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Motivation

A1 =



1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
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 A2 =


1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0

 A3 =


0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1



A4 =


1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1

 A5 =


0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0



A6 =


0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1

 A7 =


0 1 1 0 1 0 0
1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
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Definitions

A function C : {1, . . . , v}n → {0, 1} or {−1, 1} is an n-dimensional cube
of symmetric (v , k, λ) designs, or an n-dimensional Hadamard matrix of
order v if all 2-dimensional slices are incidence matrices of (v , k, λ)
designs, or Hadamard matrices of order v .

The direct product of symmetric groups (Sv )n = Sv × . . .× Sv acts on the
set of all cubes Cn(v , k, λ) by isotopy, i.e. permuting indices:

Cα(i1, . . . , in) = C(α−1
1 (i1), . . . , α−1

n (in)), for α = (α1, . . . , αn) ∈ (Sv )n.

Additionally, permutations γ ∈ Sn act by conjugation, i.e. changing order
of the indices: Cγ(i1, . . . , in) = C(iγ−1(1), . . . , iγ−1(n)).
The combination of isotopy and conjugation is called paratopy and is the
natural action of the wreath product Sv o Sn on Cn(v , k, λ).
For Hadamard matrices, multiplication of hyperplanes by −1 is also
allowed as an equivalence operation.

Vedran Krčadinac (University of Zagreb) On higher-dimensional designs April 16-21, 2023 5 / 43



Definitions

A function C : {1, . . . , v}n → {0, 1} or {−1, 1} is an n-dimensional cube
of symmetric (v , k, λ) designs, or an n-dimensional Hadamard matrix of
order v if all 2-dimensional slices are incidence matrices of (v , k, λ)
designs, or Hadamard matrices of order v .

The direct product of symmetric groups (Sv )n = Sv × . . .× Sv acts on the
set of all cubes Cn(v , k, λ) by isotopy, i.e. permuting indices:

Cα(i1, . . . , in) = C(α−1
1 (i1), . . . , α−1

n (in)), for α = (α1, . . . , αn) ∈ (Sv )n.

Additionally, permutations γ ∈ Sn act by conjugation, i.e. changing order
of the indices: Cγ(i1, . . . , in) = C(iγ−1(1), . . . , iγ−1(n)).
The combination of isotopy and conjugation is called paratopy and is the
natural action of the wreath product Sv o Sn on Cn(v , k, λ).
For Hadamard matrices, multiplication of hyperplanes by −1 is also
allowed as an equivalence operation.
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Known constructions
Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull.
Amer. Phys. Soc. 16 (8) (1971), 825–826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans.
Inform. Theory 25 (1979), no. 5, 566–572.

Kronecker product ⇒ existence for all dimensions n and orders v = 2m.

J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices,
Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ.
Newcastle, Newcastle, 1979), pp. 220–223, Lecture Notes in Math. 829,
Springer, Berlin, 1980.

J. Hammer, J. Seberry, Higher-dimensional orthogonal designs and
Hadamard matrices II, Proceedings of the Ninth Manitoba Conference on
Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg,
Man., 1979), pp. 23–29, Congress. Numer. XXVII, Utilitas Math.,
Winnipeg, Man., 1980.
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Known constructions

Let G = {g1, . . . , gv} be a group of order v and χ : G → {−1, 1} such
that h = (hij), hij = χ(gi · gj) is a group developed Hadamard matrix.
Then H : {1, . . . , v}n → {−1, 1} is an n-dimensional Hadamard matrix:

H(i1, . . . , in) = χ(gi1 · · · gin )

Group developed Hadamard matrices have constant row and column sums,
i.e. they are regular. Therefore, the order must be of the form v = 4u2.

Analogous construction: let D ⊆ G be a (v , k, λ) difference set. Then
A = (aij), aij = [gi · gj ∈ D] is an incidence matrix of a symmetric design.
Furthermore, C : {1, . . . , v}n → {0, 1} is a (v , k, λ) difference cube:

C(i1, . . . , in) = [gi1 · · · gin ∈ D]

Here [ . ] is the Iverson bracket.
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Known constructions

Y. X. Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85–88.

The product construction:
If h : {1, . . . , v}2 → {−1, 1} is a Hadamard matrix of order v , then

H(i1, . . . , in) =
∏

1≤j<k≤n
h(ij , ik)

is an n-dimensional Hadamard matrix of order v .

Question 1. Is there an analogous construction for n-dimensional cubes
of symmetric designs?

Question 2. For parameters (25, 9, 3) there are exactly 78 designs, but no
difference sets. Is there a 3-cube of (25, 9, 3) designs?
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Vedran Krčadinac (University of Zagreb) On higher-dimensional designs April 16-21, 2023 8 / 43



Known constructions

Y. X. Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85–88.

The product construction:
If h : {1, . . . , v}2 → {−1, 1} is a Hadamard matrix of order v , then

H(i1, . . . , in) =
∏

1≤j<k≤n
h(ij , ik)

is an n-dimensional Hadamard matrix of order v .

Question 1. Is there an analogous construction for n-dimensional cubes
of symmetric designs?

Question 2. For parameters (25, 9, 3) there are exactly 78 designs, but no
difference sets. Is there a 3-cube of (25, 9, 3) designs?
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Known constructions

W. de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Combin. mathematics and combin. computing,
Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67–81.

W. de Launey, K. J. Horadam, A weak difference set construction for
higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75–87.

A 2-cocycle from G to {−1, 1} is a function f : G × G → {−1, 1}
satisfying f (a, b)f (ab, c) = f (b, c)f (a, bc), ∀a, b, c ∈ G .

A cocyclic Hadamard matrix h = (hij) over G = {g1, . . . , gv} is of the
form hij = f (gi , gj)χ(gi · gj), for some χ : G → {−1, 1}.

Cocyclic Hadamard matrices need not be regular and are conjectured to
exist for all orders v = 4m by de Launey and Horadam (1993).
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Vedran Krčadinac (University of Zagreb) On higher-dimensional designs April 16-21, 2023 9 / 43



Known constructions

W. de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Combin. mathematics and combin. computing,
Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67–81.

W. de Launey, K. J. Horadam, A weak difference set construction for
higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75–87.

A 2-cocycle from G to {−1, 1} is a function f : G × G → {−1, 1}
satisfying f (a, b)f (ab, c) = f (b, c)f (a, bc), ∀a, b, c ∈ G .

A cocyclic Hadamard matrix h = (hij) over G = {g1, . . . , gv} is of the
form hij = f (gi , gj)χ(gi · gj), for some χ : G → {−1, 1}.

Cocyclic Hadamard matrices need not be regular and are conjectured to
exist for all orders v = 4m by de Launey and Horadam (1993).
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Known constructions

The cocyclic construction:
If hij = f (gi , gj)χ(gi · gj) is a cocyclic Hadamard matrix of order v , then

H(i1, . . . , in) =
n∏

k=2
f (gi1 · · · gik−1 , gik ) χ(gi1 · · · gin )

is an n-dimensional Hadamard matrix of order v .

There are no nontrivial cocycles for (v , k, λ) designs, because the
symbols 0 and 1 in their incidence matrices cannot be exchanged.

Higher-dimensional Hadamard matrices obtained by both the product
construction and the cocyclic construction have the property that all
slices are equivalent. The same property holds for difference cubes
of symmetric designs.
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A new construction

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs,
preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:
If G = {g1, . . . , gv} is a group and D = {B1, . . . ,Bv} is a (v , k, λ) design
such that all blocks are difference sets, then

H(i1, . . . , in) = [gi2 · · · gin ∈ Bi1 ]

is an n-dimensional cube of symmetric designs.

Proof: If the first index i1 is fixed, this is the (n − 1)-dimensional
difference cube of Bi1 , so all slices are equivalent with its development.
If i1 and one other index are varied, the slice is equivalent with D.

If D is the development of its blocks, this is just the difference cube.
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Designs with difference sets as blocks
Question 3. Are there symmetric designs with all blocks being (v , k, λ)
difference sets in a group G , which are not developments?

Example: (21, 5, 1)

Z21  42 difference sets  2 designs, both are developments

F21 = Z7 o Z3  294 difference sets  70 designs  14 designs are left
developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes.
The group cube is not a difference cube!

C1 = difference cube in Z21

C2 = difference cube in F21

C3 = non-difference group cube in F21
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developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes.
The group cube is not a difference cube!

C1 = difference cube in Z21  |Atop(C1)| = 2646
C2 = difference cube in F21  |Atop(C2)| = 1323
C3 = non-difference group cube in F21  |Atop(C3)| = 441

However, all slices are equivalent, because there is only one (21, 5, 1)
design: the projective plane PG(2, 4).
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Group 3-cubes
C1
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Group 3-cubes
C2
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Group 3-cubes
C3
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Vedran Krčadinac (University of Zagreb) On higher-dimensional designs April 16-21, 2023 17 / 43

https://vkrcadinac.github.io/PAG/
https://github.com/vkrcadinac/PAG


The PAG package

PAG
Prescribed Automorphism Groups

0.2.1

4 April 2023

Vedran Krcadinac

Vedran Krcadinac
Email: vedran.krcadinac@math.hr
Homepage: https://web.math.pmf.unizg.hr/~krcko/homepage.html
Address: University of Zagreb, Faculty of Science,

Department of Mathematics
Bijenicka cesta 30, HR-10000 Zagreb, Croatia

PAG 2

Abstract
PAG is a GAP package for constructing combinatorial objects with prescribed automorphism groups.

Copyright
© 2023 by Vedran Krcadinac

The PAG package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements

Development of the PAG package has been supported by the Croatian Science Foundation under the project
IP-2020-02-9752.

https://vkrcadinac.github.io/PAG/

https://github.com/vkrcadinac/PAG
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The PAG package
PAG 30

2.6 Cubes of Symmetric Designs

2.6.1 DifferenceCube

. DifferenceCube(G, ds, n) (function)

Returns the n -dimenional difference cube constructed from a difference set ds in the group G .

2.6.2 GroupCube

. GroupCube(G, dds, n) (function)

Returns the n -dimenional group cube constructed from a symmetric design dds such that the
blocks are difference sets in the group G .

2.6.3 CubeSlice

. CubeSlice(C, x, y, fixed) (function)

Returns a 2-dimensional slice of the incidence cube C obtained by varying coordinates in positions
x and y , and taking fixed values for the remaining coordinates given in a list fixed .

2.6.4 CubeSlices

. CubeSlices(C[, x, y][, fixed]) (function)

Returns 2-dimensional slices of the incidence cube C . Optional arguments are the varying coor-
dinates x and y , and values of the fixed coordinates in a list fixed . If optional arguments are not
given, all possibilities will be supplied. For an n-dimensional cube C of order v, the following calls
will return:

• CubeSlices( C , x , y ) . . .vn−2 slices obtained by varying values of the fixed coordinates.

• CubeSlices( C , fixed ) . . .
(n

2

)
slices obtained by varying the non-fixed coordinates x < y.

• CubeSlices( C ) . . .
(n

2

)
·vn−2 slices obtained by varying both the non-fixed coordinates x < y and

values of the fixed coordinates.

2.6.5 CubeToOrthogonalArray

. CubeToOrthogonalArray(C) (function)

Transforms the incidence cube C to an equivalent orthogonal array.

2.6.6 OrthogonalArrayToCube

. OrthogonalArrayToCube(oa) (function)

Transforms the orthogonal array oa to an equivalent incidence cube.
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Group 3-cubes
Example. There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

D. Peifer, DifSets, an algorithm for enumerating all difference sets in a
group, Version 2.3.1, 2019. https://dylanpeifer.github.io/difsets
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Group 3-cubes
Example. There are three (16, 6, 2) designs:

|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

ID Structure Nds Ndc dev Tds Ngc
1 Z16 0 0 – 0 0
2 Z2

4 3 3 D1 192 55
3 (Z4 × Z2) o Z2 4 4 D1 192 83
4 Z4 o Z4 3 3 D1 192 81
5 Z8 × Z2 2 2 D1, D2 192 106
6 Z8 o Z2 2 2 D1 64 34
7 D16 0 0 – 0 0
8 QD16 2 2 D1 128 50
9 Q16 2 2 D1 256 71

10 Z4 × Z2
2 2 2 D1 448 131

11 Z2 × D8 2 2 D1 192 52
12 Z2 × Q8 2 2 D1, D3 704 197
13 (Z4 × Z2) o Z2 2 2 D1, D3 320 77
14 Z4

2 1 1 D1 448 9
Vedran Krčadinac (University of Zagreb) On higher-dimensional designs April 16-21, 2023 22 / 43
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Group 3-cubes

Proposition.
Up to equivalence, the set C3(16, 6, 2) contains exactly 27 difference cubes
and 946 group cubes that are not difference cubes.

Slices:
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Group 3-cubes

Proposition.
Up to equivalence, the set C3(16, 6, 2) contains exactly 27 difference cubes
and 946 group cubes that are not difference cubes.

Difference cubes: dev D = D2
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Group 3-cubes

Proposition.
Up to equivalence, the set C3(16, 6, 2) contains exactly 27 difference cubes
and 946 group cubes that are not difference cubes.

Difference cubes: dev D = D3
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Group 3-cubes

Proposition.
Up to equivalence, the set C3(16, 6, 2) contains exactly 27 difference cubes
and 946 group cubes that are not difference cubes.

Group cube in Z4
2: D2 = {B1, . . . ,B16}
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Group 3-cubes

Theorem.
The set Cn(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1)) contains at least two
inequivalent non-difference group cubes constructed in Z2m

2 for every
m ≥ 2 and n ≥ 3.

The parameters are of Menon type. Thus, by exchanging 0→ −1
the cubes are transformed to n-dimensional Hadamard matrices with
inequivalent slices. These could not have been obtained by previously
known construction.

A Hadamard matrix obtained from a Menon design is regular, and its
order must be of the form v = 4u2.

Question 4. Are there examples of n-dimensional Hadamard matrices
with inequivalent slices without this restriction?
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Group 3-cubes

More examples of (16, 6, 2) cubes. . .

Group cube in Z8 × Z2: D3 = {B1, . . . ,B8,B9, . . . ,B16}
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Group 3-cubes

More examples of (16, 6, 2) cubes. . .

Group cube in Q8 × Z2: D2 = {B1, . . . ,B8,B9, . . . ,B16}
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Group 3-cubes

More examples of (16, 6, 2) cubes. . .

Group cube in Q8 × Z2: D2 = {B1, . . . ,B4,B5, . . . ,B16}
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Group 3-cubes

More examples of (16, 6, 2) cubes. . .

Group cube in Q8 × Z2: D2 = {B1, . . . ,B12,B13, . . . ,B16}
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Group 3-cubes
Larger examples. . .

Parameters Nds Ndc Ngc
(27, 13, 6) 3 2 ≥ 7
(36, 15, 6) 35 35 ≥ 373
(45, 12, 3) 2 2 ≥ 6

(63, 31, 15) 6 6 ≥ 9
(64, 28, 12) 330159 < 330159 ≥ 1
(96, 20, 4) 2627 1806 ≥ 1

Vedran Krčadinac (University of Zagreb) On higher-dimensional designs April 16-21, 2023 35 / 43



Group 3-cubes
Larger examples. . .

Parameters Nds Ndc Ngc
(27, 13, 6) 3 2 ≥ 7
(36, 15, 6) 35 35 ≥ 373
(45, 12, 3) 2 2 ≥ 6

(63, 31, 15) 6 6 ≥ 9
(64, 28, 12) 330159 < 330159 ≥ 1
(96, 20, 4) 2627 1806 ≥ 1

Difference sets D1 ⊆ G1, D2 ⊆ G2 are equivalent if there is a group
isomorphism ϕ : G1 → G2 such that ϕ(D1) = aD2 for some a ∈ G2.

Equivalent difference sets give isomorphic developments (designs),
and isotopic difference cubes.

Does the converse hold?
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Group 3-cubes

Question 5. If two difference cubes are isotopic, do they necessarily
come from equivalent difference sets?

Question 6. Can difference cubes obtained from nonisomorphic groups
be equivalent?

Examples exist for dimension n = 2, e.g. there are 27 inequivalent
(16, 6, 2) difference sets in 12 different groups, but only 3 designs.

I know of no examples for dimensions n ≥ 3.
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Vedran Krčadinac (University of Zagreb) On higher-dimensional designs April 16-21, 2023 37 / 43



Non-group cubes
An n-cube C ∈ Cn(v , k, λ) can be represented as

C = {(i1, . . . , in) ∈ {1, . . . , v}n | C(i1, . . . , in) = 1}.

This is an orthogonal array with parameters OA(kvn−1, n, v , n − 1).

By changin n-tuples (i1, . . . , in) to n-subsets {i1, v + i2, 2v + i3, . . . ,
(n − 1)v + in} we get a transversal design. This is an incidence structure
of nv points and kvn−1 blocks such that the usual notion of isomorphism
agrees with paratopy of cubes.

We can construct such transversal designs by the Kramer-Mesner method.
Candidates for prescribed autotopy groups: take a known cube
C ∈ C3(16, 6, 2), compute Atop(C) and choose a subgroup G .

E. S. Kramer, D. M. Mesner, t-designs on hypergraphs, Discrete Math. 15
(1976), no. 3, 263–296.
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Non-group cubes
Clearly we must always get the cube C we started from, but often we also
get other inequivalent cubes, some of which are not equivalent to any
group cube.

Proposition.
The set C3(16, 6, 2) contains at least 1423 inequivalent non-group cubes.

Examples. . .
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Non-group cubes
Clearly we must always get the cube C we started from, but often we also
get other inequivalent cubes, some of which are not equivalent to any
group cube.

Proposition.
The set C3(16, 6, 2) contains at least 1423 inequivalent non-group cubes.

Question 7. Are there non-group cubes for smaller parameters (v , k, λ)?
We tried constructing them by the Kramer-Mesner method, but did not
find any examples except for (16, 6, 2). What about (15, 7, 3)?

Question 8. Are there non-group cubes for larger parameters (v , k, λ)?
Our Kramer-Mesner approach was too inefficient. By what computational
method can we construct them?
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Conference in Dubrovnik

Combinatorial Constructions Conference (CCC) will take place at
the Centre for Advanced Academic Studies in Dubrovnik, Croatia.
April 7-13, 2024
Invited Speakers (confirmed):

Eimear Byrne, Ireland Michael Kiermaier, Germany
Dean Crnković, Croatia Patric Österg̊ard, Finland
Daniel Horsley, Australia Kai-Uwe Schmidt, Germany

https://web.math.pmf.unizg.hr/acco/meetings.php
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The End

Thanks for your attention!
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