Designing and Combining Designs ${ }^{1}$

M. O. Pavčević ${ }^{1}$ K. Tabak ${ }^{2}$

${ }^{1}$ Department of Applied Mathematics, Faculty of electrical engineering and computing, University of Zagreb, Croatia
${ }^{2}$ Rochester Institute of Technology, Zagreb Campus, Croatia

25th Int. Symposium on Math. Theory of Networks and Systems Bayreuth 2022
${ }^{1}$ This work has been fully supported by the Croatian Science Foundation under the project 6732 and 9752 .

Definition of t-designs

Definition

A t - (v, k, λ) design \mathcal{D} consists of a v-element set of points \mathcal{P} together with a collection \mathcal{B} of k-element subsets called blocks, such that every t-element subset of points is contained in exactly λ blocks.

Definition of t-designs

Definition

A $t-(v, k, \lambda)$ design \mathcal{D} consists of a v-element set of points \mathcal{P} together with a collection \mathcal{B} of k-element subsets called blocks, such that every t-element subset of points is contained in exactly λ blocks.

Following facts

- The number of elements in \mathcal{B} can be computed using the given parameter set $t-(v, k, \lambda)$ and equals:

$$
b=|\mathcal{B}|=\lambda\binom{v}{t} /\binom{k}{t}
$$

- Each point lies in exactly r blocks,

$$
r=\lambda\binom{v-1}{t-1} /\binom{k-1}{t-1}
$$

Examples

Example

For a given v-element set of points \mathcal{P}, let \mathcal{B} be the set of all k-element subsets of \mathcal{P},

$$
\mathcal{B}=\binom{\mathcal{P}}{k} .
$$

We get a $k-(v, k, 1)$ design in a trivial way.

Examples

Example

For a given v-element set of points \mathcal{P}, let \mathcal{B} be the set of all k-element subsets of \mathcal{P},

$$
\mathcal{B}=\binom{\mathcal{P}}{k} .
$$

We get a $k-(v, k, 1)$ design in a trivial way.

Example

Let $\mathcal{P}=\{1,2,3,4,5,6,7\}$, and let the set of blocks be

$$
\mathcal{B}=\{\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,7\},\{1,5,6\},\{2,6,7\},\{1,3,7\}\}
$$

These blocks form a $2-(7,3,1)$ design, called the Fano plane.

Another presentation

Definition

Denote the point set of the design \mathcal{D} by $\mathcal{P}=\{1,2, \ldots, v\}$ and the block set by $\mathcal{B}=\{1,2, \ldots, b\}$. The $0-1$ matrix $A=\left[a_{i j}\right]$ of type $v \times b$ with elements

$$
a_{i j}= \begin{cases}1, & \text { if } i \in j \\ 0, & \text { otherwise }\end{cases}
$$

is called the incidence matrix of \mathcal{D}.
Example

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Smallest open problems

According to the

> Handbook of Combinatorial Designs second edition, 2006
(Tables with existence results by
R. Mathon and A. Rosa as well as by
G. B. Khosrovshahi and R. Laue),
the smallest parameters for which the existence is still open are:

- For 2-designs: $2-(51,6,1)$ or $2-(40,10,3)$ or $2-(39,13,6)$
- For symmetric 2-designs: 2-($157,13,1$) or 2-($81,16,3$)
- For 3-designs: 3-(16,7,5)
- For 4-designs: 4-(13,6,6)

Goal: explicit constructions

Main problem:
Natural size of the search space for a $t-(v, k, \lambda)$ design : $\left(\begin{array}{c}v \\ k \\ b\end{array}\right)$

Goal: explicit constructions

Main problem:

$$
\text { Natural size of the search space for a } t-(v, k, \lambda) \text { design : }\left(\begin{array}{c}
v \\
k \\
b
\end{array}\right)
$$

Example

In case of $3-(16,7,5)$ this number equals

$$
\left(\begin{array}{c}
16 \\
7 \\
80
\end{array}\right)=\binom{11440}{80}=\mathrm{HUGE}
$$

Goal: explicit constructions

Main problem:

$$
\text { Natural size of the search space for a } t-(v, k, \lambda) \text { design : }\left(\begin{array}{c}
v \\
k \\
b
\end{array}\right)
$$

Example

In case of 3-(16, 7,5$)$ this number equals

$$
\binom{\binom{16}{7}}{80}=\binom{11440}{80}=\mathrm{HUGE}
$$

Techniques (too often not successful):
Computer search; Adding constraints (group actions); Heuristic search; ...

What to do? - Combine designs!

What to do? - Combine designs!

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllllll}
\square & \square & \square & \square & \square & \square & \square \\
\square & \square & \square & \square & \square & \square & \square \\
\square & \square & \square & \square & \square & \square & \square \\
\square & \square & \square & \square & \square & \square & \square \\
\square & \square & \square & \square & \square & \square & \square \\
\square & \square & \square & \square & \square & \square & \square \\
\square & \square & \square & \square & \square & \square & \square
\end{array}\right]
$$

What to do? - Combine designs!

Mosaics

-■■ロ■■■■
$\square \square$
■ - ■ ■■
-■
\square
-

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 1 & 2 & 3 & 1 & 0 & 1 & 2 & 3 & 2 & 0 & 1 & 2 & 3 & 3 & 0 & 1 & 2 & 3 \\
0 & 1 & 0 & 3 & 2 & 1 & 1 & 0 & 3 & 2 & 2 & 1 & 0 & 3 & 2 & 3 & 1 & 0 & 3 & 2 \\
0 & 2 & 3 & 0 & 1 & 1 & 2 & 3 & 0 & 1 & 2 & 2 & 3 & 0 & 1 & 3 & 2 & 3 & 0 & 1 \\
0 & 3 & 2 & 1 & 0 & 1 & 3 & 2 & 1 & 0 & 2 & 3 & 2 & 1 & 0 & 3 & 3 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 3 & 0 & 1 & 0 & 3 & 2 & 3 & 2 & 3 & 0 & 1 & 2 & 3 & 2 & 1 & 0 \\
1 & 1 & 0 & 3 & 2 & 0 & 0 & 1 & 2 & 3 & 3 & 3 & 2 & 1 & 0 & 2 & 2 & 3 & 0 & 1 \\
1 & 2 & 3 & 0 & 1 & 0 & 3 & 2 & 1 & 0 & 3 & 0 & 1 & 2 & 3 & 2 & 1 & 0 & 3 & 2 \\
1 & 3 & 2 & 1 & 0 & 0 & 2 & 3 & 0 & 1 & 3 & 1 & 0 & 3 & 2 & 2 & 0 & 1 & 2 & 3 \\
2 & 0 & 1 & 2 & 3 & 3 & 2 & 3 & 0 & 1 & 0 & 3 & 2 & 1 & 0 & 1 & 1 & 0 & 3 & 2 \\
2 & 1 & 0 & 3 & 2 & 3 & 3 & 2 & 1 & 0 & 0 & 2 & 3 & 0 & 1 & 1 & 0 & 1 & 2 & 3 \\
2 & 2 & 3 & 0 & 1 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 0 & 3 & 2 & 1 & 3 & 2 & 1 & 0 \\
2 & 3 & 2 & 1 & 0 & 3 & 1 & 0 & 3 & 2 & 0 & 0 & 1 & 2 & 3 & 1 & 2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 2 & 3 & 2 & 1 & 0 & 1 & 1 & 0 & 3 & 2 & 0 & 2 & 3 & 0 & 1 \\
3 & 1 & 0 & 3 & 2 & 2 & 2 & 3 & 0 & 1 & 1 & 0 & 1 & 2 & 3 & 0 & 3 & 2 & 1 & 0 \\
3 & 2 & 3 & 0 & 1 & 2 & 1 & 0 & 3 & 2 & 1 & 3 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 3 \\
3 & 3 & 2 & 1 & 0 & 2 & 0 & 1 & 2 & 3 & 1 & 2 & 3 & 0 & 1 & 0 & 1 & 0 & 3 & 2
\end{array}
$$

Constructions

Series of mosaics:

- "Design and its complement" (incidence matrix of every 2-design)

$$
2-(v, k, \lambda) \oplus 2-(v, v-k, b-2 r+\lambda)
$$

- "Hadamard with diagonal"

$$
2-(v, 1,0) \oplus 2-\left(v, \frac{v-1}{2}, \frac{v-3}{4}\right) \oplus 2-\left(v, \frac{v-1}{2}, \frac{v-3}{4}\right)
$$

- "Affine planes"

$$
2-\left(q^{2}, q, 1\right) \oplus \cdots \oplus 2-\left(q^{2}, q, 1\right)
$$

Theorem
Let D be the incidence matrix of a resolvable $t-(v, k, \lambda)$ design, where the columns have been arranged by parallel classes. Let L be a latin square of order $\frac{v}{k}$ with entries $I_{1}, \ldots, I_{\frac{v}{k}}$. Then $M:=D\left(I_{r} \otimes L\right)$ is a $\frac{v}{k}$-mosaic.

Theorem

Let D be the incidence matrix of a resolvable $t-(v, k, \lambda)$ design, where the columns have been arranged by parallel classes. Let L be a latin square of order $\frac{v}{k}$ with entries $I_{1}, \ldots, I_{\frac{v}{k}}$. Then $M:=D\left(I_{r} \otimes L\right)$ is a $\frac{v}{k}$-mosaic.

So, a further construction series is the following:

- "Resolvable designs"

$$
\bigoplus_{i=1}^{\frac{v}{k}} t-(v, k, \lambda)
$$

What about sporadic examples?

$$
\text { Is there a } 2-(31,6,1) \oplus 2-(31,10,3) \oplus 2-(31,15,7) \text { mosaic? }
$$

- All integrality conditions are satisfied.
- Not easy to find. My favorite open problem!

What about sporadic examples?

$$
\text { Is there a } 2-(31,6,1) \oplus 2-(31,10,3) \oplus 2-(31,15,7) \text { mosaic? }
$$

- All integrality conditions are satisfied.
- Not easy to find. My favorite open problem!

Reference
O. W. Gnilke, M. Greferath, M. O. Pavčević, Mosaics of combinatorial designs
Des. Codes Cryptogr. 86 (2018), 85-95.

Design cubes

Lets have a look at another way of combining designs.

Take this indicence matrix of the Fano plane as the first layer of a $7 \times 7 \times 7$ cube.

Construction of design cubes

Now, construct the second layer of the cube by permuting the rows cyclically, starting with the second row of the incidence matrix.

Continuing this procedure, you get all the 7 layers:

ロ■■ロ■ロロ $\square \square \square \square \square \square \square$
 ロロ■■ロ■ロ ロロロ■■ロ■
 $\square \square \square \square ■ \square \square$ ■ロロロ■■ロ ロ■ロロロ■■ ■ロ■ロロロ■ ■■ロ■ロロロ

> $\square \square \square ■ ■ \square \square$
> ■ロロロ■■ロ ロ■ロロロ■■ ■ロ■ロロロ■ ■■ロ■ロロロ ロ■■ロ■ロロ $\square \square \boldsymbol{\square} \square \square \square$

■ ロロロ■■ロ $\square ■ \square \square \square \square \square$ ■ロ■ロロロ■ ■■ロ■ロロロ ロ■■ロ■ロロ ロロ■■ロ■ロ $\square \square \square \square \square \square \square$
$\square ■ \square \square \square \square \square$
■ロ■ロロロ■
■■ロ■ロロロ
ロ■■ロ■ロロ
ロロ■■ロ■ロ
ロロロ■■ロ■
■ロロロ■■ロ

■ロ■ロロロ■
■■ロ■ロロロ
ロ■■ロ■ロロ
$\square \square \square \square \square \square \square$ ロロロ■■ロ■ ■ロロロ■■ロ ロ■ロロロ■■

■■ロ■ロロロ
■■■ロ■ロロ
$\square \square \square ■ \square \square \square$
$\square \square \square \square \square \square \square$
■ロロロ■■ロ
\square ■ロロロ■■
■ロ■ロロロ■

Definition of design cubes

Definition

A 3-dimensional binary matrix $A=\left[a_{i j m}\right]$ of order v is called a $2-(v, k, \lambda)$ design cube, or simply a design cube, if all submatrices

$$
\begin{array}{ll}
A_{3}=\left[a_{i j m}\right], & m \text { fixed; } \\
A_{2}=\left[a_{i j m}\right], & j \text { fixed; } \\
A_{1}=\left[a_{i j m}\right], & i \text { fixed; }
\end{array}
$$

are incidence matrices of a symmetric $2-(v, k, \lambda)$ design.

Results so far

Theorem
If there is a $2-(v, k, \lambda)$ difference set, then there is a $2-(v, k, \lambda)$ design cube.

Results so far

Theorem

If there is a $2-(v, k, \lambda)$ difference set, then there is a $2-(v, k, \lambda)$ design cube.

Proof.

It can be proven that the construction explained before works always, for all groups of order v, satisfying the desired condition in all 3 "directions" (for fixed i, j and m).

Results so far

```
Theorem
If there is a 2-(v,k,\lambda) difference set, then there is a 2-( }v,k,\lambda)\mathrm{ design cube.
```


Proof.

It can be proven that the construction explained before works always, for all groups of order v, satisfying the desired condition in all 3 "directions" (for fixed i, j and m).

Main question
What about the other direction of the statement above? Or alternatively, does any design cube come from a difference set?

Thanks for your attention!

