Cubes of designs

Kristijan Tabak
Rochester Institute of Technology, Zagreb Campus
Croatia
e-mail: kxtcad@rit.edu
KOLKOM 22, Paderborn University, Nov. 18-19, 2022

This work has been fully supported by Croatian Science Foundation under the projects 6732 and 9752
(joint work with M.O. Pavčević and V. Krčadinac)

Introduction

4
-
4
-
Back
Close

Introduction

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, such that

Introduction

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, such that \mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}|=|\mathcal{B}|=v$,

Introduction

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, such that \mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}|=|\mathcal{B}|=v$, where every 2 -element subset of \mathcal{P} is contained in an exactly λ sets (blocks) from \mathcal{B}

Introduction

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, such that \mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}|=|\mathcal{B}|=v$, where every 2 -element subset of \mathcal{P} is contained in an exactly λ sets (blocks) from \mathcal{B}
is called a (v, k, λ) symmetric design.

Introduction

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, such that \mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}|=|\mathcal{B}|=v$, where every 2 -element subset of \mathcal{P} is contained in an exactly λ sets (blocks) from \mathcal{B}
is called a (v, k, λ) symmetric design.
A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

Introduction

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, such that
\mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}|=|\mathcal{B}|=v$,
where every 2 -element subset of \mathcal{P} is contained in an exactly λ sets (blocks) from \mathcal{B}
is called a (v, k, λ) symmetric design.
A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

If A is a matrix, then (i, j) entry of a matrix A is denoted by $(A)_{i j}$ (or sometimes just $A_{i j}$).

Introduction

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, such that
\mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}|=|\mathcal{B}|=v$,
where every 2 -element subset of \mathcal{P} is contained in an exactly λ sets (blocks) from \mathcal{B}
is called a (v, k, λ) symmetric design.
A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

If A is a matrix, then (i, j) entry of a matrix A is denoted by $(A)_{i j}$ (or sometimes just $A_{i j}$).

Def: A matrix $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ with $(0,1)$-entries is a cube of (v, k, λ) symmetric design

Def: A matrix $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ with $(0,1)$-entries is a cube of (v, k, λ) symmetric design
if matrices $A_{x}^{i}, A_{y}^{j}, A_{z}^{m}$ are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in[v]$, where

Def: A matrix $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ with $(0,1)$-entries is a cube of (v, k, λ) symmetric design
if matrices $A_{x}^{i}, A_{y}^{j}, A_{z}^{m}$ are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in[v]$, where
$\left(A_{x}^{i}\right)_{j m}=a_{i j m}, j, m \in[v],\left(A_{y}^{j}\right)_{i m}=a_{i j m}, i, m \in[v]$ and $\left(A_{z}^{m}\right)_{i j}=$ $a_{i j m}, i, j \in[v]$.

Def: A matrix $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ with $(0,1)$-entries is a cube of (v, k, λ) symmetric design
if matrices $A_{x}^{i}, A_{y}^{j}, A_{z}^{m}$ are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in[v]$, where
$\left(A_{x}^{i}\right)_{j m}=a_{i j m}, j, m \in[v],\left(A_{y}^{j}\right)_{i m}=a_{i j m}, i, m \in[v]$ and $\left(A_{z}^{m}\right)_{i j}=$ $a_{i j m}, i, j \in[v]$.
The class of all cubes of a (v, k, λ) symmetric design is denoted by $\mathcal{C}(v, k, \lambda)$.

Def: A matrix $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ with $(0,1)$-entries is a cube of (v, k, λ) symmetric design
if matrices $A_{x}^{i}, A_{y}^{j}, A_{z}^{m}$ are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in[v]$, where
$\left(A_{x}^{i}\right)_{j m}=a_{i j m}, j, m \in[v],\left(A_{y}^{j}\right)_{i m}=a_{i j m}, i, m \in[v]$ and $\left(A_{z}^{m}\right)_{i j}=$ $a_{i j m}, i, j \in[v]$.
The class of all cubes of a (v, k, λ) symmetric design is denoted by $\mathcal{C}(v, k, \lambda)$. matrices $A_{x}^{i}, A_{y}^{j}, A_{z}^{m}$ do not have to be incidence matrices of isomorphic designs

Def: A matrix $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ with $(0,1)$-entries is a cube of (v, k, λ) symmetric design
if matrices $A_{x}^{i}, A_{y}^{j}, A_{z}^{m}$ are incidence matrices of (v, k, λ) symmetric design for all $i, j, m \in[v]$, where
$\left(A_{x}^{i}\right)_{j m}=a_{i j m}, j, m \in[v],\left(A_{y}^{j}\right)_{i m}=a_{i j m}, i, m \in[v]$ and $\left(A_{z}^{m}\right)_{i j}=$ $a_{i j m}, i, j \in[v]$.
The class of all cubes of a (v, k, λ) symmetric design is denoted by $\mathcal{C}(v, k, \lambda)$.
matrices $A_{x}^{i}, A_{y}^{j}, A_{z}^{m}$ do not have to be incidence matrices of isomorphic designs
write group G in a group ring $\mathbb{Z}[G]$ as $G=\sum_{s=1}^{v} g_{s}$ where $g_{1}=1$ (unit in a group G)

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $\left[A_{t}\right]$

$\mathbf{~} 4$
Δ
$\mathbf{\Delta}$
\downarrow
Back
Close

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $\left[A_{t}\right]$ where $[A]_{t}=\left[\begin{array}{llll}A_{t 1} & A_{t 2} & \cdots & A_{t v}\end{array}\right]$.

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $\left[A_{t}\right]$ where $[A]_{t}=\left[\begin{array}{llll}A_{t 1} & A_{t 2} & \cdots & A_{t v}\end{array}\right]$.
represents $[A]_{t}$ using group ring notation as $[A]_{t}=\sum_{s=1}^{v} A_{t s} g_{s}$.

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $\left[A_{t}\right]$ where $[A]_{t}=\left[\begin{array}{llll}A_{t 1} & A_{t 2} & \cdots & A_{t v}\end{array}\right]$.
represents $[A]_{t}$ using group ring notation as $[A]_{t}=\sum_{s=1}^{v} A_{t s} g_{s}$.
A set $D \subseteq G$ is a (v, k, λ) difference set in a group G

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $\left[A_{t}\right]$ where $[A]_{t}=\left[\begin{array}{llll}A_{t 1} & A_{t 2} & \cdots & A_{t v}\end{array}\right]$.
represents $[A]_{t}$ using group ring notation as $[A]_{t}=\sum_{s=1}^{v} A_{t s} g_{s}$.
A set $D \subseteq G$ is a (v, k, λ) difference set in a group G
if a multiset $\left\{d_{1} d_{2}^{-1} \mid d_{1}, d_{2} \in D, d_{1} \neq d_{2}\right\}$ contains exactly λ copies of every $g \in G \backslash\{1\}$.

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $\left[A_{t}\right]$ where $[A]_{t}=\left[\begin{array}{llll}A_{t 1} & A_{t 2} & \cdots & A_{t v}\end{array}\right]$.
represents $[A]_{t}$ using group ring notation as $[A]_{t}=\sum_{s=1}^{v} A_{t s} g_{s}$.
A set $D \subseteq G$ is a (v, k, λ) difference set in a group G
if a multiset $\left\{d_{1} d_{2}^{-1} \mid d_{1}, d_{2} \in D, d_{1} \neq d_{2}\right\}$ contains exactly λ copies of every $g \in G \backslash\{1\}$.
If X is a set, then δ_{X} is a characteristic function of a set X defined by

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $\left[A_{t}\right]$ where $[A]_{t}=\left[\begin{array}{llll}A_{t 1} & A_{t 2} & \cdots & A_{t v}\end{array}\right]$.
represents $[A]_{t}$ using group ring notation as $[A]_{t}=\sum_{s=1}^{v} A_{t s} g_{s}$.
A set $D \subseteq G$ is a (v, k, λ) difference set in a group G
if a multiset $\left\{d_{1} d_{2}^{-1} \mid d_{1}, d_{2} \in D, d_{1} \neq d_{2}\right\}$ contains exactly λ copies of every $g \in G \backslash\{1\}$.
If X is a set, then δ_{X} is a characteristic function of a set X defined by

$$
\delta_{X}(x)= \begin{cases}1, & \text { if } x \in X \\ 0, & \text { otherwise }\end{cases}
$$

Theorem: Let $G=\sum^{v} g_{s}, g_{1}=1$ be a group of order v with a (v, k, λ) difference set D. Let $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ be a 3-dimensional matrix defined by $a_{i j m}=\delta_{g_{j} g_{i} D}\left(g_{m}\right)$ for all $i, j, m \in[v]$. Then the following holds:

1. A is a cube of a (v, k, λ) symmetric design i.e. $A \in \mathcal{C}(v, k, \lambda)$,
2. A_{x}^{i} is an incidence matrix of a symmetric design $\left(G, \mathcal{D e v}\left(g_{i} D\right)\right)$,
3. $\left[A_{y}^{m}\right]_{t}=g_{t}^{-1} g_{m} D^{(-1)}$
4. A_{y}^{m} is an incidence matrix of a symmetric design $\left(G, \sum_{t=1}^{v} g_{t}^{-1} g_{m} D^{(-1)}\right)$,
5. $\left[A_{z}^{m}\right]_{t}=\left[A_{x}^{t}\right]_{m}$ for all $m, t \in[v]$,
6. A_{z}^{m} is an incidence matrix of a symmetric design $\left(G, \sum_{t=1}^{v} g_{m} g_{t} D\right)$.

Theorem: Let $G=\sum^{v} g_{s}, g_{1}=1$ be a group of order v with a (v, k, λ) difference set D. Let $A=\left[a_{i j m}\right] \in \mathcal{M}_{v \times v \times v}$ be a 3-dimensional matrix defined by $a_{i j m}=\delta_{g_{j} g_{i} D}\left(g_{m}\right)$ for all $i, j, m \in[v]$. Then the following holds:

1. A is a cube of a (v, k, λ) symmetric design i.e. $A \in \mathcal{C}(v, k, \lambda)$,
2. A_{x}^{i} is an incidence matrix of a symmetric design $\left(G, \mathcal{D e v}\left(g_{i} D\right)\right)$,
3. $\left[A_{y}^{m}\right]_{t}=g_{t}^{-1} g_{m} D^{(-1)}$
4. A_{y}^{m} is an incidence matrix of a symmetric design $\left(G, \sum_{t=1}^{v} g_{t}^{-1} g_{m} D^{(-1)}\right)$,
5. $\left[A_{z}^{m}\right]_{t}=\left[A_{x}^{t}\right]_{m}$ for all $m, t \in[v]$,
6. A_{z}^{m} is an incidence matrix of a symmetric design $\left(G, \sum_{t=1}^{v} g_{m} g_{t} D\right)$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a 3dimensional matrix such that $\left(A^{\psi}\right)_{i j m}=\delta_{g_{j}^{\psi} g_{i} D}\left(g_{m}\right)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v, k, \lambda)$ and $\left[\left(A^{\psi}\right)_{y}^{m}\right]_{t}=\left(g_{t}^{-1}\right)^{\psi} g_{m} D^{(-1)}$ and $\left[\left(A^{\psi}\right)_{z}^{m}\right]_{t}=$ $g_{m}^{\psi} g_{t} D$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a $3-$ dimensional matrix such that $\left(A^{\psi}\right)_{i j m}=\delta_{g_{j}^{\psi} g_{i} D}\left(g_{m}\right)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v, k, \lambda)$ and $\left[\left(A^{\psi}\right)_{y}^{m}\right]_{t}=\left(g_{t}^{-1}\right)^{\psi} g_{m} D^{(-1)}$ and $\left[\left(A^{\psi}\right)_{z}^{m}\right]_{t}=$ $g_{m}^{\psi} g_{t} D$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ_{m} be a permutation of $G=\sum_{s=1}^{v} g_{s}$ given by $\psi_{m}(g)=g_{m} g$. Then ψ_{m} is an isomorphism between A_{x}^{1} and A_{x}^{m}. Furthermore, $\psi_{m}\left(g_{t} D\right)=g_{t}^{g_{m}^{-1}} g_{m} D$, or in terms of rows of incidence matrices, $\psi_{m}\left(\left[A_{x}^{1}\right]_{t}\right)=\left[A_{x}^{m}\right]_{\tilde{t}}$, where $\tilde{t}=g_{t}^{g_{m}^{-1}}$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a $3-$ dimensional matrix such that $\left(A^{\psi}\right)_{i j m}=\delta_{g_{j}^{\psi} g_{i} D}\left(g_{m}\right)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v, k, \lambda)$ and $\left[\left(A^{\psi}\right)_{y}^{m}\right]_{t}=\left(g_{t}^{-1}\right)^{\psi} g_{m} D^{(-1)}$ and $\left[\left(A^{\psi}\right)_{z}^{m}\right]_{t}=$ $g_{m}^{\psi} g_{t} D$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ_{m} be a permutation of $G=\sum_{s=1}^{v} g_{s}$ given by $\psi_{m}(g)=g_{m} g$. Then ψ_{m} is an isomorphism between A_{x}^{1} and A_{x}^{m}. Furthermore, $\psi_{m}\left(g_{t} D\right)=g_{t}^{g_{m}^{-1}} g_{m} D$, or in terms of rows of incidence matrices, $\psi_{m}\left(\left[A_{x}^{1}\right]_{t}\right)=\left[A_{x}^{m}\right]_{\tilde{t}}$, where $\tilde{t}=g_{t}^{g_{m}^{-1}}$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ and $\mathcal{P}=\sum_{s=1}^{v} p_{s}$ is a set of points of designs A_{x}^{i}. Then $\left[A_{y}^{m}\right]_{t}=\sum_{s=1}^{v} \delta_{B_{x, t}^{s}}\left(p_{m}\right) p_{s}$ and $\left[A_{z}^{m}\right]_{t}=\left[A_{x}^{t}\right]_{m}=$
$\sum^{v} \delta_{B_{x, m}^{t}}\left(p_{s}\right) p_{s}$ for all $m, t \in[v]$, where $\left[A_{y}^{m}\right]_{t}$ and $\left[A_{z}^{m}\right]_{t}$ are t-th blocks of designs A_{y}^{m} and A_{z}^{m} respectively.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ and $\mathcal{P}=\sum_{s=1}^{v} p_{s}$ is a set of points of designs A_{x}^{i}. Then $\left[A_{y}^{m}\right]_{t}=\sum_{s=1}^{v} \delta_{B_{x, t}^{s}}\left(p_{m}\right) p_{s}$ and $\left[A_{z}^{m}\right]_{t}=\left[A_{x}^{t}\right]_{m}=$
$\sum^{v} \delta_{B_{x, m}^{t}}\left(p_{s}\right) p_{s}$ for all $m, t \in[v]$, where $\left[A_{y}^{m}\right]_{t}$ and $\left[A_{z}^{m}\right]_{t}$ are t-th blocks of designs A_{y}^{m} and A_{z}^{m} respectively.

Theorem: Let $A \in \mathcal{C}(v, k, \lambda)$. Then for every $i, m \in[v]$ designs A_{x}^{i}, A_{z}^{m} and A_{y}^{m} satisfy the following:

1. $A_{x}^{i}=\left(\mathcal{P}, \sum_{t=1}^{v} B_{x, t}^{i}\right)=\left(\mathcal{P}, \mathcal{B}_{x}^{i}\right)$,
2. $A_{z}^{m}=\left(\mathcal{P}, \sum_{t=1}^{v} B_{x, m}^{t}\right)=\left(\mathcal{P}, \mathcal{B}_{z}^{m}\right)$, meaning that the set of blocks of a design A_{z}^{m} is a set of m-th blocks of designs A_{x}^{t} for all $t \in[v]$,

3．$A_{y}^{m}=\left(\mathcal{P}_{y}^{m}, \sum_{t=1}^{v}\left\langle p_{m}\right\rangle_{A_{z}^{t}}\right)=\left(\mathcal{P}_{y}^{m}, \mathcal{B}_{y}^{m}\right)$ ，meaning that the t－th block of a design A_{y}^{m} is m－th dual block of a design A_{z}^{t} ．
3. $A_{y}^{m}=\left(\mathcal{P}_{y}^{m}, \sum_{t=1}^{v}\left\langle p_{m}\right\rangle_{A_{z}^{t}}\right)=\left(\mathcal{P}_{y}^{m}, \mathcal{B}_{y}^{m}\right)$, meaning that the t-th block of a design A_{y}^{m} is m-th dual block of a design A_{z}^{t}.
Cyclic cubes generated by a symmetric design
3. $A_{y}^{m}=\left(\mathcal{P}_{y}^{m}, \sum_{t=1}^{v}\left\langle p_{m}\right\rangle_{A_{z}^{t}}\right)=\left(\mathcal{P}_{y}^{m}, \mathcal{B}_{y}^{m}\right)$, meaning that the t-th block of a design A_{y}^{m} is m-th dual block of a design A_{z}^{t}.
Cyclic cubes generated by a symmetric design

Definition: Let $G=\sum_{i=1}^{t} g_{1}$ where $g_{1}=1$, be a group of order v. Let (G, \mathcal{B}) be a (v, k, λ) symmetric design where $\mathcal{B}=\sum_{i=1}^{v} B_{i}$. Let A_{x}^{1} ba an incidence matrix of a design (G, \mathcal{B}). Let A_{x}^{m} be an incidence matrix of an incidence structure $\left(G, g_{m} \mathcal{B}\right)$, where $g_{m} \mathcal{B}=\sum_{i=1}^{v} g_{m} B_{i}$. A cyclic cube (generated by a symmetric design (G, \mathcal{B})) is a 3 -dimensional matrix $A=\left(a_{i j m}\right)$ such that $a_{i j m}=\left(A_{x}^{i}\right)_{j m}$ for all $i, j, m \in[v]$.
3. $A_{y}^{m}=\left(\mathcal{P}_{y}^{m}, \sum_{t=1}^{v}\left\langle p_{m}\right\rangle_{A_{z}^{t}}\right)=\left(\mathcal{P}_{y}^{m}, \mathcal{B}_{y}^{m}\right)$, meaning that the t-th block of a design A_{y}^{m} is m-th dual block of a design A_{z}^{t}.
Cyclic cubes generated by a symmetric design

Definition: Let $G=\sum_{i=1}^{t} g_{1}$ where $g_{1}=1$, be a group of order v. Let (G, \mathcal{B}) be a (v, k, λ) symmetric design where $\mathcal{B}=\sum_{i=1}^{v} B_{i}$. Let A_{x}^{1} ba an incidence matrix of a design (G, \mathcal{B}). Let A_{x}^{m} be an incidence matrix of an incidence structure $\left(G, g_{m} \mathcal{B}\right)$, where $g_{m} \mathcal{B}=\sum_{i=1}^{v} g_{m} B_{i}$. A cyclic cube (generated by a symmetric design (G, \mathcal{B})) is a 3 -dimensional matrix $A=\left(a_{i j m}\right)$ such that $a_{i j m}=\left(A_{x}^{i}\right)_{j m}$ for all $i, j, m \in[v]$.

Proposition: Let A be a cyclic cube generated by a (v, k, λ) symmetric design (G, \mathcal{B}), where $G=\sum_{i=1}^{g_{i}}$ is a group. Then $\left|\langle T\rangle_{A_{x}^{m}}\right|=$ $\left|\left\langle g_{m}^{-1} T\right\rangle_{A_{x}^{A}}\right|, m \in[v]$. A matrix A_{x}^{m} is an incidence matrix of a (v, k, λ) symmetric design for all $m \in[v]$.

Proposition: Let A be a cyclic cube generated by a (v, k, λ) symmetric design (G, \mathcal{B}), where $G=\sum_{i=1}^{g_{i}}$ is a group. Then $\left|\langle T\rangle_{A_{x}^{m}}\right|=$ $\left|\left\langle g_{m}^{-1} T\right\rangle_{A_{x}^{x}}\right|, m \in[v]$. A matrix A_{x}^{m} is an incidence matrix of a (v, k, λ) symmetric design for all $m \in[v]$.

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Proposition: Let A be a cyclic cube generated by a (v, k, λ) symmetric design (G, \mathcal{B}), where $G=\sum_{i=1}^{g_{i}}$ is a group. Then $\left|\langle T\rangle_{A_{x}^{m}}\right|=$ $\left|\left\langle g_{m}^{-1} T\right\rangle_{A_{x}^{x}}\right|, m \in[v]$. A matrix A_{x}^{m} is an incidence matrix of a (v, k, λ) symmetric design for all $m \in[v]$.

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then $\mathcal{B}=$ $\operatorname{Dev}(B)$ for all $B \in \mathcal{B}$ i.e. all blocks are difference sets from the same development of a difference set.

Proposition: Let A be a cyclic cube generated by a (v, k, λ) symmetric design (G, \mathcal{B}), where $G=\sum_{i=1}^{g_{i}}$ is a group. Then $\left|\langle T\rangle_{A_{x}^{m}}\right|=$ $\left|\left\langle g_{m}^{-1} T\right\rangle_{A_{x}^{x}}\right|, m \in[v]$. A matrix A_{x}^{m} is an incidence matrix of a (v, k, λ) symmetric design for all $m \in[v]$.

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then $\mathcal{B}=$ $\operatorname{Dev}(B)$ for all $B \in \mathcal{B}$ i.e. all blocks are difference sets from the same development of a difference set.

Thank you! Any Q's?

