On higher-dimensional designs*

Vedran Krčadinac

(joint work with Mario Osvin Pavčević and Kristijan Tabak)

University of Zagreb, Croatia

Pushing the Limits of Computational Combinatorial Constructions April 16-21, 2023, Schloss Dagstuhl, Germany

Dagstuhl Seminar 23161, Leibniz Center for Informatics

* This work was fully supported by the Croatian Science Foundation under the project 9752.

$$A_1 = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

3

<ロト < 四ト < 三ト < 三ト

Motivation

Vedran Krčadinac (University of Zagreb)

Motivation

2

A function $C : \{1, ..., v\}^n \to \{0, 1\}$ or $\{-1, 1\}$ is an *n*-dimensional cube of symmetric (v, k, λ) designs, or an *n*-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

A function $C : \{1, ..., v\}^n \to \{0, 1\}$ or $\{-1, 1\}$ is an *n*-dimensional cube of symmetric (v, k, λ) designs, or an *n*-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $(S_v)^n = S_v \times \ldots \times S_v$ acts on the set of all cubes $C^n(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$C^{\alpha}(i_1,\ldots,i_n) = C(\alpha_1^{-1}(i_1),\ldots,\alpha_n^{-1}(i_n)), \text{ for } \alpha = (\alpha_1,\ldots,\alpha_n) \in (S_v)^n.$$

A function $C : \{1, ..., v\}^n \to \{0, 1\}$ or $\{-1, 1\}$ is an *n*-dimensional cube of symmetric (v, k, λ) designs, or an *n*-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $(S_v)^n = S_v \times \ldots \times S_v$ acts on the set of all cubes $C^n(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$\mathcal{C}^{\alpha}(i_1,\ldots,i_n) = \mathcal{C}(\alpha_1^{-1}(i_1),\ldots,\alpha_n^{-1}(i_n)), \text{ for } \alpha = (\alpha_1,\ldots,\alpha_n) \in (\mathcal{S}_v)^n.$$

Additionally, permutations $\gamma \in S_n$ act by conjugation, i.e. changing order of the indices: $C^{\gamma}(i_1, \ldots, i_n) = C(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}).$

A function $C: \{1, \ldots, v\}^n \to \{0, 1\}$ or $\{-1, 1\}$ is an *n*-dimensional cube of symmetric (v, k, λ) designs, or an *n*-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $(S_v)^n = S_v \times \ldots \times S_v$ acts on the set of all cubes $C^n(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$\mathcal{C}^{\alpha}(i_1,\ldots,i_n) = \mathcal{C}(\alpha_1^{-1}(i_1),\ldots,\alpha_n^{-1}(i_n)), \text{ for } \alpha = (\alpha_1,\ldots,\alpha_n) \in (\mathcal{S}_v)^n.$$

Additionally, permutations $\gamma \in S_n$ act by conjugation, i.e. changing order of the indices: $C^{\gamma}(i_1, ..., i_n) = C(i_{\gamma^{-1}(1)}, ..., i_{\gamma^{-1}(n)}).$

The combination of isotopy and conjugation is called paratopy and is the natural action of the wreath product $S_v \wr S_n$ on $\mathcal{C}^n(v, k, \lambda)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A function $C : \{1, ..., v\}^n \to \{0, 1\}$ or $\{-1, 1\}$ is an *n*-dimensional cube of symmetric (v, k, λ) designs, or an *n*-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $(S_v)^n = S_v \times \ldots \times S_v$ acts on the set of all cubes $C^n(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$\mathcal{C}^{\alpha}(i_1,\ldots,i_n) = \mathcal{C}(\alpha_1^{-1}(i_1),\ldots,\alpha_n^{-1}(i_n)), \text{ for } \alpha = (\alpha_1,\ldots,\alpha_n) \in (\mathcal{S}_v)^n.$$

Additionally, permutations $\gamma \in S_n$ act by conjugation, i.e. changing order of the indices: $C^{\gamma}(i_1, \ldots, i_n) = C(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}).$

The combination of isotopy and conjugation is called paratopy and is the natural action of the wreath product $S_v \wr S_n$ on $C^n(v, k, \lambda)$.

For Hadamard matrices, multiplication of hyperplanes by -1 is also allowed as an equivalence operation.

3

イロト 不得 トイヨト イヨト

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

6 / 43

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

Kronecker product \Rightarrow existence for all dimensions *n* and orders $v = 2^m$.

Paul J. Shlichta. Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

Kronecker product \Rightarrow existence for all dimensions *n* and orders $v = 2^m$.

J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices, Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), pp. 220–223, Lecture Notes in Math. 829, Springer, Berlin, 1980.

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

Kronecker product \Rightarrow existence for all dimensions *n* and orders $v = 2^m$.

J. Seberry, *Higher-dimensional orthogonal designs and Hadamard matrices*, Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), pp. 220–223, Lecture Notes in Math. **829**, Springer, Berlin, 1980.

J. Hammer, J. Seberry, *Higher-dimensional orthogonal designs and Hadamard matrices II*, Proceedings of the Ninth Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1979), pp. 23–29, Congress. Numer. **XXVII**, Utilitas Math., Winnipeg, Man., 1980.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Let $G = \{g_1, \ldots, g_v\}$ be a group of order v and $\chi : G \to \{-1, 1\}$ such that $h = (h_{ij}), h_{ij} = \chi(g_i \cdot g_j)$ is a group developed Hadamard matrix. Then $H : \{1, \ldots, v\}^n \to \{-1, 1\}$ is an *n*-dimensional Hadamard matrix:

$$H(i_1,\ldots,i_n)=\chi(g_{i_1}\cdots g_{i_n})$$

Let $G = \{g_1, \ldots, g_v\}$ be a group of order v and $\chi : G \to \{-1, 1\}$ such that $h = (h_{ij}), h_{ij} = \chi(g_i \cdot g_j)$ is a group developed Hadamard matrix. Then $H : \{1, \ldots, v\}^n \to \{-1, 1\}$ is an *n*-dimensional Hadamard matrix:

$$H(i_1,\ldots,i_n)=\chi(g_{i_1}\cdots g_{i_n})$$

Group developed Hadamard matrices have constant row and column sums, i.e. they are regular. Therefore, the order must be of the form $v = 4u^2$.

Let $G = \{g_1, \ldots, g_v\}$ be a group of order v and $\chi : G \to \{-1, 1\}$ such that $h = (h_{ij}), h_{ij} = \chi(g_i \cdot g_j)$ is a group developed Hadamard matrix. Then $H : \{1, \ldots, v\}^n \to \{-1, 1\}$ is an *n*-dimensional Hadamard matrix:

$$H(i_1,\ldots,i_n)=\chi(g_{i_1}\cdots g_{i_n})$$

Group developed Hadamard matrices have constant row and column sums, i.e. they are regular. Therefore, the order must be of the form $v = 4u^2$.

Analogous construction: let $D \subseteq G$ be a (v, k, λ) difference set. Then $A = (a_{ij}), a_{ij} = [g_i \cdot g_j \in D]$ is an incidence matrix of a symmetric design. Furthermore, $C : \{1, \ldots, v\}^n \to \{0, 1\}$ is a (v, k, λ) difference cube:

$$C(i_1,\ldots,i_n)=[g_{i_1}\cdots g_{i_n}\in D]$$

Here [.] is the Iverson bracket.

Y. X. Yang, *Proofs of some conjectures about higher-dimensional Hadamard matrices* (Chinese), Kexue Tongbao **31** (1986), no. 2, 85–88.

Y. X. Yang, *Proofs of some conjectures about higher-dimensional Hadamard matrices* (Chinese), Kexue Tongbao **31** (1986), no. 2, 85–88.

The product construction:

If $h: \{1,\ldots,\nu\}^2 o \{-1,1\}$ is a Hadamard matrix of order u, then

$$H(i_1,\ldots,i_n) = \prod_{1 \le j < k \le n} h(i_j,i_k)$$

is an n-dimensional Hadamard matrix of order v.

Y. X. Yang, *Proofs of some conjectures about higher-dimensional Hadamard matrices* (Chinese), Kexue Tongbao **31** (1986), no. 2, 85–88.

The product construction:

If $h: \{1,\ldots,\nu\}^2 \to \{-1,1\}$ is a Hadamard matrix of order u, then

$$H(i_1,\ldots,i_n) = \prod_{1 \le j < k \le n} h(i_j,i_k)$$

is an n-dimensional Hadamard matrix of order v.

Question 1. Is there an analogous construction for *n*-dimensional cubes of symmetric designs?

Y. X. Yang, *Proofs of some conjectures about higher-dimensional Hadamard matrices* (Chinese), Kexue Tongbao **31** (1986), no. 2, 85–88.

The product construction:

If $h: \{1,\ldots,\nu\}^2 \to \{-1,1\}$ is a Hadamard matrix of order u, then

$$H(i_1,\ldots,i_n) = \prod_{1 \le j < k \le n} h(i_j,i_k)$$

is an n-dimensional Hadamard matrix of order v.

Question 1. Is there an analogous construction for *n*-dimensional cubes of symmetric designs?

Question 2. For parameters (25, 9, 3) there are exactly 78 designs, but no difference sets. Is there a 3-cube of (25, 9, 3) designs?

W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. **3** (1993), no. 1, 75–87.

W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. **3** (1993), no. 1, 75–87.

A 2-cocycle from G to $\{-1,1\}$ is a function $f : G \times G \rightarrow \{-1,1\}$ satisfying $f(a,b)f(ab,c) = f(b,c)f(a,bc), \forall a, b, c \in G.$

W. de Launey, K. J. Horadam, *A weak difference set construction for higher-dimensional designs*, Des. Codes Cryptogr. **3** (1993), no. 1, 75–87.

A 2-cocycle from G to $\{-1,1\}$ is a function $f: G \times G \rightarrow \{-1,1\}$ satisfying $f(a,b)f(ab,c) = f(b,c)f(a,bc), \forall a, b, c \in G.$

A cocyclic Hadamard matrix $h = (h_{ij})$ over $G = \{g_1, \ldots, g_v\}$ is of the form $h_{ij} = f(g_i, g_j)\chi(g_i \cdot g_j)$, for some $\chi : G \to \{-1, 1\}$.

(日)

W. de Launey, K. J. Horadam, *A weak difference set construction for higher-dimensional designs*, Des. Codes Cryptogr. **3** (1993), no. 1, 75–87.

A 2-cocycle from G to $\{-1,1\}$ is a function $f: G \times G \rightarrow \{-1,1\}$ satisfying $f(a,b)f(ab,c) = f(b,c)f(a,bc), \forall a, b, c \in G.$

A cocyclic Hadamard matrix $h = (h_{ij})$ over $G = \{g_1, \ldots, g_v\}$ is of the form $h_{ij} = f(g_i, g_j)\chi(g_i \cdot g_j)$, for some $\chi : G \to \{-1, 1\}$.

Cocyclic Hadamard matrices need not be regular and are conjectured to exist for all orders v = 4m by de Launey and Horadam (1993).

イロト 不得 トイヨト イヨト 二日

The cocyclic construction:

If $h_{ij} = f(g_i, g_j)\chi(g_i \cdot g_j)$ is a cocyclic Hadamard matrix of order v, then

$$H(i_1,\ldots,i_n)=\prod_{k=2}^n f(g_{i_1}\cdots g_{i_{k-1}},g_{i_k}) \chi(g_{i_1}\cdots g_{i_n})$$

is an n-dimensional Hadamard matrix of order v.

The cocyclic construction:

If $h_{ij} = f(g_i, g_j)\chi(g_i \cdot g_j)$ is a cocyclic Hadamard matrix of order v, then

$$H(i_1,\ldots,i_n)=\prod_{k=2}^n f(g_{i_1}\cdots g_{i_{k-1}},g_{i_k}) \chi(g_{i_1}\cdots g_{i_n})$$

is an n-dimensional Hadamard matrix of order v.

There are no nontrivial cocycles for (v, k, λ) designs, because the symbols 0 and 1 in their incidence matrices cannot be exchanged.

The cocyclic construction:

If $h_{ij} = f(g_i, g_j)\chi(g_i \cdot g_j)$ is a cocyclic Hadamard matrix of order v, then

$$H(i_1,\ldots,i_n)=\prod_{k=2}^n f(g_{i_1}\cdots g_{i_{k-1}},g_{i_k}) \chi(g_{i_1}\cdots g_{i_n})$$

is an n-dimensional Hadamard matrix of order v.

There are no nontrivial cocycles for (v, k, λ) designs, because the symbols 0 and 1 in their incidence matrices cannot be exchanged.

Higher-dimensional Hadamard matrices obtained by both the product construction and the cocyclic construction have the property that **all slices are equivalent**. The same property holds for difference cubes of symmetric designs.

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, preprint, 2023. http://arxiv.org/abs/2304.05446

э

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G = \{g_1, \ldots, g_v\}$ is a group and $\mathcal{D} = \{B_1, \ldots, B_v\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$H(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in B_{i_1}]$$

is an *n*-dimensional cube of symmetric designs.

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G = \{g_1, \ldots, g_v\}$ is a group and $\mathcal{D} = \{B_1, \ldots, B_v\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$H(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in B_{i_1}]$$

is an *n*-dimensional cube of symmetric designs.

Proof: If the first index i_1 is fixed, this is the (n-1)-dimensional difference cube of B_{i_1} , so all slices are equivalent with its development.

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G = \{g_1, \ldots, g_v\}$ is a group and $\mathcal{D} = \{B_1, \ldots, B_v\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$H(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in B_{i_1}]$$

is an *n*-dimensional cube of symmetric designs.

Proof: If the first index i_1 is fixed, this is the (n-1)-dimensional difference cube of B_{i_1} , so all slices are equivalent with its development. If i_1 and one other index are varied, the slice is equivalent with \mathcal{D} .

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G = \{g_1, \ldots, g_v\}$ is a group and $\mathcal{D} = \{B_1, \ldots, B_v\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$H(i_1,\ldots,i_n)=[g_{i_2}\cdots g_{i_n}\in B_{i_1}]$$

is an *n*-dimensional cube of symmetric designs.

Proof: If the first index i_1 is fixed, this is the (n-1)-dimensional difference cube of B_{i_1} , so all slices are equivalent with its development. If i_1 and one other index are varied, the slice is equivalent with \mathcal{D} .

If $\ensuremath{\mathcal{D}}$ is the development of its blocks, this is just the difference cube.

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 \mathbb{Z}_{21}
Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow$ 42 difference sets \rightsquigarrow 2 designs, both are developments

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

 $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \rightsquigarrow 294$ difference sets

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

 $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

 $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

 $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes. The group cube is not a difference cube!

(人間) トイヨト イヨト 三日

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

 $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes. The group cube is not a difference cube!

- $C_1 = \text{difference cube in } \mathbb{Z}_{21}$
- $C_2 = difference cube in F_{21}$
- $C_3 =$ non-difference group cube in F_{21}

(4個) (4回) (4回) (日)

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

 $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes. The group cube is not a difference cube!

- $C_1 = \text{difference cube in } \mathbb{Z}_{21} \rightsquigarrow |\operatorname{Atop}(C_1)| = 2646$
- $C_2 = \text{difference cube in } F_{21} \rightsquigarrow |\operatorname{Atop}(C_2)| = 1323$
- $C_3 = \text{non-difference group cube in } F_{21} \rightsquigarrow |\operatorname{Atop}(C_3)| = 441$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group *G*, which are **not** developments?

Example: (21, 5, 1)

 $\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

 $F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes. The group cube is not a difference cube!

- $C_1 = \text{difference cube in } \mathbb{Z}_{21} \rightsquigarrow |\operatorname{Atop}(C_1)| = 2646$
- $C_2 = \text{difference cube in } F_{21} \rightsquigarrow |\operatorname{Atop}(C_2)| = 1323$
- $\textit{C}_3 = \textit{non-difference group cube in }\textit{F}_{21} \rightsquigarrow |\operatorname{Atop}(\textit{C}_3)| = 441$

However, all slices are equivalent, because there is only one (21, 5, 1) design: the projective plane PG(2, 4).

 C_1

2

イロト イヨト イヨト イヨト

 C_2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

*C*₃

イロト イ部ト イヨト イヨト 一日

PAG

Prescribed Automorphism Groups

0.2.1

4 April 2023

Abstract

PAG is a GAP package for constructing combinatorial objects with prescribed automorphism groups.

PAG

Prescribed Automorphism Groups

0.2.1

4 April 2023

Abstract

PAG is a GAP package for constructing combinatorial objects with prescribed automorphism groups.

https://vkrcadinac.github.io/PAG/ https://github.com/vkrcadinac/PAG

The PAG package

PAG

Prescribed Automorphism Groups

Version 0.2.0 Released 2023-03-27

Download .tar.gz

🐺 View On GitHub

This project is maintained by Vedran Krcadinac

GAP Package PAG

The PAG package contains functions for constructing combinatorial objects with prescribed automorphism groups.

The current version of this package is version 0.2.0, released on 2023-03-27. For more information, please refer to the package manual. There is also a README file.

Dependencies

This package requires GAP version 4.11

The following other GAP packages are needed:

- GAPDoc 1.5
- images 1.3
- GRAPE 4.8
- DESIGN 1.7

The following additional GAP packages are not required, but suggested:

- AssociationSchemes 2.0
- GUAVA 3.15
- DifSets 2.3.1

Hosted on GitHub Pages, based on GitHubPagesForGAP using the Dinky theme

Last updated: 2023-03-27 22:55

Vedran Krčadinac (University of Zagreb)

▶ ◀ ≧ ▶ ◀ ≧ ▶
April 16-21, 2023

18 / 43

The PAG package

	Actions	Projects 🕛 Security 🗠 In	sights	
% master ◄		Go to file Code 🔹	About	
vkrcadinac Experim	ental release	3 days ago 🕥 5	Prescribed Automorphism Group (PAG) is a GAP package for	
doc	Experimental release	3 days ago	constructing combinatorial object with prescribed automorphism	
🖿 lib	Experimental release	3 days ago	groups.	
src src	Experimental release	3 days ago	🛱 Readme	
CHANGES.txt	Experimental release	3 days ago	화 GPL-2.0 license	
LICENSE.txt	PAG 0.2.0 initial commit	2 weeks ago	 1 watching 	
🗋 Makefile.in	Experimental release	3 days ago	♀ 0 forks	
PackageInfo.g	Experimental release	3 days ago	Report repository	
README.md	Corrected typo	2 weeks ago		
🗋 configure.sh	PAG 0.2.0 initial commit	2 weeks ago	Releases	
🗋 init.g	PAG 0.2.0 initial commit	2 weeks ago	🛇 1 tags	
🗋 makedoc.g	PAG 0.2.0 initial commit	2 weeks ago		
🗅 read.g	PAG 0.2.0 initial commit	2 weeks ago	Packages	

19 / 43

The PAG package

2.6 Cubes of Symmetric Designs

2.6.1 DifferenceCube

 \triangleright DifferenceCube(G, ds, n)

Returns the n-dimenional difference cube constructed from a difference set ds in the group G.

2.6.2 GroupCube

 \triangleright GroupCube(G, dds, n)

Returns the *n*-dimensional group cube constructed from a symmetric design dds such that the blocks are difference sets in the group G.

2.6.3 CubeSlice

 \triangleright CubeSlice(C, x, y, fixed)

Returns a 2-dimensional slice of the incidence cube C obtained by varying coordinates in positions x and y, and taking fixed values for the remaining coordinates given in a list *fixed*.

2.6.4 CubeSlices

```
\triangleright CubeSlices(C[, x, y][, fixed])
```

(function)

(function)

(function)

(function)

April 16-21, 2023

э

20 / 43

< □ > < □ > < □ > < □ > < □ > < □ >

Example. There are three (16, 6, 2) designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$

イロト イポト イヨト イヨト 二日

Example. There are three (16, 6, 2) designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$

D. Peifer, *DifSets, an algorithm for enumerating all difference sets in a group*, Version 2.3.1, 2019. https://dylanpeifer.github.io/difsets

_

Example. There are three (16, 6, 2) designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$

ID	Structure	Nds	Ndc	dev	Tds	Ngc
1	\mathbb{Z}_{16}	0	0	-	0	0
2	\mathbb{Z}_4^2	3	3	\mathcal{D}_1	192	55
3	$(\mathbb{Z}_4 imes \mathbb{Z}_2) times \mathbb{Z}_2$	4	4	\mathcal{D}_1	192	83
4	$\mathbb{Z}_4 \rtimes \mathbb{Z}_4$	3	3	\mathcal{D}_1	192	81
5	$\mathbb{Z}_8 imes \mathbb{Z}_2$	2	2	\mathcal{D}_1 , \mathcal{D}_2	192	106
6	$\mathbb{Z}_8 \rtimes \mathbb{Z}_2$	2	2	\mathcal{D}_1	64	34
7	D_{16}	0	0	-	0	0
8	QD_{16}	2	2	\mathcal{D}_1	128	50
9	Q_{16}	2	2	\mathcal{D}_1	256	71
10	$\mathbb{Z}_4 imes \mathbb{Z}_2^2$	2	2	\mathcal{D}_1	448	131
11	$\mathbb{Z}_2 imes D_8$	2	2	\mathcal{D}_1	192	52
12	$\mathbb{Z}_2 imes Q_8$	2	2	\mathcal{D}_1 , \mathcal{D}_3	704	197
13	$(\mathbb{Z}_4 imes \mathbb{Z}_2) times \mathbb{Z}_2$	2	2	\mathcal{D}_1 , \mathcal{D}_3	320	77
14	\mathbb{Z}_{2}^{4}	1	1	\mathcal{D}_1	448	9

Vedran Krčadinac (University of Zagreb)

April 16-21, 2023 22 / 43

-

Example. There are three (16, 6, 2) designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$

ID	Structure	Nds	Ndc	dev	Tds	Ngc
1	\mathbb{Z}_{16}	0	0	_	0	0
2	\mathbb{Z}_4^2	3	3	\mathcal{D}_1	192	55
3	$(\mathbb{Z}_4 imes \mathbb{Z}_2) times \mathbb{Z}_2$	4	4	\mathcal{D}_1	192	83
4	$\mathbb{Z}_4 \rtimes \mathbb{Z}_4$	3	3	\mathcal{D}_1	192	81
5	$\mathbb{Z}_8 imes \mathbb{Z}_2$	2	2	\mathcal{D}_1 , \mathcal{D}_2	192	106
6	$\mathbb{Z}_8 \rtimes \mathbb{Z}_2$	2	2	\mathcal{D}_1	64	34
7	D_{16}	0	0	_	0	0
8	QD_{16}	2	2	\mathcal{D}_1	128	50
9	Q_{16}	2	2	\mathcal{D}_1	256	71
10	$\mathbb{Z}_4 imes \mathbb{Z}_2^2$	2	2	\mathcal{D}_1	448	131
11	$\mathbb{Z}_2 imes D_8$	2	2	\mathcal{D}_1	192	52
12	$\mathbb{Z}_2 imes Q_8$	2	2	\mathcal{D}_1 , \mathcal{D}_3	704	197
13	$(\mathbb{Z}_4 imes \mathbb{Z}_2) times \mathbb{Z}_2$	2	2	\mathcal{D}_1 , \mathcal{D}_3	320	77
14	\mathbb{Z}_2^4	1	1	\mathcal{D}_1	448	9

Vedran Krčadinac (University of Zagreb)

April 16-21, 2023 23 / 43

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Slices:

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: dev $D = \mathcal{D}_1$

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: $\operatorname{dev} D = \mathcal{D}_1$

Proposition.

Up to equivalence, the set $C^{3}(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: dev $D = D_2$

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: dev $D = D_3$

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group cube in \mathbb{Z}_2^4 : $\mathcal{D}_2 = \{B_1, \ldots, B_{16}\}$

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group cube in \mathbb{Z}_2^4 : $\mathcal{D}_2 = \{B_1, \ldots, B_{16}\}$

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group cube in \mathbb{Z}_2^4 : $\mathcal{D}_3 = \{B_1, \ldots, B_{16}\}$

The set $C^n(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$ contains at least two inequivalent non-difference group cubes constructed in $\mathbb{Z}_2^{2^m}$ for every $m \ge 2$ and $n \ge 3$.

The set $C^n(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$ contains at least two inequivalent non-difference group cubes constructed in \mathbb{Z}_2^{2m} for every $m \ge 2$ and $n \ge 3$.

The parameters are of Menon type. Thus, by exchanging $0 \rightarrow -1$ the cubes are transformed to *n*-dimensional Hadamard matrices with inequivalent slices. These could not have been obtained by previously known construction.

The set $C^n(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$ contains at least two inequivalent non-difference group cubes constructed in \mathbb{Z}_2^{2m} for every $m \ge 2$ and $n \ge 3$.

The parameters are of Menon type. Thus, by exchanging $0 \rightarrow -1$ the cubes are transformed to *n*-dimensional Hadamard matrices with inequivalent slices. These could not have been obtained by previously known construction.

A Hadamard matrix obtained from a Menon design is regular, and its order must be of the form $v = 4u^2$.

The set $C^n(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$ contains at least two inequivalent non-difference group cubes constructed in \mathbb{Z}_2^{2m} for every $m \ge 2$ and $n \ge 3$.

The parameters are of Menon type. Thus, by exchanging $0 \rightarrow -1$ the cubes are transformed to *n*-dimensional Hadamard matrices with inequivalent slices. These could not have been obtained by previously known construction.

A Hadamard matrix obtained from a Menon design is regular, and its order must be of the form $v = 4u^2$.

Question 4. Are there examples of *n*-dimensional Hadamard matrices with inequivalent slices without this restriction?

More examples of (16, 6, 2) cubes...

Group cube in $\mathbb{Z}_8 \times \mathbb{Z}_2$: $\mathcal{D}_3 = \{B_1, \dots, B_8, B_9, \dots, B_{16}\}$

3

Image: A image: A

Image: A matrix and a matrix
Group cube in $\mathbb{Z}_8 \times \mathbb{Z}_2$: $\mathcal{D}_3 = \{B_1, \dots, B_8, B_9, \dots, B_{16}\}$

Group cube in $Q_8 \times \mathbb{Z}_2$: $\mathcal{D}_2 = \{B_1, \dots, B_8, B_9, \dots, B_{16}\}$

Group cube in $Q_8 \times \mathbb{Z}_2$: $\mathcal{D}_2 = \{B_1, \dots, B_4, B_5, \dots, B_{16}\}$

Group cube in $Q_8 \times \mathbb{Z}_2$: $\mathcal{D}_2 = \{B_1, \dots, B_{12}, B_{13}, \dots, B_{16}\}$

Larger examples...

Parameters	Nds	Ndc	Ngc
(27, 13, 6)	3	2	≥ 7
(36, 15, 6)	35	35	\geq 373
(45, 12, 3)	2	2	\geq 6
(63, 31, 15)	6	6	\geq 9
(64, 28, 12)	330159	< 330159	\geq 1
(96, 20, 4)	2627	1806	≥ 1

イロト イポト イヨト イヨト

3

Larger examples...

Parameters	Nds	Ndc	Ngc
(27, 13, 6)	3	2	≥ 7
(36, 15, 6)	35	35	\geq 373
(45, 12, 3)	2	2	\geq 6
(63, 31, 15)	6	6	\geq 9
(64, 28, 12)	330159	< 330159	≥ 1
(96, 20, 4)	2627	1806	≥ 1

イロト イポト イヨト イヨト

3

Larger examples...

Parameters	Nds	Ndc	Ngc
(27, 13, 6)	3	2	≥ 7
(36, 15, 6)	35	35	\geq 373
(45, 12, 3)	2	2	\geq 6
(63, 31, 15)	6	6	\geq 9
(64, 28, 12)	330159	< 330159	≥ 1
(96, 20, 4)	2627	1806	≥ 1

Difference sets $D_1 \subseteq G_1$, $D_2 \subseteq G_2$ are equivalent if there is a group isomorphism $\varphi : G_1 \to G_2$ such that $\varphi(D_1) = aD_2$ for some $a \in G_2$.

- < f⊒ > <

э

Larger examples...

Parameters	Nds	Ndc	Ngc
(27, 13, 6)	3	2	≥ 7
(36, 15, 6)	35	35	\geq 373
(45, 12, 3)	2	2	\geq 6
(63, 31, 15)	6	6	\geq 9
(64, 28, 12)	330159	< 330159	≥ 1
(96, 20, 4)	2627	1806	≥ 1

Difference sets $D_1 \subseteq G_1$, $D_2 \subseteq G_2$ are equivalent if there is a group isomorphism $\varphi : G_1 \to G_2$ such that $\varphi(D_1) = aD_2$ for some $a \in G_2$.

Equivalent difference sets give isomorphic developments (designs), and isotopic difference cubes.

Larger examples...

Parameters	Nds	Ndc	Ngc
(27, 13, 6)	3	2	≥ 7
(36, 15, 6)	35	35	\geq 373
(45, 12, 3)	2	2	\geq 6
(63, 31, 15)	6	6	\geq 9
(64, 28, 12)	330159	< 330159	≥ 1
(96, 20, 4)	2627	1806	≥ 1

Difference sets $D_1 \subseteq G_1$, $D_2 \subseteq G_2$ are equivalent if there is a group isomorphism $\varphi : G_1 \to G_2$ such that $\varphi(D_1) = aD_2$ for some $a \in G_2$.

Equivalent difference sets give isomorphic developments (designs), and isotopic difference cubes.

Does the converse hold?

э

Question 6. Can difference cubes obtained from nonisomorphic groups be equivalent?

Question 6. Can difference cubes obtained from nonisomorphic groups be equivalent?

Examples exist for dimension n = 2, e.g. there are 27 inequivalent (16,6,2) difference sets in 12 different groups, but only 3 designs.

Question 6. Can difference cubes obtained from nonisomorphic groups be equivalent?

Examples exist for dimension n = 2, e.g. there are 27 inequivalent (16, 6, 2) difference sets in 12 different groups, but only 3 designs.

I know of no examples for dimensions $n \ge 3$.

An *n*-cube $C \in \mathcal{C}^n(v, k, \lambda)$ can be represented as

$$\overline{C} = \{(i_1,\ldots,i_n) \in \{1,\ldots,v\}^n \mid C(i_1,\ldots,i_n) = 1\}.$$

This is an orthogonal array with parameters $OA(kv^{n-1}, n, v, n-1)$.

An *n*-cube $C \in \mathcal{C}^n(v,k,\lambda)$ can be represented as

$$\overline{C} = \{(i_1,\ldots,i_n) \in \{1,\ldots,v\}^n \mid C(i_1,\ldots,i_n) = 1\}.$$

This is an orthogonal array with parameters $OA(kv^{n-1}, n, v, n-1)$.

By changin *n*-tuples (i_1, \ldots, i_n) to *n*-subsets $\{i_1, v + i_2, 2v + i_3, \ldots, (n-1)v + i_n\}$ we get a transversal design. This is an incidence structure of *nv* points and kv^{n-1} blocks such that the usual notion of isomorphism agrees with paratopy of cubes.

An *n*-cube $C \in \mathcal{C}^n(v, k, \lambda)$ can be represented as

$$\overline{C} = \{(i_1,\ldots,i_n) \in \{1,\ldots,v\}^n \mid C(i_1,\ldots,i_n) = 1\}.$$

This is an orthogonal array with parameters $OA(kv^{n-1}, n, v, n-1)$.

By changin *n*-tuples (i_1, \ldots, i_n) to *n*-subsets $\{i_1, v + i_2, 2v + i_3, \ldots, (n-1)v + i_n\}$ we get a transversal design. This is an incidence structure of *nv* points and kv^{n-1} blocks such that the usual notion of isomorphism agrees with paratopy of cubes.

We can construct such transversal designs by the Kramer-Mesner method. Candidates for prescribed autotopy groups: take a known cube $C \in C^3(16, 6, 2)$, compute Atop(C) and choose a subgroup G.

E. S. Kramer, D. M. Mesner, *t-designs on hypergraphs*, Discrete Math. **15** (1976), no. 3, 263–296.

イロト 不得 トイヨト イヨト 二日

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $C^3(16, 6, 2)$ contains at least 1423 inequivalent non-group cubes.

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $C^3(16, 6, 2)$ contains at least 1423 inequivalent non-group cubes.

Examples...

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $C^3(16, 6, 2)$ contains at least 1423 inequivalent non-group cubes.

Examples...

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $C^3(16, 6, 2)$ contains at least 1423 inequivalent non-group cubes.

Question 7. Are there non-group cubes for smaller parameters (v, k, λ) ? We tried constructing them by the Kramer-Mesner method, but did not find any examples except for (16, 6, 2). What about (15, 7, 3)?

April 16-21, 2023

41 / 43

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $C^3(16, 6, 2)$ contains at least 1423 inequivalent non-group cubes.

Question 7. Are there non-group cubes for smaller parameters (v, k, λ) ? We tried constructing them by the Kramer-Mesner method, but did not find any examples except for (16, 6, 2). What about (15, 7, 3)?

Question 8. Are there non-group cubes for larger parameters (v, k, λ) ? Our Kramer-Mesner approach was too inefficient. By what computational method can we construct them?

Conference in Dubrovnik

Combinatorial Constructions Conference (CCC) will take place at the Centre for Advanced Academic Studies in Dubrovnik, Croatia.

April 7-13, 2024

Invited Speakers (confirmed):

Eimear Byrne, Ireland Dean Crnković, Croatia Daniel Horsley, Australia Michael Kiermaier, Germany Patric Östergård, Finland Kai-Uwe Schmidt, Germany

https://web.math.pmf.unizg.hr/acco/meetings.php

Thanks for your attention!

▶ < ∃ >

æ