On automorphisms of a Fano plane 2-analog design

Kristijan Tabak
Rochester Institute of Technology, Zagreb Campus
Croatia
e-mail: kxtcad@rit.edu
4th Croatian Combinatorial Days, Zagreb, September 22-23, 2022

This work has been fully supported by Croatian Science Foundation under the project 6732 and 97522

Basic definitions

Basic definitions

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

Basic definitions

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.

Basic definitions

A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space $\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.

A classical example of a (v, k, λ)-design is a Fano plane, a design with parameters $(7,3,1)$.

Basic definitions
A (v, k, λ)-design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization. A collection
of k-dimensional vector subspaces (blocks) of a v-dimensional space
$\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if any 2-dimensional
A q-analog of a (v, k, λ) design is a natural generalization. A collection
of k-dimensional vector subspaces (blocks) of a v-dimensional space
$\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if any 2-dimensional
A q-analog of a (v, k, λ) design is a natural generalization. A collection
of k-dimensional vector subspaces (blocks) of a v-dimensional space
$\mathbb{F}_{q^{v}}$ will be called a q-analog of a (v, k, λ)-design if any 2-dimensional subspace of $\mathbb{F}_{q^{v}}$ is contained in λ blocks.

A classical example of a (v, k, λ)-design is a Fano plane, a design with parameters $(7,3,1)$.

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from $\mathbb{F}_{2^{7}}$ such that any 2-dimensional subspace of $\mathbb{F}_{2^{7}}$ is contained in one block from a collection of blocks

It is still unknown if a 2-analog of a Fano plane exists. The question of it's existence was posted in 1974 by Berge and Ray-Chaudhuri

It is still unknown if a 2-analog of a Fano plane exists. The question of it's existence was posted in 1974 by Berge and Ray-Chaudhuri

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It is still unknown if a 2-analog of a Fano plane exists. The question of it's existence was posted in 1974 by Berge and Ray-Chaudhuri

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

It is still unknown if a 2-analog of a Fano plane exists. The question of it's existence was posted in 1974 by Berge and Ray-Chaudhuri

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.
The main ambient space in which we shall investigate binary Fano plane is elementary abelian group $E_{2^{7}}$.

It is still unknown if a 2-analog of a Fano plane exists. The question of it's existence was posted in 1974 by Berge and Ray-Chaudhuri

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.
The main ambient space in which we shall investigate binary Fano plane is elementary abelian group $E_{2^{7}}$.

$$
E_{2^{k}}\left[E_{2^{7}}\right]=\left\{T \mid T \leq E_{2}^{7}, T \cong E_{2^{k}}\right\} .
$$

It is still unknown if a 2-analog of a Fano plane exists. The question of it's existence was posted in 1974 by Berge and Ray-Chaudhuri

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.
The main ambient space in which we shall investigate binary Fano plane is elementary abelian group $E_{2^{7}}$.

$$
\begin{aligned}
& E_{2^{k}}\left[E_{2^{7}}\right]=\left\{T \mid T \leq E_{2}^{7}, T \cong E_{2^{k}}\right\} . \\
& E_{2^{k}}[T]^{-1}=\left\{M \mid T \leq M \in E_{2^{k}}\left[E_{2^{7}}\right]\right\} .
\end{aligned}
$$

It is still unknown if a 2-analog of a Fano plane exists. The question of it's existence was posted in 1974 by Berge and Ray-Chaudhuri

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.
The main ambient space in which we shall investigate binary Fano plane is elementary abelian group $E_{2^{7}}$.
$E_{2^{k}}\left[E_{2^{7}}\right]=\left\{T \mid T \leq E_{2}^{7}, T \cong E_{2^{k}}\right\}$.
$E_{2^{k}}[T]^{-1}=\left\{M \mid T \leq M \in E_{2^{k}}\left[E_{2^{7}}\right]\right\}$.
in general $\left|E_{2^{k}}\left[E_{2^{n}}\right]\right|=\left[\begin{array}{l}n \\ k\end{array}\right]_{2}$, where $\left[\begin{array}{l}n \\ k\end{array}\right]_{2}$ is a gaussian 2-coefficient.

$$
\begin{aligned}
& \text { if } T \in E_{2^{2}}\left[E_{2^{7}}\right] \text {, then }\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|= \\
& {\left[\begin{array}{c}
7-t \\
k-t
\end{array}\right]_{2} \text {. }}
\end{aligned}
$$

if $T \in E_{2^{t}}\left[E_{\left.2^{7}\right]}\right.$, then $\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|=$ $\left[\begin{array}{l}7-t \\ k-t\end{array}\right]_{2}$.
$\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.
if $T \in E_{2^{t}}\left[E_{\left.2^{7}\right]}\right.$, then $\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|=$ $\left[\begin{array}{l}7-t \\ k-t\end{array}\right]_{2}$.
$\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.
$E\left[E_{2^{7}}\right]=\left\{V \mid V \leq E_{2^{7}}\right\}$ is a collection of all subgroups.
if $T \in E_{2^{t}}\left[E_{\left.2^{7}\right]}\right.$, then $\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|=$ $\left[\begin{array}{l}7-t \\ k-t\end{array}\right]_{2}$.
$\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.
$E\left[E_{2^{7}}\right]=\left\{V \mid V \leq E_{2^{7}}\right\}$ is a collection of all subgroups.
we can define $\operatorname{Aut}(\mathcal{H})=\left\{\alpha \in S_{\text {in }}\left(E\left[E_{\left.2^{7}\right]}\right]\right) \mid \mathcal{H}^{\alpha}=\mathcal{H}\right\}$, where \mathcal{H} is a binary Fano plane.
if $T \in E_{2^{2}}\left[E_{\left.2^{7}\right]}\right]$, then $\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|=$ $\left[\begin{array}{l}7-t \\ k-t\end{array}\right]_{2}$.
$\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.
$E\left[E_{2^{7}}\right]=\left\{V \mid V \leq E_{2^{7}}\right\}$ is a collection of all subgroups.
we can define $\operatorname{Aut}(\mathcal{H})=\left\{\alpha \in S_{\text {in }}\left(E\left[E_{2^{7}}\right]\right) \mid \mathcal{H}^{\alpha}=\mathcal{H}\right\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^{k}}\left[E_{2^{7}}\right]$ and $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order m, we use a group ring $\mathbb{Z}\left[E_{2^{k}}\left[E_{2^{7}}\right]\right]$ to express α-orbit of A.
if $T \in E_{2^{2}}\left[E_{\left.2^{7}\right]}\right]$, then $\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|=$ $\left[\begin{array}{l}7-t \\ k-t\end{array}\right]_{2}$.
$\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.
$E\left[E_{2^{7}}\right]=\left\{V \mid V \leq E_{2^{7}}\right\}$ is a collection of all subgroups.
we can define $\operatorname{Aut}(\mathcal{H})=\left\{\alpha \in S_{\text {in }}\left(E\left[E_{2^{7}}\right]\right) \mid \mathcal{H}^{\alpha}=\mathcal{H}\right\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^{k}}\left[E_{2^{7}}\right]$ and $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order m, we use a group ring $\mathbb{Z}\left[E_{2^{k}}\left[E_{2^{7}}\right]\right]$ to express α-orbit of A.
$A^{\langle\alpha\rangle}=A+A^{\alpha}+A^{\alpha^{2}}+\cdots+A^{\alpha^{m-1}}$.
if $T \in E_{2^{t}}\left[E_{\left.2^{2}\right]}\right]$, then $\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|=$ $\left[\begin{array}{ll}7-t \\ k-t\end{array}\right]_{2}$.
$\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.
$E\left[E_{2^{7}}\right]=\left\{V \mid V \leq E_{2^{7}}\right\}$ is a collection of all subgroups.
we can define $\operatorname{Aut}(\mathcal{H})=\left\{\alpha \in S_{\text {in }}\left(E\left[E_{2^{7}}\right]\right) \mid \mathcal{H}^{\alpha}=\mathcal{H}\right\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^{k}}\left[E_{2^{7}}\right]$ and $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order m, we use a group ring $\mathbb{Z}\left[E_{2^{k}}\left[E_{2^{7}}\right]\right]$ to express α-orbit of A.
$A^{\langle\alpha\rangle}=A+A^{\alpha}+A^{\alpha^{2}}+\cdots+A^{\alpha^{m-1}}$.
If $\alpha \in \operatorname{Aut}(\mathcal{H})$, we will denote an action of α on \mathcal{H} by $\langle\alpha\rangle \hookrightarrow \mathcal{H}$. In a case when α can't act on \mathcal{H}, we will write $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
if $T \in E_{2^{t}}\left[E_{\left.2^{2}\right]}\right]$, then $\left|E_{2^{k}}[T]^{-1}\right|=\left|E_{2^{k-t}}\left[E_{2^{7}} / T\right]\right|=\left|E_{2^{k-t}}\left[E_{2^{7-t}}\right]\right|=$ $\left[\begin{array}{ll}7-t \\ k-t\end{array}\right]_{2}$.
$\mathcal{H} \subseteq E_{2^{3}}\left[E_{2^{7}}\right]$ is a binary Fano plane, if every $T \in E_{2^{2}}\left[E_{2^{7}}\right]$ is contained in exactly one $H \in \mathcal{H}$.
$E\left[E_{2^{7}}\right]=\left\{V \mid V \leq E_{2^{7}}\right\}$ is a collection of all subgroups.
we can define $\operatorname{Aut}(\mathcal{H})=\left\{\alpha \in S_{\text {in }}\left(E\left[E_{2^{7}}\right]\right) \mid \mathcal{H}^{\alpha}=\mathcal{H}\right\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^{k}}\left[E_{2^{7}}\right]$ and $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order m, we use a group ring $\mathbb{Z}\left[E_{2^{k}}\left[E_{2^{7}}\right]\right]$ to express α-orbit of A.
$A^{\langle\alpha\rangle}=A+A^{\alpha}+A^{\alpha^{2}}+\cdots+A^{\alpha^{m-1}}$.
If $\alpha \in \operatorname{Aut}(\mathcal{H})$, we will denote an action of α on \mathcal{H} by $\langle\alpha\rangle \hookrightarrow \mathcal{H}$. In a case when α can't act on \mathcal{H}, we will write $\langle\alpha\rangle \nrightarrow \mathcal{H}$.

The method of Kramer and Mesner

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V
$M_{t, k}^{G}$ Kramer Mesner matrix

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V
$M_{t, k}^{G}$ Kramer Mesner matrix
rows indexed by G-orbits on $\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V
$M_{t, k}^{G}$ Kramer Mesner matrix
rows indexed by G-orbits on $\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$
columns indexed by G-orbits on $\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V
$M_{t, k}^{G}$ Kramer Mesner matrix
rows indexed by G-orbits on $\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$
columns indexed by G-orbits on $\left[\begin{array}{c}V \\ k\end{array}\right]_{q}$
the entry of $M_{t, k}^{G}$ at row T^{G} and column K^{G} is

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V
$M_{t, k}^{G}$ Kramer Mesner matrix
rows indexed by G-orbits on $\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$
columns indexed by G-orbits on $\left[\begin{array}{c}V \\ k\end{array}\right]_{q}$
the entry of $M_{t, k}^{G}$ at row T^{G} and column K^{G} is
$\left|\left\{K^{\prime} \in K^{G} \mid T \leq K^{\prime}\right\}\right|$

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V
$M_{t, k}^{G}$ Kramer Mesner matrix
rows indexed by G-orbits on $\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$
columns indexed by G-orbits on $\left[\begin{array}{c}V \\ k\end{array}\right]_{q}$
the entry of $M_{t, k}^{G}$ at row T^{G} and column K^{G} is
$\left|\left\{K^{\prime} \in K^{G} \mid T \leq K^{\prime}\right\}\right|$
the main result of this method is

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V
$M_{t, k}^{G}$ Kramer Mesner matrix
rows indexed by G-orbits on $\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$
columns indexed by G-orbits on $\left[\begin{array}{c}V \\ k\end{array}\right]_{q}$
the entry of $M_{t, k}^{G}$ at row T^{G} and column K^{G} is
$\left|\left\{K^{\prime} \in K^{G} \mid T \leq K^{\prime}\right\}\right|$
the main result of this method is
$\exists t-(n, k, \lambda)_{q}$ design with $G \leq A u t \Leftrightarrow \exists\{0,1\}$ solution of $M_{t, k}^{G} \mathbf{x}=\lambda \mathbf{1}$

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V

$M_{t, k}^{G}$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$
columns indexed by G-orbits on $\left[\begin{array}{c}V \\ k\end{array}\right]_{q}$
the entry of $M_{t, k}^{G}$ at row T^{G} and column K^{G} is
$\left|\left\{K^{\prime} \in K^{G} \mid T \leq K^{\prime}\right\}\right|$
the main result of this method is
$\exists t-(n, k, \lambda)_{q}$ design with $G \leq A u t \Leftrightarrow \exists\{0,1\}$ solution of $M_{t, k}^{G} \mathbf{x}=\lambda \mathbf{1}$
The estimated run time for one 3-group is 75616 CPU-years

The method of Kramer and Mesner

V vector space over finite field \mathbb{F}_{q}, G group act on $V,\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ collection of t-dimensional subspaces of V

$M_{t, k}^{G}$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$
columns indexed by G-orbits on $\left[\begin{array}{c}V \\ k\end{array}\right]_{q}$
the entry of $M_{t, k}^{G}$ at row T^{G} and column K^{G} is
$\left|\left\{K^{\prime} \in K^{G} \mid T \leq K^{\prime}\right\}\right|$
the main result of this method is
$\exists t-(n, k, \lambda)_{q}$ design with $G \leq A u t \Leftrightarrow \exists\{0,1\}$ solution of $M_{t, k}^{G} \mathbf{x}=\lambda \mathbf{1}$
The estimated run time for one 3-group is 75616 CPU-years
The estimated time for involution is $8 \times 10^{12} \mathrm{CPU}$-years
$\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$. It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5$. $7^{2} \cdot 31 \cdot 127$.
$\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$. It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5$. $7^{2} \cdot 31 \cdot 127$.
the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α.
$\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$. It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5$. $7^{2} \cdot 31 \cdot 127$.
the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α.

Automorphism of order 127
$\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$. It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5$. $7^{2} \cdot 31 \cdot 127$.
the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α.

Automorphism of order 127
Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 127, then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
$\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$. It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5$. $7^{2} \cdot 31 \cdot 127$.
the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α.

Automorphism of order 127
Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 127, then $\langle\alpha\rangle \nrightarrow \mathcal{H}$. Sketch:
$\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$. It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5$. $7^{2} \cdot 31 \cdot 127$.
the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α.

Automorphism of order 127
Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 127, then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Sketch:
we can have a decomposition $\mathcal{H}=A^{\langle\alpha\rangle}+B^{\langle\alpha\rangle}+C^{\langle\alpha\rangle}$, where $A \cong B \cong$ $C \cong E_{2^{3}}$ are three blocks from \mathcal{H}. Also, $\left|A^{\langle\alpha\rangle}\right|=\left|B^{\langle\alpha\rangle}\right|=\left|C^{\langle\alpha\rangle}\right|=127$.
$\operatorname{Aut}(\mathcal{H}) \leq \operatorname{Aut}\left(E_{2^{7}}\right)$. It is also known that $\left|\operatorname{Aut}\left(E_{2^{7}}\right)\right|=2^{21} \cdot 3^{41} \cdot 5$. $7^{2} \cdot 31 \cdot 127$.
the existence of $\alpha \in \operatorname{Aut}(\mathcal{H})$ such that $o(\alpha) \in\{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α.

Automorphism of order 127
Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 127 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Sketch:
we can have a decomposition $\mathcal{H}=A^{\langle\alpha\rangle}+B^{\langle\alpha\rangle}+C^{\langle\alpha\rangle}$, where $A \cong B \cong$ $C \cong E_{2^{3}}$ are three blocks from \mathcal{H}. Also, $\left|A^{\langle\alpha\rangle}\right|=\left|B^{\langle\alpha\rangle}\right|=\left|C^{\langle\alpha\rangle}\right|=127$. Using the formula of inclusion and exclusion we get $127=X_{1}-X_{2}+$ $X_{3}-X_{4}+\cdots$, where $X_{j}=\sum_{P \in\binom{[127]}{j}}\left|\bigcap_{s \in P}\left(A^{*}\right)^{\alpha^{s}}\right|, j \geq 1$, where $\binom{[127]}{j}$ is a collection of j-element subsets of $[127]=\{1,2, \ldots, 127\}$. Thus, we get $127=7 \cdot 127-X_{2}+X_{3}-X_{4}+\cdots$.

We get

$$
127=7 \cdot 127-X_{2}+\binom{5}{1} X_{2}-\binom{5}{2} X_{2}+\binom{5}{3} X_{2}-\binom{5}{4} X_{2}+\binom{5}{5} X_{2}=7 \cdot 127
$$

We get

$$
127=7 \cdot 127-X_{2}+\binom{5}{1} X_{2}-\binom{5}{2} X_{2}+\binom{5}{3} X_{2}-\binom{5}{4} X_{2}+\binom{5}{5} X_{2}=7 \cdot 127
$$

Automorphism of order 31

We get

$$
127=7 \cdot 127-X_{2}+\binom{5}{1} X_{2}-\binom{5}{2} X_{2}+\binom{5}{3} X_{2}-\binom{5}{4} X_{2}+\binom{5}{5} X_{2}=7 \cdot 127
$$

Automorphism of order 31
Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 31, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.

We get

$$
127=7 \cdot 127-X_{2}+\binom{5}{1} X_{2}-\binom{5}{2} X_{2}+\binom{5}{3} X_{2}-\binom{5}{4} X_{2}+\binom{5}{5} X_{2}=7 \cdot 127
$$

Automorphism of order 31
Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 31, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$. Sketch:

We get

$$
127=7 \cdot 127-X_{2}+\binom{5}{1} X_{2}-\binom{5}{2} X_{2}+\binom{5}{3} X_{2}-\binom{5}{4} X_{2}+\binom{5}{5} X_{2}=7 \cdot 127
$$

Automorphism of order 31

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 31, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_{g}=\{H \in \mathcal{H} \mid g \in H\}$. One can see that $\left|\mathcal{H}_{g}\right|=21$. Also, from $\left|\left\{\mathcal{H}_{g}\right\}_{g \neq 1}\right|=127$, we get $\left|\operatorname{Fix}\left(\alpha,\left\{\mathcal{H}_{g}\right\}_{g \neq 1}\right)\right| \equiv 3(\bmod 31)$.

We get

$$
127=7 \cdot 127-X_{2}+\binom{5}{1} X_{2}-\binom{5}{2} X_{2}+\binom{5}{3} X_{2}-\binom{5}{4} X_{2}+\binom{5}{5} X_{2}=7 \cdot 127
$$

Automorphism of order 31

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 31, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_{g}=\{H \in \mathcal{H} \mid g \in H\}$. One can see that $\left|\mathcal{H}_{g}\right|=21$. Also, from $\left|\left\{\mathcal{H}_{g}\right\}_{g \neq 1}\right|=127$, we get $\left|\operatorname{Fix}\left(\alpha,\left\{\mathcal{H}_{g}\right\}_{g \neq 1}\right)\right| \equiv 3(\bmod 31)$.
...., we get $\alpha=i d$. A contradiction

We get

$$
127=7 \cdot 127-X_{2}+\binom{5}{1} X_{2}-\binom{5}{2} X_{2}+\binom{5}{3} X_{2}-\binom{5}{4} X_{2}+\binom{5}{5} X_{2}=7 \cdot 127
$$

Automorphism of order 31

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 31, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_{g}=\{H \in \mathcal{H} \mid g \in H\}$. One can see that $\left|\mathcal{H}_{g}\right|=21$. Also, from $\left|\left\{\mathcal{H}_{g}\right\}_{g \neq 1}\right|=127$, we get $\left|\operatorname{Fix}\left(\alpha,\left\{\mathcal{H}_{g}\right\}_{g \neq 1}\right)\right| \equiv 3(\bmod 31)$.
...., we get $\alpha=i d$. A contradiction

Automorphism of order 7

Automorphism of order 7

Difficult case, since order of Singer automorphism of E_{8} is SEVEN

Automorphism of order 7

Difficult case, since order of Singer automorphism of E_{8} is SEVEN Also

Automorphism of order 7

Difficult case, since order of Singer automorphism of E_{8} is SEVEN Also

$$
\left|\mathcal{H}_{c}\right|=21=3 \cdot 7 .
$$

Automorphism of order 7

Difficult case, since order of Singer automorphism of E_{8} is SEVEN
Also
$\left|\mathcal{H}_{c}\right|=21=3 \cdot 7$.
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 7, then \mid Fix $(\alpha) \mid \in\{1,15\}$. Furthermore, $\left|\operatorname{Fix}\left(\alpha, E_{2^{3}}\left[E_{2^{7}}\right]\right)\right| \equiv 2(\bmod 7)$ and $|F i x(\alpha, \mathcal{H})| \equiv 3(\bmod 7)$.

Automorphism of order 7

Difficult case, since order of Singer automorphism of E_{8} is SEVEN
Also
$\left|\mathcal{H}_{c}\right|=21=3 \cdot 7$.
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 7, then \mid Fix $(\alpha) \mid \in\{1,15\}$. Furthermore, $\left|F i x\left(\alpha, E_{2^{3}}\left[E_{2^{7}}\right]\right)\right| \equiv 2(\bmod 7)$ and $|F i x(\alpha, \mathcal{H})| \equiv 3(\bmod 7)$.

Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 7 and let $|F i x(\alpha)|=1$, where $\operatorname{Fix}(\alpha)=\{c\}$. Then, there are $\widetilde{X}_{i}, \quad \widetilde{Y}_{i} \in E_{2}\left[E_{2^{7}} /\langle c\rangle\right]$ and $\widetilde{\alpha} \in$ $\operatorname{Aut}\left(E_{2^{7}} /\langle c\rangle\right)$, given by a rule $(g\langle c\rangle)^{\tilde{\alpha}}=g^{\alpha}\langle c\rangle$, such that all $\widetilde{X}_{i} \widetilde{Y}_{i} \cong E_{2^{2}}$ are mutually disjoint. Furthermore, the following holds: $\sum_{i=1}^{3}\left(\widetilde{X}_{i} \widetilde{Y}_{i}\right)^{\langle\widetilde{\alpha}\rangle}=$ $E_{2^{7}} /\langle c\rangle+20\langle c\rangle$ and \mid Fix $(\widetilde{\alpha}) \mid=0$ and $\widetilde{\alpha}$ is of order 7 .

Automorphism of order 7

Difficult case, since order of Singer automorphism of E_{8} is SEVEN
Also
$\left|\mathcal{H}_{c}\right|=21=3 \cdot 7$.
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 7, then \mid Fix $(\alpha) \mid \in\{1,15\}$. Furthermore, $\left|F i x\left(\alpha, E_{2^{3}}\left[E_{2^{7}}\right]\right)\right| \equiv 2(\bmod 7)$ and $|F i x(\alpha, \mathcal{H})| \equiv 3(\bmod 7)$.

Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 7 and let $|F i x(\alpha)|=1$, where $\operatorname{Fix}(\alpha)=\{c\}$. Then, there are $\widetilde{X}_{i}, \widetilde{Y}_{i} \in E_{2}\left[E_{2^{7}} /\langle c\rangle\right]$ and $\widetilde{\alpha} \in$ $\operatorname{Aut}\left(E_{2^{7}} /\langle c\rangle\right)$, given by a rule $(g\langle c\rangle)^{\tilde{\alpha}}=g^{\alpha}\langle c\rangle$, such that all $\widetilde{X}_{i} \widetilde{Y}_{i} \cong E_{2^{2}}$ are mutually disjoint. Furthermore, the following holds: $\sum_{i=1}^{3}\left(\widetilde{X}_{i} \widetilde{Y}_{i}\right)^{\langle\widetilde{\alpha}\rangle}=$ $E_{2^{7}} /\langle c\rangle+20\langle c\rangle$ and \mid Fix $(\widetilde{\alpha}) \mid=0$ and $\widetilde{\alpha}$ is of order 7 .

Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 7. Then, $|F i x(\alpha)|=1$.

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 7 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 7 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Automorphism of order 5

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 7 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Automorphism of order 5
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then \mid Fix $(\alpha) \mid=7$.

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 7 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Automorphism of order 5
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $|\operatorname{Fix}(\alpha)|=7$.
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $\operatorname{Fix}\left(\alpha, E_{2^{3}}\left[E_{2^{7}}\right]\right)=$ Fix (α, \mathcal{H}) and $|\operatorname{Fix}(\alpha, \mathcal{H})|=1$.

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 7 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Automorphism of order 5
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $|\operatorname{Fix}(\alpha)|=7$.
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $\operatorname{Fix}\left(\alpha, E_{2^{3}}\left[E_{2^{7}}\right]\right)=$ $\operatorname{Fix}(\alpha, \mathcal{H})$ and $|\operatorname{Fix}(\alpha, \mathcal{H})|=1$.

Lemma: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 5 , then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 7 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Automorphism of order 5
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $|\operatorname{Fix}(\alpha)|=7$.
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $\operatorname{Fix}\left(\alpha, E_{2^{3}}\left[E_{2^{7}}\right]\right)=$ Fix (α, \mathcal{H}) and $|\operatorname{Fix}(\alpha, \mathcal{H})|=1$.

Lemma: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 5 , then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
Sketch:

Theorem: Let $\alpha \in \operatorname{Aut}\left(E_{2^{6}}\right)$ be of order 7 and $\operatorname{Fix}(\alpha)=\phi$. If $\left\langle g^{\langle\alpha\rangle}\right\rangle<E_{2^{6}}$, then, $\left\langle g^{\langle\alpha\rangle}\right\rangle \cong E_{2^{3}}$. Furthermore, Fix $\left(\alpha, E_{2^{3}}\left[E_{2^{6}}\right]\right)=$ $\{A, B\}$ and $E_{2^{6}}=A \times B$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 7 , then $\langle\alpha\rangle \nrightarrow \mathcal{H}$.
Automorphism of order 5
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $|\operatorname{Fix}(\alpha)|=7$.
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 5 . Then $\operatorname{Fix}\left(\alpha, E_{2^{3}}\left[E_{2^{7}}\right]\right)=$ Fix (α, \mathcal{H}) and $|\operatorname{Fix}(\alpha, \mathcal{H})|=1$.

Lemma: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 5 , then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
Sketch:
Let's assume the opposite. Then, $|\operatorname{Fix}(\alpha)|=7, \operatorname{Fix}\left(\alpha, E_{2^{3}}\left[E_{\left.2^{7}\right]}\right]\right)=$ $\operatorname{Fix}(\alpha, \mathcal{H})=H_{0}$.

Also, $\operatorname{Fix}(\alpha)=H_{0}^{*}$. Let $c \in H_{0}^{*}$. For $\mathcal{H}_{c}=\sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_{c}^{\alpha}=\mathcal{H}_{c^{\alpha}}=\mathcal{H}_{c}$.

Also, Fix $(\alpha)=H_{0}^{*}$. Let $c \in H_{0}^{*}$. For $\mathcal{H}_{c}=\sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_{c}^{\alpha}=\mathcal{H}_{c^{\alpha}}=\mathcal{H}_{c}$.

Then, there are orbit representatives $H_{i} \in \mathcal{H}_{c}$ such that $\mathcal{H}_{c}=\sum_{i=1}^{4} H_{i}^{\langle\alpha\rangle}+$ $H_{0}=E_{2^{7}}+20\langle c\rangle$.

Also, $\operatorname{Fix}(\alpha)=H_{0}^{*}$. Let $c \in H_{0}^{*}$. For $\mathcal{H}_{c}=\sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_{c}^{\alpha}=\mathcal{H}_{c^{\alpha}}=\mathcal{H}_{c}$.

Then, there are orbit representatives $H_{i} \in \mathcal{H}_{c}$ such that $\mathcal{H}_{c}=\sum_{i=1}^{4} H_{i}^{\langle\alpha\rangle}+$ $H_{0}=E_{2^{7}}+20\langle c\rangle$.

We can expand the natural epimorphism $E_{2^{7}} \rightarrow E_{2^{7}} / H_{0}$ to a group ring by $\varphi: \mathbb{Z}\left[E_{2^{7}}\right] \rightarrow \mathbb{Z}\left[E_{2^{7}} / H_{0}\right]$, where $\varphi\left(H_{i}^{\alpha^{j}}\right)=2 H_{i}^{\alpha^{j}} / H_{0}, i \in[4], j \in$ [5].

Also, $\operatorname{Fix}(\alpha)=H_{0}^{*}$. Let $c \in H_{0}^{*}$. For $\mathcal{H}_{c}=\sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_{c}^{\alpha}=\mathcal{H}_{c^{\alpha}}=\mathcal{H}_{c}$.

Then, there are orbit representatives $H_{i} \in \mathcal{H}_{c}$ such that $\mathcal{H}_{c}=\sum_{i=1}^{4} H_{i}^{\langle\alpha\rangle}+$ $H_{0}=E_{2^{7}}+20\langle c\rangle$.

We can expand the natural epimorphism $E_{2^{7}} \rightarrow E_{2^{7}} / H_{0}$ to a group ring by $\varphi: \mathbb{Z}\left[E_{2^{7}}\right] \rightarrow \mathbb{Z}\left[E_{2^{7}} / H_{0}\right]$, where $\varphi\left(H_{i}^{\alpha^{j}}\right)=2 H_{i}^{\alpha^{j}} / H_{0}, i \in[4], j \in$ [5].

Automorphism of order 3

Also, Fix $(\alpha)=H_{0}^{*}$. Let $c \in H_{0}^{*}$. For $\mathcal{H}_{c}=\sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_{c}^{\alpha}=\mathcal{H}_{c^{\alpha}}=\mathcal{H}_{c}$.

Then, there are orbit representatives $H_{i} \in \mathcal{H}_{c}$ such that $\mathcal{H}_{c}=\sum_{i=1}^{4} H_{i}^{\langle\alpha\rangle}+$ $H_{0}=E_{2^{7}}+20\langle c\rangle$.

We can expand the natural epimorphism $E_{2^{7}} \rightarrow E_{2^{7}} / H_{0}$ to a group ring by $\varphi: \mathbb{Z}\left[E_{2^{7}}\right] \rightarrow \mathbb{Z}\left[E_{2^{7}} / H_{0}\right]$, where $\varphi\left(H_{i}^{\alpha^{j}}\right)=2 H_{i}^{\alpha^{j}} / H_{0}, i \in[4], j \in$ [5].

Automorphism of order 3

Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 3, then $|\operatorname{Fix}(\alpha)| \in$ $\{1,7,31\}$.

Also, Fix $(\alpha)=H_{0}^{*}$. Let $c \in H_{0}^{*}$. For $\mathcal{H}_{c}=\sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_{c}^{\alpha}=\mathcal{H}_{c^{\alpha}}=\mathcal{H}_{c}$.

Then, there are orbit representatives $H_{i} \in \mathcal{H}_{c}$ such that $\mathcal{H}_{c}=\sum_{i=1}^{4} H_{i}^{\langle\alpha\rangle}+$ $H_{0}=E_{2^{7}}+20\langle c\rangle$.

We can expand the natural epimorphism $E_{2^{7}} \rightarrow E_{2^{7}} / H_{0}$ to a group ring by $\varphi: \mathbb{Z}\left[E_{2^{7}}\right] \rightarrow \mathbb{Z}\left[E_{2^{7}} / H_{0}\right]$, where $\varphi\left(H_{i}^{\alpha^{j}}\right)=2 H_{i}^{\alpha^{j}} / H_{0}, i \in[4], j \in$ [5].

Automorphism of order 3

Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$, where α is of order 3, then \mid Fix $(\alpha) \mid \in$ $\{1,7,31\}$.

Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 3, where $\operatorname{Fix}(\alpha)=\{c\}$. Then Fix $\left(\alpha, \mathcal{H}_{c}\right)=\left\{H_{i}\right\}_{1}^{3 m}, m \leq 7$, and there are $A_{i}, i \in[3 m], B_{j} \in$
$E_{2^{2}}\left[E_{2^{6}}\right], j \in[7-m], \beta \in \operatorname{Aut}\left(E_{2^{6}}\right)$ of order 3, such that

$$
\sum_{i=1}^{3 m} A_{i}+\sum_{j=1}^{7-m} B_{j}^{\langle\alpha\rangle}=E_{2^{6}}+20
$$

and $A_{i}^{\beta}=A_{i}, \quad B_{j}^{\beta} \neq B_{j}$
$E_{2^{2}}\left[E_{2^{6}}\right], j \in[7-m], \beta \in \operatorname{Aut}\left(E_{2^{6}}\right)$ of order 3, such that

$$
\sum_{i=1}^{3 m} A_{i}+\sum_{j=1}^{7-m} B_{j}^{\langle\alpha\rangle}=E_{2^{6}}+20
$$

and $A_{i}^{\beta}=A_{i}, B_{j}^{\beta} \neq B_{j}$
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|F i x(\alpha)|=7$. Then $1+\operatorname{Fix}(\alpha) \in \mathcal{H}$.
$E_{2^{2}}\left[E_{2^{6}}\right], j \in[7-m], \beta \in \operatorname{Aut}\left(E_{2^{6}}\right)$ of order 3, such that

$$
\sum_{i=1}^{3 m} A_{i}+\sum_{j=1}^{7-m} B_{j}^{\langle\alpha\rangle}=E_{2^{6}}+20
$$

and $A_{i}^{\beta}=A_{i}, B_{j}^{\beta} \neq B_{j}$
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|\operatorname{Fix}(\alpha)|=7$. Then $1+\operatorname{Fix}(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 3 , then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
$E_{2^{2}}\left[E_{2^{6}}\right], j \in[7-m], \beta \in \operatorname{Aut}\left(E_{2^{6}}\right)$ of order 3, such that

$$
\sum_{i=1}^{3 m} A_{i}+\sum_{j=1}^{7-m} B_{j}^{\langle\alpha\rangle}=E_{2^{6}}+20
$$

and $A_{i}^{\beta}=A_{i}, B_{j}^{\beta} \neq B_{j}$
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|\operatorname{Fix}(\alpha)|=7$. Then $1+\operatorname{Fix}(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 3 , then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
Automorphism of order 4
$E_{2^{2}}\left[E_{2^{6}}\right], j \in[7-m], \beta \in \operatorname{Aut}\left(E_{2^{6}}\right)$ of order 3, such that

$$
\sum_{i=1}^{3 m} A_{i}+\sum_{j=1}^{7-m} B_{j}^{\langle\alpha\rangle}=E_{2^{6}}+20
$$

and $A_{i}^{\beta}=A_{i}, \quad B_{j}^{\beta} \neq B_{j}$
Lemma: Let $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|F i x(\alpha)|=7$. Then $1+\operatorname{Fix}(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ is of order 3 , then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
Automorphism of order 4
Lemma: Let $\beta \in \operatorname{Aut}\left(E_{2^{n}}\right)$ be of order 2. Let $F=1+\operatorname{Fix}(\beta)$. Then $|F| \geq 2^{n / 2}$.
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Lemma: If $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 2 , then $|F i x(\alpha)|=15$.
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Lemma: If $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 2 , then $|F i x(\alpha)|=15$.
Lemma: Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4 . Then there are 28α-orbits on $E_{2^{7}}$ of a size 4. Furthermore, $\operatorname{Fix}\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2 .
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Lemma: If $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 2 , then $|F i x(\alpha)|=15$.
Lemma: Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4 . Then there are 28α-orbits on $E_{2^{7}}$ of a size 4. Furthermore, $\operatorname{Fix}\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2 . Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+F i x(\alpha)| \leq 2^{3}$ i.e. $k=4$ is not possible.
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Lemma: If $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 2 , then $|\operatorname{Fix}(\alpha)|=15$.
Lemma: Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4 . Then there are 28α-orbits on $E_{2^{7}}$ of a size 4. Furthermore, $\operatorname{Fix}\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2. Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \leq 2^{3}$ i.e. $k=4$ is not possible.
Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.
where $A_{i}^{\beta}=A_{i}, B_{j} \cap B_{j}^{\beta}=1$, and $A_{i} \cong B_{j} \cong E_{2^{2}}$.
Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H}.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H}.

Lemma: If $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 2 , then $|\operatorname{Fix}(\alpha)|=15$.
Lemma: Let $\alpha \in \operatorname{Aut}(\mathcal{H})$ is of order 4 . Then there are 28α-orbits on $E_{2^{7}}$ of a size 4. Furthermore, $\operatorname{Fix}\left(\alpha^{2}\right)=F i x(\alpha)+\sum_{i=1}^{a_{2}} x_{i}^{\langle\alpha\rangle}$, where a_{2} is the number of α-orbits on $E_{2^{7}}$ of a size 2. Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \leq 2^{3}$ i.e. $k=4$ is not possible.
Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \geq 2^{2}$, i.e. $k=1$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{2}$, i.e. $k=2$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{2}$, i.e. $k=2$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{3}$, i.e. $k=3$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{2}$, i.e. $k=2$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{3}$, i.e. $k=3$ is not possible.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ and $o(\alpha)=4$, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{2}$, i.e. $k=2$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{3}$, i.e. $k=3$ is not possible.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ and $o(\alpha)=4$, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
So, finally, we have proved the following:

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{2}$, i.e. $k=2$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{3}$, i.e. $k=3$ is not possible.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ and $o(\alpha)=4$, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
So, finally, we have proved the following:
Theorem: If \mathcal{H} is a binary Fano plane, then $|\operatorname{Aut}(\mathcal{H})| \leq 2$.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{2}$, i.e. $k=2$ is not possible.

Lemma: If $\langle\alpha\rangle \hookrightarrow \mathcal{H}$ and α is of order 4 , then $|1+\operatorname{Fix}(\alpha)| \neq 2^{3}$, i.e. $k=3$ is not possible.

Theorem: If $\alpha \in \operatorname{Aut}\left(E_{2^{7}}\right)$ and $o(\alpha)=4$, then $\langle\alpha\rangle \nLeftarrow \mathcal{H}$.
So, finally, we have proved the following:
Theorem: If \mathcal{H} is a binary Fano plane, then $|\operatorname{Aut}(\mathcal{H})| \leq 2$. Thank You!

