

Cubes of designs

Kristijan Tabak
Rochester Institute of Technology, Zagreb Campus
Croatia

e-mail: kxtcad@rit.edu

KOLKOM 22, Paderborn University, Nov. 18-19, 2022

This work has been fully supported by Croatian Science Foundation under the projects 6732 and 9752 (joint work with M.O. Pavčević and V. Krčadinac)

An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})\text{, such that}$

 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})$, such that

 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

where every 2-element subset of ${\mathcal P}$ is contained in an exactly λ sets (blocks) from ${\mathcal B}$

An incidence structure $\mathcal{D}=(\mathcal{P},\mathcal{B})$, such that

 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

where every 2-element subset of $\mathcal P$ is contained in an exactly λ sets (blocks) from $\mathcal B$

is called a (v, k, λ) symmetric design.

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B})$, such that

 \mathcal{B} is a collection of k-element subsets of \mathcal{P} and $|\mathcal{P}| = |\mathcal{B}| = v$,

where every 2-element subset of $\mathcal P$ is contained in an exactly λ sets (blocks) from $\mathcal B$

is called a (v, k, λ) symmetric design.

A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B})$, such that

 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

where every 2-element subset of $\mathcal P$ is contained in an exactly λ sets (blocks) from $\mathcal B$

is called a (v, k, λ) symmetric design.

A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

If A is a matrix, then (i, j) entry of a matrix A is denoted by $(A)_{ij}$ (or sometimes just A_{ij}).

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B})$, such that

 ${\mathcal B}$ is a collection of k-element subsets of ${\mathcal P}$ and $|{\mathcal P}|=|{\mathcal B}|=v$,

where every 2-element subset of $\mathcal P$ is contained in an exactly λ sets (blocks) from $\mathcal B$

is called a (v, k, λ) symmetric design.

A set of all 3-dimensional matrices of a type $a \times b \times c$ is denoted by $\mathcal{M}_{a \times b \times c}$.

If A is a matrix, then (i, j) entry of a matrix A is denoted by $(A)_{ij}$ (or sometimes just A_{ij}).

Def: A matrix $A=[a_{ijm}]\in \mathcal{M}_{v\times v\times v}$ with (0,1)-entries is a cube of (v,k,λ) symmetric design

Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0,1)-entries is a cube of (v,k,λ) symmetric design if matrices $A_x^i,\ A_y^j,\ A_z^m$ are incidence matrices of (v,k,λ) symmetric design for all $i,j,m \in [v]$, where $(A_x^i)_{jm} = a_{ijm},\ j,m \in [v],\ (A_y^j)_{im} = a_{ijm},\ i,m \in [v]$ and $(A_z^m)_{ij} = a_{ijm},\ i,j \in [v].$

design for all $i,j,m\in [v]$, where $(A_x^i)_{jm}=a_{ijm},\ j,m\in [v],\ (A_y^j)_{im}=a_{ijm},\ i,m\in [v]$ and $(A_z^m)_{ij}=a_{ijm}$

 $a_{ijm}, i, j \in [v].$

The class of all cubes of a (v,k,λ) symmetric design is denoted by $\mathcal{C}(v,k,\lambda).$

design for all $i, j, m \in [v]$, where

 $(A_x^i)_{jm} = a_{ijm}, \ j,m \in [v]$, $(A_y^j)_{im} = a_{ijm}, \ i,m \in [v]$ and $(A_z^m)_{ij} = a_{ijm}$

 $a_{ijm},\ i,j\in [v].$ The class of all cubes of a (v,k,λ) symmetric design is denoted by

 $\mathcal{C}(v,k,\lambda).$ matrices $A_x^i,\ A_y^j,\ A_z^m$ do not have to be incidence matrices of isomorphic designs

Def: A matrix $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ with (0,1)-entries is a cube of (v,k,λ) symmetric design if matrices $A_x^i,\ A_y^j,\ A_z^m$ are incidence matrices of (v,k,λ) symmetric

design for all $i,j,m\in [v]$, where $(A_x^i)_{jm}=a_{ijm},\ j,m\in [v],\ (A_y^j)_{im}=a_{ijm},\ i,m\in [v]$ and $(A_z^m)_{ij}=a_{ijm}$

 $a_{ijm}, i, j \in [v].$

The class of all cubes of a (v,k,λ) symmetric design is denoted by

 $\mathcal{C}(v,k,\lambda)$.

matrices $A_x^i,\ A_y^j,\ A_z^m$ do not have to be incidence matrices of isomorphic designs

write group G in a group ring $\mathbb{Z}[G]$ as $G=\sum_{s=1}g_s$ where $g_1=1$ (unit in a group G)

If $A \in \mathcal{M}_{v imes v}$ is a matrix then t-th row shall be denoted by $[A_t]$

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $[A_t]$ where $[A]_t = [A_{t1} \ A_{t2} \ \cdots \ A_{tv}].$

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $[A_t]$ where $[A]_t = [A_{t1} \ A_{t2} \ \cdots \ A_{tv}].$

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^t A_{ts} g_s$.

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $[A_t]$ where $[A]_t = [A_{t1} \ A_{t2} \ \cdots \ A_{tv}].$

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1} A_{ts} g_s$.

A set $D \subseteq G$ is a (v, k, λ) difference set in a group G

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $[A_t]$ where $[A]_t = [A_{t1} \ A_{t2} \ \cdots \ A_{tv}].$

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^{t} A_{ts} g_s$.

A set $D\subseteq G$ is a (v,k,λ) difference set in a group G if a multiset $\{d_1d_2^{-1}\mid d_1,d_2\in D,\ d_1\neq d_2\}$ contains exactly λ copies of every $g\in G\setminus\{1\}$.

4/9

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $[A_t]$ where $[A]_t = [A_{t1} \ A_{t2} \ \cdots \ A_{tv}].$

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^{\infty} A_{ts} g_s$.

A set $D\subseteq G$ is a (v,k,λ) difference set in a group G if a multiset $\{d_1d_2^{-1}\mid d_1,d_2\in D,\ d_1\neq d_2\}$ contains exactly λ copies of every $g\in G\setminus\{1\}$. If X is a set, then δ_X is a characteristic function of a set X defined by

4/9

If $A \in \mathcal{M}_{v \times v}$ is a matrix then t-th row shall be denoted by $[A_t]$ where $[A]_t = [A_{t1} \ A_{t2} \ \cdots \ A_{tv}].$

represents $[A]_t$ using group ring notation as $[A]_t = \sum_{s=1}^t A_{ts} g_s$.

A set $D\subseteq G$ is a (v,k,λ) difference set in a group G if a multiset $\{d_1d_2^{-1}\mid d_1,d_2\in D,\ d_1\neq d_2\}$ contains exactly λ copies of every $g\in G\setminus\{1\}$. If X is a set, then δ_X is a characteristic function of a set X defined by

$$\delta_X(x) = \begin{cases} 1, & \text{if } x \in X \\ 0, & \text{otherwise.} \end{cases}.$$

Theorem: Let $G = \sum_{s=1}^{n} g_s$, $g_1 = 1$ be a group of order v with a (v, k, λ) difference set D. Let $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ be a 3-dimensional

matrix defined by $a_{ijm} = \delta_{g_jg_iD}(g_m)$ for all $i, j, m \in [v]$. Then the following holds:

- 1. A is a cube of a (v, k, λ) symmetric design i.e. $A \in \mathcal{C}(v, k, \lambda)$,
- 2. A_x^i is an incidence matrix of a symmetric design $(G, \mathcal{D}ev(g_iD))$,
- 3. $[A_u^m]_t = g_t^{-1} g_m D^{(-1)}$
- 4. A_y^m is an incidence matrix of a symmetric design $(G,\sum g_t^{-1}g_mD^{(-1)}),$
- 5. $[A_z^m]_t = [A_x^t]_m$ for all $m, t \in [v]$,
- 6. A_z^m is an incidence matrix of a symmetric design $(G, \sum_{t=1}^n g_m g_t D)$.

Theorem: Let $G = \sum_{s=1}^{n} g_s$, $g_1 = 1$ be a group of order v with a (v, k, λ) difference set D. Let $A = [a_{ijm}] \in \mathcal{M}_{v \times v \times v}$ be a 3-dimensional

matrix defined by $a_{ijm} = \delta_{g_jg_iD}(g_m)$ for all $i, j, m \in [v]$. Then the following holds:

- 1. A is a cube of a (v, k, λ) symmetric design i.e. $A \in \mathcal{C}(v, k, \lambda)$,
- 2. A_x^i is an incidence matrix of a symmetric design $(G, \mathcal{D}ev(g_iD))$,
- 3. $[A_u^m]_t = g_t^{-1} g_m D^{(-1)}$
- 4. A_y^m is an incidence matrix of a symmetric design $(G,\sum g_t^{-1}g_mD^{(-1)}),$
- 5. $[A_z^m]_t = [A_x^t]_m$ for all $m, t \in [v]$,
- 6. A_z^m is an incidence matrix of a symmetric design $(G, \sum_{t=1}^n g_m g_t D)$.

Proposition: Let $A \in \mathcal{C}(v,k,\lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a 3-dimensional matrix such that $(A^{\psi})_{ijm} = \delta_{g_j^{\psi}g_iD}(g_m)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v,k,\lambda)$ and $[(A^{\psi})_y^m]_t = (g_t^{-1})^{\psi}g_mD^{(-1)}$ and $[(A^{\psi})_z^m]_t = g_m^{\psi}g_tD$.

Proposition: Let $A \in \mathcal{C}(v,k,\lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a 3-dimensional matrix such that $(A^{\psi})_{ijm} = \delta_{g_j^{\psi}g_iD}(g_m)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v,k,\lambda)$ and $[(A^{\psi})_y^m]_t = (g_t^{-1})^{\psi}g_mD^{(-1)}$ and $[(A^{\psi})_z^m]_t = g_m^{\psi}g_tD$.

Proposition: Let $A \in \mathcal{C}(v,k,\lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ_m be a permutation of $G = \sum_{s=1}^v g_s$ given by $\psi_m(g) = g_m g$. Then ψ_m is an isomorphism between A_x^1 and A_x^m . Furthermore, $\psi_m(g_t D) = g_t^{g_m^{-1}} g_m D$, or in terms of rows of incidence matrices, $\psi_m([A_x^1]_t) = [A_x^m]_{\widetilde{t}}$, where $\widetilde{t} = g_t^{g_m^{-1}}$.

Proposition: Let $A \in \mathcal{C}(v,k,\lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ be a permutation of G. Let A^{ψ} be a 3-dimensional matrix such that $(A^{\psi})_{ijm} = \delta_{g_j^{\psi}g_iD}(g_m)$. Then A is a cube, i.e. $A^{\psi} \in \mathcal{C}(v,k,\lambda)$ and $[(A^{\psi})_y^m]_t = (g_t^{-1})^{\psi}g_mD^{(-1)}$ and $[(A^{\psi})_z^m]_t = g_m^{\psi}g_tD$.

Proposition: Let $A \in \mathcal{C}(v,k,\lambda)$ be a cube constructed via difference set $D \subseteq G$. Let ψ_m be a permutation of $G = \sum_{s=1}^v g_s$ given by $\psi_m(g) = g_m g$. Then ψ_m is an isomorphism between A_x^1 and A_x^m . Furthermore, $\psi_m(g_t D) = g_t^{g_m^{-1}} g_m D$, or in terms of rows of incidence matrices, $\psi_m([A_x^1]_t) = [A_x^m]_{\widetilde{t}}$, where $\widetilde{t} = g_t^{g_m^{-1}}$.

Proposition: Let $A \in \mathcal{C}(v, k, \lambda)$ and $\mathcal{P} = \sum_{s} p_s$ is a set of points

of designs A^i_x . Then $[A^m_y]_t=\sum_{s=0}^{\infty}\delta_{B^s_{x,t}}(p_m)p_s$ and $[A^m_z]_t=[A^t_x]_m=$

 $\sum_{s=1}^{s=1} \delta_{B^t_{x,m}}(p_s) p_s \text{ for all } m,t \in [v], \text{ where } [A^m_y]_t \text{ and } [A^m_z]_t \text{ are } t\text{-th blocks of designs } A^m_y \text{ and } A^m_z \text{ respectively.}$

Proposition: Let $A \in \mathcal{C}(v,k,\lambda)$ and $\mathcal{P} = \sum_{s} p_s$ is a set of points

of designs A^i_x . Then $[A^m_y]_t=\sum \delta_{B^s_{x,t}}(p_m)p_s$ and $[A^m_z]_t=[A^t_x]_m=$

 $\sum_{s=1}^{} \delta_{B^t_{x,m}}(p_s) p_s \text{ for all } m,t \in [v], \text{ where } [A^m_y]_t \text{ and } [A^m_z]_t \text{ are } t\text{-th blocks of designs } A^m_y \text{ and } A^m_z \text{ respectively.}$

Theorem: Let $A \in \mathcal{C}(v,k,\lambda)$. Then for every $i,m \in [v]$ designs $A_x^i,\ A_z^m$ and A_y^m satisfy the following:

- 1. $A_x^i = (\mathcal{P}, \sum_{t=1}^i B_{x,t}^i) = (\mathcal{P}, \mathcal{B}_x^i),$
- 2. $A_z^m=(\mathcal{P},\sum_{t=1}^{c}B_{x,m}^t)=(\mathcal{P},\mathcal{B}_z^m),$ meaning that the set of blocks of a design A_z^m is a set of m-th blocks of designs A_x^t for all $t\in [v],$

3. $A_y^m = (\mathcal{P}_y^m, \sum_{t=1}^{\infty} \langle p_m \rangle_{A_z^t}) = (\mathcal{P}_y^m, \mathcal{B}_y^m)$, meaning that the t-th block of a design A_y^m is m-th dual block of a design A_z^t .

3. $A_y^m=(\mathcal{P}_y^m,\sum_{t=1}^{t}\langle p_m\rangle_{A_z^t})=(\mathcal{P}_y^m,\mathcal{B}_y^m),$ meaning that the t-th block of a design A_y^m is m-th dual block of a design A_z^t .

Cyclic cubes generated by a symmetric design

3. $A_y^m = (\mathcal{P}_y^m, \sum_{t=1}^{t} \langle p_m \rangle_{A_z^t}) = (\mathcal{P}_y^m, \mathcal{B}_y^m)$, meaning that the t-th block of a design A_y^m is m-th dual block of a design A_z^t .

Cyclic cubes generated by a symmetric design

Definition: Let $G = \sum_{i=1}^{n} g_i$ where $g_1 = 1$, be a group of order

v. Let (G,\mathcal{B}) be a (v,k,λ) symmetric design where $\mathcal{B}=\sum_{i=1}^{n}B_{i}.$ Let A_{x}^{1} be an incidence matrix of a design $(G,\mathcal{B}).$ Let A_{x}^{m} be an incidence matrix of an incidence structure $(G,g_{m}\mathcal{B}),$ where $g_{m}\mathcal{B}=\sum_{i=1}^{v}g_{m}B_{i}.$ A cyclic cube (generated by a symmetric design (G,\mathcal{B})) is a 3-dimensional matrix $A=(a_{ijm})$ such that $a_{ijm}=(A_{x}^{i})_{jm}$ for all $i,j,m\in[v].$

3. $A_y^m = (\mathcal{P}_y^m, \sum_{t=1}^{t} \langle p_m \rangle_{A_z^t}) = (\mathcal{P}_y^m, \mathcal{B}_y^m)$, meaning that the t-th block of a design A_y^m is m-th dual block of a design A_z^t .

Cyclic cubes generated by a symmetric design

Definition: Let $G = \sum_{i=1}^{n} g_i$ where $g_1 = 1$, be a group of order

v. Let (G,\mathcal{B}) be a (v,k,λ) symmetric design where $\mathcal{B}=\sum_{i=1}^{n}B_{i}.$ Let A_{x}^{1} be an incidence matrix of a design $(G,\mathcal{B}).$ Let A_{x}^{m} be an incidence matrix of an incidence structure $(G,g_{m}\mathcal{B}),$ where $g_{m}\mathcal{B}=\sum_{i=1}^{v}g_{m}B_{i}.$ A cyclic cube (generated by a symmetric design (G,\mathcal{B})) is a 3-dimensional matrix $A=(a_{ijm})$ such that $a_{ijm}=(A_{x}^{i})_{jm}$ for all $i,j,m\in[v].$

Proposition: Let A be a cyclic cube generated by a (v,k,λ) symmetric design (G,\mathcal{B}) , where $G=\sum_{i=1}^{g_i}$ is a group. Then $|\langle T\rangle_{A^m_x}|=|\langle g_m^{-1}T\rangle_{A^1_x}|,\ m\in[v].$ A matrix A^m_x is an incidence matrix of a (v,k,λ) symmetric design for all $m\in[v].$

9/9

Proposition: Let A be a cyclic cube generated by a (v,k,λ) symmetric design (G,\mathcal{B}) , where $G=\sum_{i=1}^{g_i}$ is a group. Then $|\langle T\rangle_{A^m_x}|=|\langle g_m^{-1}T\rangle_{A^1_x}|,\ m\in[v].$ A matrix A^m_x is an incidence matrix of a (v,k,λ) symmetric design for all $m\in[v].$

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Proposition: Let A be a cyclic cube generated by a (v,k,λ) symmetric design (G,\mathcal{B}) , where $G=\sum_{i=1}^{g_i}$ is a group. Then $|\langle T\rangle_{A_x^m}|=|\langle g_m^{-1}T\rangle_{A_x^1}|,\ m\in[v].$ A matrix A_x^m is an incidence matrix of a (v,k,λ) symmetric design for all $m\in[v].$

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v,k,\lambda)$, then $\mathcal{B} = \mathcal{D}ev(B)$ for all $B \in \mathcal{B}$ i.e. all blocks are difference sets from the same development of a difference set.

Proposition: Let A be a cyclic cube generated by a (v,k,λ) symmetric design (G,\mathcal{B}) , where $G=\sum_{i=1}^{g_i}$ is a group. Then $|\langle T\rangle_{A_x^m}|=|\langle g_m^{-1}T\rangle_{A_x^1}|,\ m\in[v].$ A matrix A_x^m is an incidence matrix of a (v,k,λ) symmetric design for all $m\in[v].$

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v, k, \lambda)$, then every $B \in \mathcal{B}$ is a (v, k, λ) difference set.

Theorem: Let A be a cyclic cube. If $A \in \mathcal{C}(v,k,\lambda)$, then $\mathcal{B} = \mathcal{D}ev(B)$ for all $B \in \mathcal{B}$ i.e. all blocks are difference sets from the same development of a difference set.

Thank you! Any Q's?

