

Designs with $d=3, t=3$: work in progress

Cameron-Delsarte theorem does not apply!

Hundreds of admissible parameters for $v \leq 100$.
(1) Steiner 3-designs: $x=0, y=1, z=2$
(2) $x=0$: extensions of quasi-symmetric 2-designs

Designs with $d=3, t=3$: work in progress

Cameron-Delsarte theorem does not apply!
Hundreds of admissible parameters for $v \leq 100$.
(1) Steiner 3-designs: $x=0, y=1, z=2$
(2) $x=0$: extensions of quasi-symmetric 2-designs

$$
P G_{n-2}(n, 2) \hookrightarrow A G_{n-1}(n+1,2)
$$

Designs with $d=3, t=3$: work in progress

Cameron-Delsarte theorem does not apply!
Hundreds of admissible parameters for $v \leq 100$.
(1) Steiner 3-designs: $x=0, y=1, z=2$
(2) $x=0$: extensions of quasi-symmetric 2-designs

$$
P G_{n-2}(n, 2) \hookrightarrow A G_{n-1}(n+1,2)
$$

(3) $x>0$: possible infinite family related to $A G_{n-1}(n+1,2)$

The End

Thanks for your attention!

