On higher-dimensional designs ${ }^{\star}$

Vedran Krčadinac
(joint work with Mario Osvin Pavčević and Kristijan Tabak)
University of Zagreb, Croatia

Pushing the Limits of Computational Combinatorial Constructions April 16-21, 2023, Schloss Dagstuhl, Germany

Dagstuhl Seminar 23161, Leibniz Center for Informatics

[^0]
Motivation

$$
A_{1}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Motivation

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \quad A_{3}=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \begin{array}{l}
A_{4}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right) \quad A_{5}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right) \\
A_{6}=\left(\begin{array}{lllllll}
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right) \quad A_{7}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
\end{array}
\end{aligned}
$$

Motivation

Definitions

A function $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$ or $\{-1,1\}$ is an n-dimensional cube of symmetric (v, k, λ) designs, or an n-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

Definitions

A function $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$ or $\{-1,1\}$ is an n-dimensional cube of symmetric (v, k, λ) designs, or an n-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts on the set of all cubes $\mathcal{C}^{n}(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$
C^{\alpha}\left(i_{1}, \ldots, i_{n}\right)=C\left(\alpha_{1}^{-1}\left(i_{1}\right), \ldots, \alpha_{n}^{-1}\left(i_{n}\right)\right), \text { for } \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(S_{v}\right)^{n} .
$$

Definitions

A function $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$ or $\{-1,1\}$ is an n-dimensional cube of symmetric (v, k, λ) designs, or an n-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts on the set of all cubes $\mathcal{C}^{n}(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$
C^{\alpha}\left(i_{1}, \ldots, i_{n}\right)=C\left(\alpha_{1}^{-1}\left(i_{1}\right), \ldots, \alpha_{n}^{-1}\left(i_{n}\right)\right), \text { for } \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(S_{v}\right)^{n} .
$$

Additionally, permutations $\gamma \in S_{n}$ act by conjugation, i.e. changing order of the indices: $C^{\gamma}\left(i_{1}, \ldots, i_{n}\right)=C\left(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}\right)$.

Definitions

A function $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$ or $\{-1,1\}$ is an n-dimensional cube of symmetric (v, k, λ) designs, or an n-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts on the set of all cubes $\mathcal{C}^{n}(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$
C^{\alpha}\left(i_{1}, \ldots, i_{n}\right)=C\left(\alpha_{1}^{-1}\left(i_{1}\right), \ldots, \alpha_{n}^{-1}\left(i_{n}\right)\right), \text { for } \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(S_{v}\right)^{n} .
$$

Additionally, permutations $\gamma \in S_{n}$ act by conjugation, i.e. changing order of the indices: $C^{\gamma}\left(i_{1}, \ldots, i_{n}\right)=C\left(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}\right)$.
The combination of isotopy and conjugation is called paratopy and is the natural action of the wreath product $S_{v} \backslash S_{n}$ on $\mathcal{C}^{n}(v, k, \lambda)$.

Definitions

A function $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$ or $\{-1,1\}$ is an n-dimensional cube of symmetric (v, k, λ) designs, or an n-dimensional Hadamard matrix of order v if all 2-dimensional slices are incidence matrices of (v, k, λ) designs, or Hadamard matrices of order v.

The direct product of symmetric groups $\left(S_{v}\right)^{n}=S_{v} \times \ldots \times S_{v}$ acts on the set of all cubes $\mathcal{C}^{n}(v, k, \lambda)$ by isotopy, i.e. permuting indices:

$$
C^{\alpha}\left(i_{1}, \ldots, i_{n}\right)=C\left(\alpha_{1}^{-1}\left(i_{1}\right), \ldots, \alpha_{n}^{-1}\left(i_{n}\right)\right), \text { for } \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(S_{v}\right)^{n} .
$$

Additionally, permutations $\gamma \in S_{n}$ act by conjugation, i.e. changing order of the indices: $C^{\gamma}\left(i_{1}, \ldots, i_{n}\right)=C\left(i_{\gamma^{-1}(1)}, \ldots, i_{\gamma^{-1}(n)}\right)$.
The combination of isotopy and conjugation is called paratopy and is the natural action of the wreath product $S_{v} 2 S_{n}$ on $\mathcal{C}^{n}(v, k, \lambda)$.
For Hadamard matrices, multiplication of hyperplanes by -1 is also allowed as an equivalence operation.

Known constructions

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Known constructions

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

Known constructions

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.

Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

Kronecker product \Rightarrow existence for all dimensions n and orders $v=2^{m}$.

Known constructions

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.
Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

Kronecker product \Rightarrow existence for all dimensions n and orders $v=2^{m}$.
J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices, Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), pp. 220-223, Lecture Notes in Math. 829, Springer, Berlin, 1980.

Known constructions

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices, Bull. Amer. Phys. Soc. 16 (8) (1971), 825-826.
Paul J. Shlichta, Higher dimensional Hadamard matrices, IEEE Trans. Inform. Theory 25 (1979), no. 5, 566-572.

Kronecker product \Rightarrow existence for all dimensions n and orders $v=2^{m}$.
J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices, Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), pp. 220-223, Lecture Notes in Math. 829, Springer, Berlin, 1980.
J. Hammer, J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices II, Proceedings of the Ninth Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1979), pp. 23-29, Congress. Numer. XXVII, Utilitas Math., Winnipeg, Man., 1980.

Known constructions

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group of order v and $\chi: G \rightarrow\{-1,1\}$ such that $h=\left(h_{i j}\right), h_{i j}=\chi\left(g_{i} \cdot g_{j}\right)$ is a group developed Hadamard matrix. Then $H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}$ is an n-dimensional Hadamard matrix:

$$
H\left(i_{1}, \ldots, i_{n}\right)=\chi\left(g_{i_{1}} \cdots g_{i_{n}}\right)
$$

Known constructions

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group of order v and $\chi: G \rightarrow\{-1,1\}$ such that $h=\left(h_{i j}\right), h_{i j}=\chi\left(g_{i} \cdot g_{j}\right)$ is a group developed Hadamard matrix. Then $H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}$ is an n-dimensional Hadamard matrix:

$$
H\left(i_{1}, \ldots, i_{n}\right)=\chi\left(g_{i_{1}} \cdots g_{i_{n}}\right)
$$

Group developed Hadamard matrices have constant row and column sums, i.e. they are regular. Therefore, the order must be of the form $v=4 u^{2}$.

Known constructions

Let $G=\left\{g_{1}, \ldots, g_{v}\right\}$ be a group of order v and $\chi: G \rightarrow\{-1,1\}$ such that $h=\left(h_{i j}\right), h_{i j}=\chi\left(g_{i} \cdot g_{j}\right)$ is a group developed Hadamard matrix. Then $H:\{1, \ldots, v\}^{n} \rightarrow\{-1,1\}$ is an n-dimensional Hadamard matrix:

$$
H\left(i_{1}, \ldots, i_{n}\right)=\chi\left(g_{i_{1}} \cdots g_{i_{n}}\right)
$$

Group developed Hadamard matrices have constant row and column sums, i.e. they are regular. Therefore, the order must be of the form $v=4 u^{2}$.

Analogous construction: let $D \subseteq G$ be a (v, k, λ) difference set. Then $A=\left(a_{i j}\right), a_{i j}=\left[g_{i} \cdot g_{j} \in D\right]$ is an incidence matrix of a symmetric design. Furthermore, $C:\{1, \ldots, v\}^{n} \rightarrow\{0,1\}$ is a (v, k, λ) difference cube:

$$
C\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{1}} \cdots g_{i_{n}} \in D\right]
$$

Here [.] is the Iverson bracket.

Known constructions

Y. X. Yang, Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

Known constructions

Y. X. Yang, Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

The product construction:

If $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ is a Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is an n-dimensional Hadamard matrix of order v.

Known constructions

Y. X. Yang, Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

The product construction:

If $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ is a Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is an n-dimensional Hadamard matrix of order v.

Question 1. Is there an analogous construction for n-dimensional cubes of symmetric designs?

Known constructions

Y. X. Yang, Proofs of some conjectures about higher-dimensional Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85-88.

The product construction:

If $h:\{1, \ldots, v\}^{2} \rightarrow\{-1,1\}$ is a Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{1 \leq j<k \leq n} h\left(i_{j}, i_{k}\right)
$$

is an n-dimensional Hadamard matrix of order v.

Question 1. Is there an analogous construction for n-dimensional cubes of symmetric designs?

Question 2. For parameters $(25,9,3)$ there are exactly 78 designs, but no difference sets. Is there a 3 -cube of $(25,9,3)$ designs?

Known constructions

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67-81.

Known constructions

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67-81.
W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75-87.

Known constructions

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67-81.
W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75-87.

A 2-cocycle from G to $\{-1,1\}$ is a function $f: G \times G \rightarrow\{-1,1\}$ satisfying $f(a, b) f(a b, c)=f(b, c) f(a, b c), \forall a, b, c \in G$.

Known constructions

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67-81.
W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75-87.

A 2-cocycle from G to $\{-1,1\}$ is a function $f: G \times G \rightarrow\{-1,1\}$ satisfying $f(a, b) f(a b, c)=f(b, c) f(a, b c), \forall a, b, c \in G$.

A cocyclic Hadamard matrix $h=\left(h_{i j}\right)$ over $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is of the form $h_{i j}=f\left(g_{i}, g_{j}\right) \chi\left(g_{i} \cdot g_{j}\right)$, for some $\chi: G \rightarrow\{-1,1\}$.

Known constructions

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Combin. mathematics and combin. computing, Vol. 1 (Brisbane, 1989), Australas. J. Combin. 1 (1990), 67-81.
W. de Launey, K. J. Horadam, A weak difference set construction for higher-dimensional designs, Des. Codes Cryptogr. 3 (1993), no. 1, 75-87.

A 2-cocycle from G to $\{-1,1\}$ is a function $f: G \times G \rightarrow\{-1,1\}$ satisfying $f(a, b) f(a b, c)=f(b, c) f(a, b c), \forall a, b, c \in G$.

A cocyclic Hadamard matrix $h=\left(h_{i j}\right)$ over $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is of the form $h_{i j}=f\left(g_{i}, g_{j}\right) \chi\left(g_{i} \cdot g_{j}\right)$, for some $\chi: G \rightarrow\{-1,1\}$.

Cocyclic Hadamard matrices need not be regular and are conjectured to exist for all orders $v=4 m$ by de Launey and Horadam (1993).

Known constructions

The cocyclic construction:

If $h_{i j}=f\left(g_{i}, g_{j}\right) \chi\left(g_{i} \cdot g_{j}\right)$ is a cocyclic Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{k=2}^{n} f\left(g_{i_{1}} \cdots g_{i_{k-1}}, g_{i_{k}}\right) \chi\left(g_{i_{1}} \cdots g_{i_{n}}\right)
$$

is an n-dimensional Hadamard matrix of order v.

Known constructions

The cocyclic construction:

If $h_{i j}=f\left(g_{i}, g_{j}\right) \chi\left(g_{i} \cdot g_{j}\right)$ is a cocyclic Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{k=2}^{n} f\left(g_{i_{1}} \cdots g_{i_{k-1}}, g_{i_{k}}\right) \chi\left(g_{i_{1}} \cdots g_{i_{n}}\right)
$$

is an n-dimensional Hadamard matrix of order v.

There are no nontrivial cocycles for (v, k, λ) designs, because the symbols 0 and 1 in their incidence matrices cannot be exchanged.

Known constructions

The cocyclic construction:

If $h_{i j}=f\left(g_{i}, g_{j}\right) \chi\left(g_{i} \cdot g_{j}\right)$ is a cocyclic Hadamard matrix of order v, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\prod_{k=2}^{n} f\left(g_{i_{1}} \cdots g_{i_{k-1}}, g_{i_{k}}\right) \chi\left(g_{i_{1}} \cdots g_{i_{n}}\right)
$$

is an n-dimensional Hadamard matrix of order v.

There are no nontrivial cocycles for (v, k, λ) designs, because the symbols 0 and 1 in their incidence matrices cannot be exchanged.

Higher-dimensional Hadamard matrices obtained by both the product construction and the cocyclic construction have the property that all slices are equivalent. The same property holds for difference cubes of symmetric designs.

A new construction

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

A new construction

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric designs.

A new construction

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric designs.
Proof: If the first index i_{1} is fixed, this is the ($n-1$)-dimensional difference cube of $B_{i_{1}}$, so all slices are equivalent with its development.

A new construction

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric designs.
Proof: If the first index i_{1} is fixed, this is the ($n-1$)-dimensional difference cube of $B_{i_{1}}$, so all slices are equivalent with its development. If i_{1} and one other index are varied, the slice is equivalent with \mathcal{D}.

A new construction

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs, preprint, 2023. http://arxiv.org/abs/2304.05446

The group cube construction:

If $G=\left\{g_{1}, \ldots, g_{v}\right\}$ is a group and $\mathcal{D}=\left\{B_{1}, \ldots, B_{v}\right\}$ is a (v, k, λ) design such that all blocks are difference sets, then

$$
H\left(i_{1}, \ldots, i_{n}\right)=\left[g_{i_{2}} \cdots g_{i_{n}} \in B_{i_{1}}\right]
$$

is an n-dimensional cube of symmetric designs.
Proof: If the first index i_{1} is fixed, this is the ($n-1$)-dimensional difference cube of $B_{i_{1}}$, so all slices are equivalent with its development. If i_{1} and one other index are varied, the slice is equivalent with \mathcal{D}.

If \mathcal{D} is the development of its blocks, this is just the difference cube.

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
\mathbb{Z}_{21}

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3} \rightsquigarrow 294$ difference sets

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3} \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3} \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3} \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes.
The group cube is not a difference cube!

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3} \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes.
The group cube is not a difference cube!
$C_{1}=$ difference cube in \mathbb{Z}_{21}
$C_{2}=$ difference cube in F_{21}
$C_{3}=$ non-difference group cube in F_{21}

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3} \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes.
The group cube is not a difference cube!
$C_{1}=$ difference cube in $\mathbb{Z}_{21} \rightsquigarrow\left|\operatorname{Atop}\left(C_{1}\right)\right|=2646$
$C_{2}=$ difference cube in $F_{21} \rightsquigarrow\left|\operatorname{Atop}\left(C_{2}\right)\right|=1323$
$C_{3}=$ non-difference group cube in $F_{21} \rightsquigarrow\left|\operatorname{Atop}\left(C_{3}\right)\right|=441$

Designs with difference sets as blocks

Question 3. Are there symmetric designs with all blocks being (v, k, λ) difference sets in a group G, which are not developments?

Example: $(21,5,1)$
$\mathbb{Z}_{21} \rightsquigarrow 42$ difference sets $\rightsquigarrow 2$ designs, both are developments
$F_{21}=\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3} \rightsquigarrow 294$ difference sets $\rightsquigarrow 70$ designs $\rightsquigarrow 14$ designs are left developments, 14 are right developments, and 42 are not developments

These 42 blocks designs give rise to equivalent group cubes.
The group cube is not a difference cube!
$C_{1}=$ difference cube in $\mathbb{Z}_{21} \rightsquigarrow\left|\operatorname{Atop}\left(C_{1}\right)\right|=2646$
$C_{2}=$ difference cube in $F_{21} \rightsquigarrow\left|\operatorname{Atop}\left(C_{2}\right)\right|=1323$
$C_{3}=$ non-difference group cube in $F_{21} \rightsquigarrow\left|\operatorname{Atop}\left(C_{3}\right)\right|=441$
However, all slices are equivalent, because there is only one $(21,5,1)$ design: the projective plane $P G(2,4)$.

Group 3-cubes

C_{1}

Group 3-cubes

C_{2}

Group 3-cubes

C_{3}

The PAG package

PAG

Prescribed Automorphism Groups

0.2.1

4 April 2023

Abstract

PAG is a GAP package for constructing combinatorial objects with prescribed automorphism groups.

The PAG package

PAG

Prescribed Automorphism Groups

0.2.1

4 April 2023

Abstract

PAG is a GAP package for constructing combinatorial objects with prescribed automorphism groups.
https://vkrcadinac.github.io/PAG/
https://github.com/vkrcadinac/PAG

The PAG package

PAG

Prescribed Automorphism Groups

Version 0.2.0
Released 2023-03-27
. Download .tar.gz
View On Github

This project is maintained by Vedran Krcadinac

GAP Package PAG

The PAG package contains functions for constructing combinatorial objects with prescribed automorphism groups.

The current version of this package is version 0.2.0, released on 2023-03-27. For more information, please refer to the package manual. There is also a README file.

Dependencies

This package requires GAP version 4.11

The following other GAP packages are needed:

- GAPDoc 1.5
- images 1.3
- GRAPE 4.8
- DESIGN 1.7

The following additional GAP packages are not required, but suggested:

- AssociationSchemes 2.0
- GUAVA 3.15
- DifSets 2.3.1

The PAG package

\int Notifications
Fork 0
<> CodeIssues
\%\% Pull requests
(-) ActionsProjects
Security \simeq Insights

\% master *		Go to file Code -
(5) vkrcadinac Experimental release ...		3 days ago (-5
[. doc	Experimental release	3 days ago
E. lib	Experimental release	3 days ago
- src	Experimental release	3 days ago
(1) CHANGES.txt	Experimental release	3 days ago
(0) LICENSE.txt	PAG 0.2.0 initial commit	2 weeks ago
(1) Makefile.in	Experimental release	3 days ago
[Packagelnfo.g	Experimental release	3 days ago
(1) README.md	Corrected typo	2 weeks ago
[] configure.sh	PAG 0.2 .0 initial commit	2 weeks ago
[init.g	PAG 0.2.0 initial commit	2 weeks ago
(makedoc.g	PAG 0.2.0 initial commit	2 weeks ago
[) read.g	PAG 0.2.0 initial commit	2 weeks ago

About

Prescribed Automorphism Groups (PAG) is a GAP package for constructing combinatorial objects with prescribed automorphism groups.
\square Readme $\Delta 10$ GPL-2.0 license is 0 stars

- 1 watching
\% 0 forks
Report repository

Releases
$\bigcirc 1$ tags

Packages

The PAG package

2.6 Cubes of Symmetric Designs

2.6.1 DifferenceCube

\triangleright DifferenceCube(G, ds, n)

Returns the n-dimenional difference cube constructed from a difference set $d s$ in the group G.

2.6.2 GroupCube

\triangleright GroupCube (G, dds, n)

Returns the n-dimenional group cube constructed from a symmetric design $d d s$ such that the blocks are difference sets in the group G.

2.6.3 CubeSlice

\triangleright CubeSlice(C, x, y, fixed)

Returns a 2-dimensional slice of the incidence cube C obtained by varying coordinates in positions x and y, and taking fixed values for the remaining coordinates given in a list fixed.

2.6.4 CubeSlices

\triangleright CubeSlices(C[, x, y][, fixed]) (function)

Group 3-cubes

Example. There are three $(16,6,2)$ designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

Group 3-cubes

Example. There are three $(16,6,2)$ designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

D. Peifer, DifSets, an algorithm for enumerating all difference sets in a group, Version 2.3.1, 2019. https://dylanpeifer.github.io/difsets

Group 3-cubes

Example. There are three $(16,6,2)$ designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

ID	Structure	Nds	Ndc	dev	Tds	Ngc
1	\mathbb{Z}_{16}	0	0	-	0	0
2	\mathbb{Z}_{4}^{2}	3	3	\mathcal{D}_{1}	192	55
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	4	\mathcal{D}_{1}	192	83
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	3	\mathcal{D}_{1}	192	81
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$	192	106
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	2	\mathcal{D}_{1}	64	34
7	D_{16}	0	0	-	0	0
8	$Q D_{16}$	2	2	\mathcal{D}_{1}	128	50
9	Q_{16}	2	2	\mathcal{D}_{1}	256	71
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	2	\mathcal{D}_{1}	448	131
11	$\mathbb{Z}_{2} \times D_{8}$	2	2	\mathcal{D}_{1}	192	52
12	$\mathbb{Z}_{2} \times Q_{8}$	2	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$	704	197
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$	320	77
14	\mathbb{Z}_{2}^{4}	1	1	\mathcal{D}_{1}	448	9

Group 3-cubes

Example. There are three $(16,6,2)$ designs:

$$
\left|\operatorname{Aut}\left(\mathcal{D}_{1}\right)\right|=11520, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{2}\right)\right|=768, \quad\left|\operatorname{Aut}\left(\mathcal{D}_{3}\right)\right|=384
$$

ID	Structure	Nds	Ndc	dev	Tds	Ngc
1	\mathbb{Z}_{16}	0	0	-	0	0
2	\mathbb{Z}_{4}^{2}	3	3	\mathcal{D}_{1}	192	55
3	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	4	4	\mathcal{D}_{1}	192	83
4	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	3	3	\mathcal{D}_{1}	192	81
5	$\mathbb{Z}_{8} \times \mathbb{Z}_{2}$	2	2	$\mathcal{D}_{1}, \mathcal{D}_{2}$	192	106
6	$\mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$	2	2	\mathcal{D}_{1}	64	34
7	D_{16}	0	0	-	0	0
8	$Q D_{16}$	2	2	\mathcal{D}_{1}	128	50
9	Q_{16}	2	2	\mathcal{D}_{1}	256	71
10	$\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$	2	2	\mathcal{D}_{1}	448	131
11	$\mathbb{Z}_{2} \times D_{8}$	2	2	\mathcal{D}_{1}	192	52
12	$\mathbb{Z}_{2} \times Q_{8}$	2	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$	704	197
13	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2}$	2	2	$\mathcal{D}_{1}, \mathcal{D}_{3}$	320	77
14	\mathbb{Z}_{2}^{4}	1	1	\mathcal{D}_{1}	448	9

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Slices:

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: $\quad \operatorname{dev} D=\mathcal{D}_{1}$

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: $\quad \operatorname{dev} D=\mathcal{D}_{1}$

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: $\operatorname{dev} D=\mathcal{D}_{2}$

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Difference cubes: $\operatorname{dev} D=\mathcal{D}_{3}$

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group cube in $\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{16}\right\}$

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group cube in $\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{16}\right\}$

Group 3-cubes

Proposition.

Up to equivalence, the set $\mathcal{C}^{3}(16,6,2)$ contains exactly 27 difference cubes and 946 group cubes that are not difference cubes.

Group cube in $\mathbb{Z}_{2}^{4}: \quad \mathcal{D}_{3}=\left\{B_{1}, \ldots, B_{16}\right\}$

Group 3-cubes

Theorem.

The set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent non-difference group cubes constructed in $\mathbb{Z}_{2}^{2 m}$ for every $m \geq 2$ and $n \geq 3$.

Group 3-cubes

Theorem.

The set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent non-difference group cubes constructed in $\mathbb{Z}_{2}^{2 m}$ for every $m \geq 2$ and $n \geq 3$.

The parameters are of Menon type. Thus, by exchanging $0 \rightarrow-1$ the cubes are transformed to n-dimensional Hadamard matrices with inequivalent slices. These could not have been obtained by previously known construction.

Group 3-cubes

Theorem.

The set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent non-difference group cubes constructed in $\mathbb{Z}_{2}^{2 m}$ for every $m \geq 2$ and $n \geq 3$.

The parameters are of Menon type. Thus, by exchanging $0 \rightarrow-1$ the cubes are transformed to n-dimensional Hadamard matrices with inequivalent slices. These could not have been obtained by previously known construction.

A Hadamard matrix obtained from a Menon design is regular, and its order must be of the form $v=4 u^{2}$.

Group 3-cubes

Theorem.

The set $\mathcal{C}^{n}\left(4^{m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1}\left(2^{m-1}-1\right)\right)$ contains at least two inequivalent non-difference group cubes constructed in $\mathbb{Z}_{2}^{2 m}$ for every $m \geq 2$ and $n \geq 3$.

The parameters are of Menon type. Thus, by exchanging $0 \rightarrow-1$ the cubes are transformed to n-dimensional Hadamard matrices with inequivalent slices. These could not have been obtained by previously known construction.

A Hadamard matrix obtained from a Menon design is regular, and its order must be of the form $v=4 u^{2}$.

Question 4. Are there examples of n-dimensional Hadamard matrices with inequivalent slices without this restriction?

Group 3-cubes

More examples of $(16,6,2)$ cubes. . .
Group cube in $\mathbb{Z}_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{3}=\left\{B_{1}, \ldots, B_{8}, B_{9}, \ldots, B_{16}\right\}$

Group 3-cubes

More examples of $(16,6,2)$ cubes...
Group cube in $\mathbb{Z}_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{3}=\left\{B_{1}, \ldots, B_{8}, B_{9}, \ldots, B_{16}\right\}$

Group 3-cubes

More examples of $(16,6,2)$ cubes...
Group cube in $Q_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{8}, B_{9}, \ldots, B_{16}\right\}$

Group 3-cubes

More examples of $(16,6,2)$ cubes...
Group cube in $Q_{8} \times \mathbb{Z}_{2}: \quad \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{4}, B_{5}, \ldots, B_{16}\right\}$

Group 3-cubes

More examples of $(16,6,2)$ cubes...
Group cube in $Q_{8} \times \mathbb{Z}_{2}: \mathcal{D}_{2}=\left\{B_{1}, \ldots, B_{12}, B_{13}, \ldots, B_{16}\right\}$

Group 3-cubes

Larger examples. . .

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Group 3-cubes

Larger examples...

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Group 3-cubes

Larger examples. . .

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Difference sets $D_{1} \subseteq G_{1}, D_{2} \subseteq G_{2}$ are equivalent if there is a group isomorphism $\varphi: G_{1} \rightarrow G_{2}$ such that $\varphi\left(D_{1}\right)=a D_{2}$ for some $a \in G_{2}$.

Group 3-cubes

Larger examples. . .

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Difference sets $D_{1} \subseteq G_{1}, D_{2} \subseteq G_{2}$ are equivalent if there is a group isomorphism $\varphi: G_{1} \rightarrow G_{2}$ such that $\varphi\left(D_{1}\right)=a D_{2}$ for some $a \in G_{2}$.
Equivalent difference sets give isomorphic developments (designs), and isotopic difference cubes.

Group 3-cubes

Larger examples. . .

Parameters	Nds	Ndc	Ngc
$(27,13,6)$	3	2	≥ 7
$(36,15,6)$	35	35	≥ 373
$(45,12,3)$	2	2	≥ 6
$(63,31,15)$	6	6	≥ 9
$(64,28,12)$	330159	<330159	≥ 1
$(96,20,4)$	2627	1806	≥ 1

Difference sets $D_{1} \subseteq G_{1}, D_{2} \subseteq G_{2}$ are equivalent if there is a group isomorphism $\varphi: G_{1} \rightarrow G_{2}$ such that $\varphi\left(D_{1}\right)=a D_{2}$ for some $a \in G_{2}$.

Equivalent difference sets give isomorphic developments (designs), and isotopic difference cubes.

Does the converse hold?

Group 3-cubes

Question 5. If two difference cubes are isotopic, do they necessarily come from equivalent difference sets?

Group 3-cubes

Question 5. If two difference cubes are isotopic, do they necessarily come from equivalent difference sets?

Question 6. Can difference cubes obtained from nonisomorphic groups be equivalent?

Group 3-cubes

Question 5. If two difference cubes are isotopic, do they necessarily come from equivalent difference sets?

Question 6. Can difference cubes obtained from nonisomorphic groups be equivalent?

Examples exist for dimension $n=2$, e.g. there are 27 inequivalent $(16,6,2)$ difference sets in 12 different groups, but only 3 designs.

Group 3-cubes

Question 5. If two difference cubes are isotopic, do they necessarily come from equivalent difference sets?

Question 6. Can difference cubes obtained from nonisomorphic groups be equivalent?

Examples exist for dimension $n=2$, e.g. there are 27 inequivalent $(16,6,2)$ difference sets in 12 different groups, but only 3 designs.

I know of no examples for dimensions $n \geq 3$.

Non-group cubes

An n-cube $C \in \mathcal{C}^{n}(v, k, \lambda)$ can be represented as

$$
\bar{C}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, v\}^{n} \mid C\left(i_{1}, \ldots, i_{n}\right)=1\right\} .
$$

This is an orthogonal array with parameters $O A\left(k v^{n-1}, n, v, n-1\right)$.

Non-group cubes

An n-cube $C \in \mathcal{C}^{n}(v, k, \lambda)$ can be represented as

$$
\bar{C}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, v\}^{n} \mid C\left(i_{1}, \ldots, i_{n}\right)=1\right\} .
$$

This is an orthogonal array with parameters $O A\left(k v^{n-1}, n, v, n-1\right)$.
By changin n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ to n-subsets $\left\{i_{1}, v+i_{2}, 2 v+i_{3}, \ldots\right.$, $\left.(n-1) v+i_{n}\right\}$ we get a transversal design. This is an incidence structure of $n v$ points and $k v^{n-1}$ blocks such that the usual notion of isomorphism agrees with paratopy of cubes.

Non-group cubes

An n-cube $C \in \mathcal{C}^{n}(v, k, \lambda)$ can be represented as

$$
\bar{C}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, v\}^{n} \mid C\left(i_{1}, \ldots, i_{n}\right)=1\right\} .
$$

This is an orthogonal array with parameters $O A\left(k v^{n-1}, n, v, n-1\right)$.
By changin n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ to n-subsets $\left\{i_{1}, v+i_{2}, 2 v+i_{3}, \ldots\right.$, $\left.(n-1) v+i_{n}\right\}$ we get a transversal design. This is an incidence structure of $n v$ points and $k v^{n-1}$ blocks such that the usual notion of isomorphism agrees with paratopy of cubes.

We can construct such transversal designs by the Kramer-Mesner method. Candidates for prescribed autotopy groups: take a known cube $C \in \mathcal{C}^{3}(16,6,2)$, compute $\operatorname{Atop}(C)$ and choose a subgroup G.
E. S. Kramer, D. M. Mesner, t-designs on hypergraphs, Discrete Math. 15 (1976), no. 3, 263-296.

Non-group cubes

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Non-group cubes

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.

Non-group cubes

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.
Examples...

Non-group cubes

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.
Examples. . .

Non-group cubes

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.

Question 7. Are there non-group cubes for smaller parameters (v, k, λ) ? We tried constructing them by the Kramer-Mesner method, but did not find any examples except for $(16,6,2)$. What about $(15,7,3)$?

Non-group cubes

Clearly we must always get the cube C we started from, but often we also get other inequivalent cubes, some of which are not equivalent to any group cube.

Proposition.

The set $\mathcal{C}^{3}(16,6,2)$ contains at least 1423 inequivalent non-group cubes.

Question 7. Are there non-group cubes for smaller parameters (v, k, λ) ? We tried constructing them by the Kramer-Mesner method, but did not find any examples except for $(16,6,2)$. What about $(15,7,3)$?

Question 8. Are there non-group cubes for larger parameters (v, k, λ) ? Our Kramer-Mesner approach was too inefficient. By what computational method can we construct them?

Conference in Dubrovnik

Constructions Conference
 April 7-13, 2024, Dubrovnik, Croatia

Combinatorial Constructions Conference (CCC) will take place at the Centre for Advanced Academic Studies in Dubrovnik, Croatia.
April 7-13, 2024
Invited Speakers (confirmed):

Eimear Byrne, Ireland
Dean Crnković, Croatia
Daniel Horsley, Australia

Michael Kiermaier, Germany Patric Östergård, Finland
Kai-Uwe Schmidt, Germany

https://web.math.pmf.unizg.hr/acco/meetings.php

The End

Thanks for your attention!

[^0]: * This work was fully supported by the Croatian Science Foundation under the project 9752.

