
1/12

◀◀
▶▶
◀
▶

Back

Close

On automorphisms of a Fano plane
2-analog design

Kristijan Tabak

Rochester Institute of Technology, Zagreb Campus

Croatia

e-mail: kxtcad@rit.edu

4th Croatian Combinatorial Days, Zagreb, September 22-23,
2022

This work has been fully supported by Croatian Science
Foundation under the project 6732 and 97522



2/12

◀◀
▶▶
◀
▶

Back

Close

Basic definitions



2/12

◀◀
▶▶
◀
▶

Back

Close

Basic definitions

A (v, k, λ)-design is a collection of blocks of a size k that are subsets
of a v-element set of points, where any two points are contained in λ
blocks.
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A (v, k, λ)-design is a collection of blocks of a size k that are subsets
of a v-element set of points, where any two points are contained in λ
blocks.

A q-analog of a (v, k, λ) design is a natural generalization. A collection
of k-dimensional vector subspaces (blocks) of a v-dimensional space
Fqv will be called a q-analog of a (v, k, λ)-design if any 2-dimensional
subspace of Fqv is contained in λ blocks.

A classical example of a (v, k, λ)-design is a Fano plane, a design with
parameters (7, 3, 1).

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from
F27 such that any 2-dimensional subspace of F27 is contained in one
block from a collection of blocks
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It is still unknown if a 2-analog of a Fano plane exists. The question of
it’s existence was posted in 1974 by Berge and Ray-Chaudhuri
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It is still unknown if a 2-analog of a Fano plane exists. The question of
it’s existence was posted in 1974 by Berge and Ray-Chaudhuri

Quite recently, a first example of a 2-analog of a design was constructed
by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in F213 by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane
is elementary abelian group E27.

E2k[E27] = {T | T ≤ E7
2 , T ∼= E2k}.

E2k[T ]
−1 = {M | T ≤ M ∈ E2k[E27]}.

in general |E2k[E2n]| =
[
n

k

]
2

, where

[
n

k

]
2

is a gaussian 2-coefficient.
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if T ∈ E2t[E27], then |E2k[T ]
−1| = |E2k−t[E27/T ]| = |E2k−t[E27−t]| =[

7− t

k − t

]
2

.
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V vector space over finite field Fq, G group act on V ,
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t
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of t-dimensional subspaces of V
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[
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]
q

columns indexed by G-orbits on
[
V
k

]
q

the entry of MG
t,k at row TG and column KG is

|{K ′ ∈ KG | T ≤ K ′}|

the main result of this method is

∃t−(n, k, λ)q design with G ≤ Aut ⇔ ∃{0, 1} solution of MG
t,kx = λ1

The estimated run time for one 3-group is 75616 CPU-years

The estimated time for involution is 8× 1012 CPU-years
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Aut(H) ≤ Aut(E27). It is also known that |Aut(E27)| = 221 · 341 · 5 ·
72 · 31 · 127.
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where o(α) is an order of an automorphism α.

Automorphism of order 127

Theorem: If α ∈ Aut(E27) is of order 127, then ⟨α⟩ ↪̸→ H.

Sketch:

we can have a decomposition H = A⟨α⟩+B⟨α⟩+C⟨α⟩, where A ∼= B ∼=
C ∼= E23 are three blocks fromH. Also, |A⟨α⟩| = |B⟨α⟩| = |C⟨α⟩| = 127.
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the existence of α ∈ Aut(H) such that o(α) ∈ {2, 3, 5, 7, 31, 127},
where o(α) is an order of an automorphism α.
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Theorem: If α ∈ Aut(E27) is of order 127, then ⟨α⟩ ↪̸→ H.

Sketch:

we can have a decomposition H = A⟨α⟩+B⟨α⟩+C⟨α⟩, where A ∼= B ∼=
C ∼= E23 are three blocks fromH. Also, |A⟨α⟩| = |B⟨α⟩| = |C⟨α⟩| = 127.

Using the formula of inclusion and exclusion we get 127 = X1 −X2 +

X3−X4+· · · , whereXj =
∑

P∈([127]j )

|
⋂
s∈P

(A∗)α
s|, j ≥ 1, where

(
[127]

j

)
is a collection of j-element subsets of [127] = {1, 2, . . . , 127}. Thus, we
get 127 = 7 · 127−X2 +X3 −X4 + · · · .
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5

)
X2 = 7·127.
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Automorphism of order 7

Difficult case, since order of Singer automorphism of E8 is SEVEN
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Automorphism of order 7

Difficult case, since order of Singer automorphism of E8 is SEVEN

Also

|Hc| = 21 = 3 · 7.
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Automorphism of order 7

Difficult case, since order of Singer automorphism of E8 is SEVEN

Also

|Hc| = 21 = 3 · 7.

Lemma: Let ⟨α⟩ ↪→ H be of order 7, then |Fix(α)| ∈ {1, 15}. Furt-
hermore, |Fix(α,E23[E27])| ≡ 2(mod 7) and |Fix(α,H)| ≡ 3(mod 7).



8/12

◀◀
▶▶
◀
▶

Back

Close

Automorphism of order 7

Difficult case, since order of Singer automorphism of E8 is SEVEN

Also

|Hc| = 21 = 3 · 7.

Lemma: Let ⟨α⟩ ↪→ H be of order 7, then |Fix(α)| ∈ {1, 15}. Furt-
hermore, |Fix(α,E23[E27])| ≡ 2(mod 7) and |Fix(α,H)| ≡ 3(mod 7).

Lemma: Let ⟨α⟩ ↪→ H be of order 7 and let |Fix(α)| = 1, where

Fix(α) = {c}. Then, there are X̃i, Ỹi ∈ E2[E27/⟨c⟩] and α̃ ∈
Aut(E27/⟨c⟩), given by a rule (g⟨c⟩)α̃ = gα⟨c⟩, such that all X̃iỸi

∼= E22

are mutually disjoint. Furthermore, the following holds:
3∑

i=1

(X̃iỸi)
⟨α̃⟩ =

E27/⟨c⟩ + 20⟨c⟩ and |Fix(α̃)| = 0 and α̃ is of order 7.
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Automorphism of order 7

Difficult case, since order of Singer automorphism of E8 is SEVEN

Also

|Hc| = 21 = 3 · 7.

Lemma: Let ⟨α⟩ ↪→ H be of order 7, then |Fix(α)| ∈ {1, 15}. Furt-
hermore, |Fix(α,E23[E27])| ≡ 2(mod 7) and |Fix(α,H)| ≡ 3(mod 7).

Lemma: Let ⟨α⟩ ↪→ H be of order 7 and let |Fix(α)| = 1, where

Fix(α) = {c}. Then, there are X̃i, Ỹi ∈ E2[E27/⟨c⟩] and α̃ ∈
Aut(E27/⟨c⟩), given by a rule (g⟨c⟩)α̃ = gα⟨c⟩, such that all X̃iỸi

∼= E22

are mutually disjoint. Furthermore, the following holds:
3∑

i=1

(X̃iỸi)
⟨α̃⟩ =

E27/⟨c⟩ + 20⟨c⟩ and |Fix(α̃)| = 0 and α̃ is of order 7.

Lemma: Let ⟨α⟩ ↪→ H be of order 7. Then, |Fix(α)| = 1.
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.

Theorem: If α ∈ Aut(E27) is of order 7, then ⟨α⟩ ↪̸→ H.
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.

Theorem: If α ∈ Aut(E27) is of order 7, then ⟨α⟩ ↪̸→ H.

Automorphism of order 5
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.

Theorem: If α ∈ Aut(E27) is of order 7, then ⟨α⟩ ↪̸→ H.

Automorphism of order 5

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then |Fix(α)| = 7.
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.

Theorem: If α ∈ Aut(E27) is of order 7, then ⟨α⟩ ↪̸→ H.

Automorphism of order 5

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then |Fix(α)| = 7.

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then Fix(α,E23[E27]) =
Fix(α,H) and |Fix(α,H)| = 1.
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.

Theorem: If α ∈ Aut(E27) is of order 7, then ⟨α⟩ ↪̸→ H.

Automorphism of order 5

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then |Fix(α)| = 7.

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then Fix(α,E23[E27]) =
Fix(α,H) and |Fix(α,H)| = 1.

Lemma: If α ∈ Aut(E27) is of order 5, then ⟨α⟩ ↪̸→ H.
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.

Theorem: If α ∈ Aut(E27) is of order 7, then ⟨α⟩ ↪̸→ H.

Automorphism of order 5

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then |Fix(α)| = 7.

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then Fix(α,E23[E27]) =
Fix(α,H) and |Fix(α,H)| = 1.

Lemma: If α ∈ Aut(E27) is of order 5, then ⟨α⟩ ↪̸→ H.

Sketch:
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Theorem: Let α ∈ Aut(E26) be of order 7 and Fix(α) = ϕ. If
⟨g⟨α⟩⟩ < E26, then, ⟨g⟨α⟩⟩ ∼= E23. Furthermore, Fix(α,E23[E26]) =
{A,B} and E26 = A×B.

Theorem: If α ∈ Aut(E27) is of order 7, then ⟨α⟩ ↪̸→ H.

Automorphism of order 5

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then |Fix(α)| = 7.

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 5. Then Fix(α,E23[E27]) =
Fix(α,H) and |Fix(α,H)| = 1.

Lemma: If α ∈ Aut(E27) is of order 5, then ⟨α⟩ ↪̸→ H.

Sketch:

Let’s assume the opposite. Then, |Fix(α)| = 7, F ix(α,E23[E27]) =
Fix(α,H) = H0.
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Also, Fix(α) = H∗
0 . Let c ∈ H∗

0 . ForHc =
∑

c∈H∈H
H, the following

holds: Hα
c = Hcα = Hc.
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Also, Fix(α) = H∗
0 . Let c ∈ H∗

0 . ForHc =
∑

c∈H∈H
H, the following

holds: Hα
c = Hcα = Hc.

Then, there are orbit representativesHi ∈ Hc such thatHc =
4∑

i=1

H
⟨α⟩
i +

H0 = E27 + 20⟨c⟩.
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Also, Fix(α) = H∗
0 . Let c ∈ H∗

0 . ForHc =
∑

c∈H∈H
H, the following

holds: Hα
c = Hcα = Hc.

Then, there are orbit representativesHi ∈ Hc such thatHc =
4∑

i=1

H
⟨α⟩
i +

H0 = E27 + 20⟨c⟩.

We can expand the natural epimorphism E27 → E27/H0 to a group ring
by φ : Z[E27] → Z[E27/H0], where φ(Hαj

i ) = 2Hαj

i /H0, i ∈ [4], j ∈
[5].
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Also, Fix(α) = H∗
0 . Let c ∈ H∗

0 . ForHc =
∑

c∈H∈H
H, the following

holds: Hα
c = Hcα = Hc.

Then, there are orbit representativesHi ∈ Hc such thatHc =
4∑

i=1

H
⟨α⟩
i +

H0 = E27 + 20⟨c⟩.

We can expand the natural epimorphism E27 → E27/H0 to a group ring
by φ : Z[E27] → Z[E27/H0], where φ(Hαj

i ) = 2Hαj

i /H0, i ∈ [4], j ∈
[5].

Automorphism of order 3
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Also, Fix(α) = H∗
0 . Let c ∈ H∗

0 . ForHc =
∑

c∈H∈H
H, the following

holds: Hα
c = Hcα = Hc.

Then, there are orbit representativesHi ∈ Hc such thatHc =
4∑

i=1

H
⟨α⟩
i +

H0 = E27 + 20⟨c⟩.

We can expand the natural epimorphism E27 → E27/H0 to a group ring
by φ : Z[E27] → Z[E27/H0], where φ(Hαj

i ) = 2Hαj

i /H0, i ∈ [4], j ∈
[5].

Automorphism of order 3

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 3, then |Fix(α)| ∈
{1, 7, 31}.



10/12

◀◀
▶▶
◀
▶

Back

Close

Also, Fix(α) = H∗
0 . Let c ∈ H∗

0 . ForHc =
∑

c∈H∈H
H, the following

holds: Hα
c = Hcα = Hc.

Then, there are orbit representativesHi ∈ Hc such thatHc =
4∑

i=1

H
⟨α⟩
i +

H0 = E27 + 20⟨c⟩.

We can expand the natural epimorphism E27 → E27/H0 to a group ring
by φ : Z[E27] → Z[E27/H0], where φ(Hαj

i ) = 2Hαj

i /H0, i ∈ [4], j ∈
[5].

Automorphism of order 3

Lemma: Let ⟨α⟩ ↪→ H, where α is of order 3, then |Fix(α)| ∈
{1, 7, 31}.

Lemma: Let ⟨α⟩ ↪→ H be of order 3, where Fix(α) = {c}. Then
Fix(α,Hc) = {Hi}3m1 , m ≤ 7, and there are Ai, i ∈ [3m], Bj ∈
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E22[E26], j ∈ [7−m], β ∈ Aut(E26) of order 3, such that

3m∑
i=1

Ai +
7−m∑
j=1

B
⟨α⟩
j = E26 + 20

and Aβ
i = Ai, Bβ

j ̸= Bj
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E22[E26], j ∈ [7−m], β ∈ Aut(E26) of order 3, such that

3m∑
i=1

Ai +
7−m∑
j=1

B
⟨α⟩
j = E26 + 20

and Aβ
i = Ai, Bβ

j ̸= Bj

Lemma: Let ⟨α⟩ ↪→ H be of order 3 and |Fix(α)| = 7. Then
1 + Fix(α) ∈ H.
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E22[E26], j ∈ [7−m], β ∈ Aut(E26) of order 3, such that

3m∑
i=1

Ai +
7−m∑
j=1

B
⟨α⟩
j = E26 + 20

and Aβ
i = Ai, Bβ

j ̸= Bj

Lemma: Let ⟨α⟩ ↪→ H be of order 3 and |Fix(α)| = 7. Then
1 + Fix(α) ∈ H.

Theorem: If α ∈ Aut(E27) is of order 3 , then ⟨α⟩ ↪̸→ H.
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E22[E26], j ∈ [7−m], β ∈ Aut(E26) of order 3, such that

3m∑
i=1

Ai +
7−m∑
j=1

B
⟨α⟩
j = E26 + 20

and Aβ
i = Ai, Bβ

j ̸= Bj

Lemma: Let ⟨α⟩ ↪→ H be of order 3 and |Fix(α)| = 7. Then
1 + Fix(α) ∈ H.

Theorem: If α ∈ Aut(E27) is of order 3 , then ⟨α⟩ ↪̸→ H.

Automorphism of order 4
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E22[E26], j ∈ [7−m], β ∈ Aut(E26) of order 3, such that

3m∑
i=1

Ai +
7−m∑
j=1

B
⟨α⟩
j = E26 + 20

and Aβ
i = Ai, Bβ

j ̸= Bj

Lemma: Let ⟨α⟩ ↪→ H be of order 3 and |Fix(α)| = 7. Then
1 + Fix(α) ∈ H.

Theorem: If α ∈ Aut(E27) is of order 3 , then ⟨α⟩ ↪̸→ H.

Automorphism of order 4

Lemma: Let β ∈ Aut(E2n) be of order 2. Let F = 1+Fix(β). Then
|F | ≥ 2n/2.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.

Lemma: An automorphism of order 2 with 31 fixed point can’t act on
H.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.

Lemma: An automorphism of order 2 with 31 fixed point can’t act on
H.

Lemma: An automorphism of order 2 with 63 fixed point can’t act on
H.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.

Lemma: An automorphism of order 2 with 31 fixed point can’t act on
H.

Lemma: An automorphism of order 2 with 63 fixed point can’t act on
H.

Lemma: If α ∈ Aut(H) is of order 2, then |Fix(α)| = 15.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.

Lemma: An automorphism of order 2 with 31 fixed point can’t act on
H.

Lemma: An automorphism of order 2 with 63 fixed point can’t act on
H.

Lemma: If α ∈ Aut(H) is of order 2, then |Fix(α)| = 15.

Lemma: Let α ∈ Aut(H) is of order 4. Then there are 28 α-orbits

on E27 of a size 4. Furthermore, Fix(α2) = Fix(α) +
a2∑
i=1

x
⟨α⟩
i , where

a2 is the number of α-orbits on E27 of a size 2.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.

Lemma: An automorphism of order 2 with 31 fixed point can’t act on
H.

Lemma: An automorphism of order 2 with 63 fixed point can’t act on
H.

Lemma: If α ∈ Aut(H) is of order 2, then |Fix(α)| = 15.

Lemma: Let α ∈ Aut(H) is of order 4. Then there are 28 α-orbits

on E27 of a size 4. Furthermore, Fix(α2) = Fix(α) +
a2∑
i=1

x
⟨α⟩
i , where

a2 is the number of α-orbits on E27 of a size 2.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1+Fix(α)| ≤ 23 i.e.
k = 4 is not possible.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.

Lemma: An automorphism of order 2 with 31 fixed point can’t act on
H.

Lemma: An automorphism of order 2 with 63 fixed point can’t act on
H.

Lemma: If α ∈ Aut(H) is of order 2, then |Fix(α)| = 15.

Lemma: Let α ∈ Aut(H) is of order 4. Then there are 28 α-orbits

on E27 of a size 4. Furthermore, Fix(α2) = Fix(α) +
a2∑
i=1

x
⟨α⟩
i , where

a2 is the number of α-orbits on E27 of a size 2.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1+Fix(α)| ≤ 23 i.e.
k = 4 is not possible.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≥ 22,
i.e. k = 1 is not possible.
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where Aβ
i = Ai, Bj ∩Bβ

j = 1, and Ai
∼= Bj

∼= E22.

Lemma: An automorphism of order 2 with 31 fixed point can’t act on
H.

Lemma: An automorphism of order 2 with 63 fixed point can’t act on
H.

Lemma: If α ∈ Aut(H) is of order 2, then |Fix(α)| = 15.

Lemma: Let α ∈ Aut(H) is of order 4. Then there are 28 α-orbits

on E27 of a size 4. Furthermore, Fix(α2) = Fix(α) +
a2∑
i=1

x
⟨α⟩
i , where

a2 is the number of α-orbits on E27 of a size 2.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1+Fix(α)| ≤ 23 i.e.
k = 4 is not possible.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≥ 22,
i.e. k = 1 is not possible.
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Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 22,
i.e. k = 2 is not possible.
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Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 22,
i.e. k = 2 is not possible.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 23,
i.e. k = 3 is not possible.



12/12

◀◀
▶▶
◀
▶

Back

Close

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 22,
i.e. k = 2 is not possible.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 23,
i.e. k = 3 is not possible.

Theorem: If α ∈ Aut(E27) and o(α) = 4, then ⟨α⟩ ↪̸→ H.
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Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 22,
i.e. k = 2 is not possible.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 23,
i.e. k = 3 is not possible.

Theorem: If α ∈ Aut(E27) and o(α) = 4, then ⟨α⟩ ↪̸→ H.

So, finally, we have proved the following:
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Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 22,
i.e. k = 2 is not possible.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 23,
i.e. k = 3 is not possible.

Theorem: If α ∈ Aut(E27) and o(α) = 4, then ⟨α⟩ ↪̸→ H.

So, finally, we have proved the following:

Theorem: If H is a binary Fano plane, then |Aut(H)| ≤ 2.
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Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 22,
i.e. k = 2 is not possible.

Lemma: If ⟨α⟩ ↪→ H and α is of order 4, then |1 + Fix(α)| ≠ 23,
i.e. k = 3 is not possible.

Theorem: If α ∈ Aut(E27) and o(α) = 4, then ⟨α⟩ ↪̸→ H.

So, finally, we have proved the following:

Theorem: If H is a binary Fano plane, then |Aut(H)| ≤ 2.

Thank You!


