

Kristijan Tabak Rochester Institute of Technology, Zagreb Campus Croatia e-mail: kxtcad@rit.edu 4th Croatian Combinatorial Days, Zagreb, September 22-23, 2022

This work has been fully supported by Croatian Science Foundation under the project 6732 and 97522

A (v, k, λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A (v, k, λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space \mathbb{F}_{q^v} will be called a q-analog of a (v, k, λ) -design if any 2-dimensional subspace of \mathbb{F}_{q^v} is contained in λ blocks.

A (v,k,λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space \mathbb{F}_{q^v} will be called a q-analog of a (v, k, λ) -design if any 2-dimensional subspace of \mathbb{F}_{q^v} is contained in λ blocks.

A classical example of a $(v,k,\lambda)\text{-design}$ is a Fano plane, a design with parameters (7,3,1).

A (v,k,λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v, k, λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space \mathbb{F}_{q^v} will be called a q-analog of a (v, k, λ) -design if any 2-dimensional subspace of \mathbb{F}_{q^v} is contained in λ blocks.

A classical example of a $(v,k,\lambda)\text{-design}$ is a Fano plane, a design with parameters (7,3,1).

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from \mathbb{F}_{2^7} such that any 2-dimensional subspace of \mathbb{F}_{2^7} is contained in one block from a collection of blocks

To and

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

 $E_{2^k}[E_{2^7}] = \{T \mid T \le E_2^7, \ T \cong E_{2^k}\}.$

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

 $E_{2^{k}}[E_{2^{7}}] = \{T \mid T \leq E_{2}^{7}, \ T \cong E_{2^{k}}\}.$ $E_{2^{k}}[T]^{-1} = \{M \mid T \leq M \in E_{2^{k}}[E_{2^{7}}]\}.$

3/12

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

$$E_{2^{k}}[E_{2^{7}}] = \{T \mid T \leq E_{2}^{7}, \ T \cong E_{2^{k}}\}.$$

$$E_{2^{k}}[T]^{-1} = \{M \mid T \leq M \in E_{2^{k}}[E_{2^{7}}]\}.$$

in general $|E_{2^{k}}[E_{2^{n}}]| = {n \\ k}_{2}$, where ${n \\ k}_{2}$ is a gaussian 2-coefficient.

↓
↓
▲
Back
Close

4/12

 $\mathcal{H} \subseteq E_{2^3}[E_{2^7}]$ is a binary Fano plane, if every $T \in E_{2^2}[E_{2^7}]$ is contained in exactly one $H \in \mathcal{H}$.

 $\mathcal{H} \subseteq E_{2^3}[E_{2^7}]$ is a binary Fano plane, if every $T \in E_{2^2}[E_{2^7}]$ is contained in exactly one $H \in \mathcal{H}$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

 $\mathcal{H} \subseteq E_{2^3}[E_{2^7}]$ is a binary Fano plane, if every $T \in E_{2^2}[E_{2^7}]$ is contained in exactly one $H \in \mathcal{H}$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{ \alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H} \}$, where \mathcal{H} is a binary Fano plane.

 $\mathcal{H} \subseteq E_{2^3}[E_{2^7}]$ is a binary Fano plane, if every $T \in E_{2^2}[E_{2^7}]$ is contained in exactly one $H \in \mathcal{H}$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{ \alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H} \}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

 $\mathcal{H} \subseteq E_{2^3}[E_{2^7}]$ is a binary Fano plane, if every $T \in E_{2^2}[E_{2^7}]$ is contained in exactly one $H \in \mathcal{H}$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{ \alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H} \}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

 $A^{\langle \alpha \rangle} = A + A^{\alpha} + A^{\alpha^2} + \dots + A^{\alpha^{m-1}}.$

↓
↓
Back
Close

The second

 $\mathcal{H} \subseteq E_{2^3}[E_{2^7}]$ is a binary Fano plane, if every $T \in E_{2^2}[E_{2^7}]$ is contained in exactly one $H \in \mathcal{H}$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{ \alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H} \}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

 $A^{\langle \alpha \rangle} = A + A^{\alpha} + A^{\alpha^2} + \dots + A^{\alpha^{m-1}}.$

If $\alpha \in Aut(\mathcal{H})$, we will denote an action of α on \mathcal{H} by $\langle \alpha \rangle \hookrightarrow \mathcal{H}$. In a case when α can't act on \mathcal{H} , we will write $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

TAXA T

 $\mathcal{H} \subseteq E_{2^3}[E_{2^7}]$ is a binary Fano plane, if every $T \in E_{2^2}[E_{2^7}]$ is contained in exactly one $H \in \mathcal{H}$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{ \alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H} \}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

 $A^{\langle \alpha \rangle} = A + A^{\alpha} + A^{\alpha^2} + \dots + A^{\alpha^{m-1}}.$

If $\alpha \in Aut(\mathcal{H})$, we will denote an action of α on \mathcal{H} by $\langle \alpha \rangle \hookrightarrow \mathcal{H}$. In a case when α can't act on \mathcal{H} , we will write $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

TAXA T

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M^G_{t,k}$ Kramer Mesner matrix

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^{\boldsymbol{G}}$ Kramer Mesner matrix

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_q$

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M^{G}_{t,k}$ Kramer Mesner matrix

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_q$

columns indexed by *G*-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_q$

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^{\boldsymbol{G}}$ Kramer Mesner matrix

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_q$

columns indexed by *G*-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_{a}$

the entry of $M^{\cal G}_{t,k}$ at row $T^{\cal G}$ and column $K^{\cal G}$ is

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^{\boldsymbol{G}}$ Kramer Mesner matrix

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_q$

columns indexed by *G*-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_{q}$

the entry of $M^G_{t,k}$ at row T^G and column K^G is $|\{K' \in K^G \mid T \leq K'\}|$

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^{\boldsymbol{G}}$ Kramer Mesner matrix

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_{q}$

columns indexed by *G*-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_q$

the entry of $M_{t,k}^G$ at row T^G and column K^G is $|\{K' \in K^G \mid T \leq K'\}|$

the main result of this method is

Back

Close

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^{G}\ \mathrm{Kramer}\ \mathrm{Mesner}\ \mathrm{matrix}$

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_q$

columns indexed by *G*-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_q$

the entry of $M_{t,k}^G$ at row T^G and column K^G is $|\{K' \in K^G \mid T \leq K'\}|$

the main result of this method is

 $\exists t - (n, k, \lambda)_q$ design with $G \leq Aut \Leftrightarrow \exists \{0, 1\}$ solution of $M_{t,k}^G \mathbf{x} = \lambda \mathbf{1}$

Close

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M^{G}_{t,k}\ \mathrm{Kramer}\ \mathrm{Mesner}\ \mathrm{matrix}$

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_q$

columns indexed by *G*-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_{q}$

the entry of $M_{t,k}^G$ at row T^G and column K^G is $|\{K' \in K^G \mid T \leq K'\}|$

the main result of this method is

 $\exists t - (n, k, \lambda)_q$ design with $G \leq Aut \Leftrightarrow \exists \{0, 1\}$ solution of $M_{t,k}^G \mathbf{x} = \lambda \mathbf{1}$

The estimated run time for one 3-group is 75616 CPU-years

Back Close

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^{G}\ \mathrm{Kramer}\ \mathrm{Mesner}\ \mathrm{matrix}$

rows indexed by *G*-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_q$

columns indexed by *G*-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_{q}$

the entry of $M_{t,k}^G$ at row T^G and column K^G is $|\{K' \in K^G \mid T \leq K'\}|$

the main result of this method is

 $\exists t - (n, k, \lambda)_q$ design with $G \leq Aut \Leftrightarrow \exists \{0, 1\}$ solution of $M_{t,k}^G \mathbf{x} = \lambda \mathbf{1}$

The estimated run time for one 3-group is 75616 CPU-years

The estimated time for involution is 8×10^{12} CPU-years

Back Close

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\}$, where $o(\alpha)$ is an order of an automorphism α .

6/12

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

A A

6/12

 $Aut(\mathcal{H}) \leq Aut(E_{2^7})$. It is also known that $|Aut(E_{2^7})| = 2^{21} \cdot 3^{41} \cdot 5 \cdot 7^2 \cdot 31 \cdot 127$.

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

6/12

 $Aut(\mathcal{H}) \leq Aut(E_{2^7})$. It is also known that $|Aut(E_{2^7})| = 2^{21} \cdot 3^{41} \cdot 5 \cdot 7^2 \cdot 31 \cdot 127$.

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

we can have a decomposition $\mathcal{H} = A^{\langle \alpha \rangle} + B^{\langle \alpha \rangle} + C^{\langle \alpha \rangle}$, where $A \cong B \cong C \cong E_{2^3}$ are three blocks from \mathcal{H} . Also, $|A^{\langle \alpha \rangle}| = |B^{\langle \alpha \rangle}| = |C^{\langle \alpha \rangle}| = 127$.

6/12

Back Close

 $Aut(\mathcal{H}) \leq Aut(E_{2^7})$. It is also known that $|Aut(E_{2^7})| = 2^{21} \cdot 3^{41} \cdot 5 \cdot 7^2 \cdot 31 \cdot 127$.

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

we can have a decomposition $\mathcal{H} = A^{\langle \alpha \rangle} + B^{\langle \alpha \rangle} + C^{\langle \alpha \rangle}$, where $A \cong B \cong C \cong E_{2^3}$ are three blocks from \mathcal{H} . Also, $|A^{\langle \alpha \rangle}| = |B^{\langle \alpha \rangle}| = |C^{\langle \alpha \rangle}| = 127$.

Using the formula of inclusion and exclusion we get $127 = X_1 - X_2 + X_3 - X_4 + \cdots$, where $X_j = \sum_{P \in \binom{[127]}{j}} |\bigcap_{s \in P} (A^*)^{\alpha^s}|, j \ge 1$, where $\binom{[127]}{j}$ is a collection of *j*-element subsets of $[127] = \{1, 2, \ldots, 127\}$. Thus, we

is a collection of *j*-element subsets of $[127] = \{1, 2, ..., 127\}$. Thus, we get $127 = 7 \cdot 127 - X_2 + X_3 - X_4 + \cdots$.

$$127 = 7 \cdot 127 - X_2 + \binom{5}{1} X_2 - \binom{5}{2} X_2 + \binom{5}{3} X_2 - \binom{5}{4} X_2 + \binom{5}{5} X_2 = 7 \cdot 127.$$

$$127 = 7 \cdot 127 - X_2 + \binom{5}{1} X_2 - \binom{5}{2} X_2 + \binom{5}{3} X_2 - \binom{5}{4} X_2 + \binom{5}{5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

$$127 = 7 \cdot 127 - X_2 + \binom{5}{1} X_2 - \binom{5}{2} X_2 + \binom{5}{3} X_2 - \binom{5}{4} X_2 + \binom{5}{5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

$$127 = 7 \cdot 127 - X_2 + \binom{5}{1} X_2 - \binom{5}{2} X_2 + \binom{5}{3} X_2 - \binom{5}{4} X_2 + \binom{5}{5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

$$127 = 7 \cdot 127 - X_2 + \binom{5}{1} X_2 - \binom{5}{2} X_2 + \binom{5}{3} X_2 - \binom{5}{4} X_2 + \binom{5}{5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_g = \{H \in \mathcal{H} \mid g \in H\}$. One can see that $|\mathcal{H}_g| = 21$. Also, from $|\{\mathcal{H}_g\}_{g \neq 1}| = 127$, we get $|Fix(\alpha, \{\mathcal{H}_g\}_{g \neq 1})| \equiv 3 \pmod{31}$.

$$127 = 7 \cdot 127 - X_2 + \binom{5}{1} X_2 - \binom{5}{2} X_2 + \binom{5}{3} X_2 - \binom{5}{4} X_2 + \binom{5}{5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_g = \{H \in \mathcal{H} \mid g \in H\}$. One can see that $|\mathcal{H}_g| = 21$. Also, from $|\{\mathcal{H}_g\}_{g \neq 1}| = 127$, we get $|Fix(\alpha, \{\mathcal{H}_g\}_{g \neq 1})| \equiv 3 \pmod{31}$.

...., we get $\alpha = id$. A contradiction

$$127 = 7 \cdot 127 - X_2 + \binom{5}{1} X_2 - \binom{5}{2} X_2 + \binom{5}{3} X_2 - \binom{5}{4} X_2 + \binom{5}{5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_g = \{H \in \mathcal{H} \mid g \in H\}$. One can see that $|\mathcal{H}_g| = 21$. Also, from $|\{\mathcal{H}_g\}_{g \neq 1}| = 127$, we get $|Fix(\alpha, \{\mathcal{H}_g\}_{g \neq 1})| \equiv 3 \pmod{31}$.

...., we get $\alpha = id$. A contradiction

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Difficult case, since order of Singer automorphism of E_8 is ${\sf SEVEN}$

Also

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Also

 $|\mathcal{H}_c| = 21 = 3 \cdot 7.$

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Also

 $|\mathcal{H}_c| = 21 = 3 \cdot 7.$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7, then $|Fix(\alpha)| \in \{1, 15\}$. Furthermore, $|Fix(\alpha, E_{2^3}[E_{2^7}])| \equiv 2 \pmod{7}$ and $|Fix(\alpha, \mathcal{H})| \equiv 3 \pmod{7}$.

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Also

 $|\mathcal{H}_c| = 21 = 3 \cdot 7.$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7, then $|Fix(\alpha)| \in \{1, 15\}$. Furthermore, $|Fix(\alpha, E_{2^3}[E_{2^7}])| \equiv 2 \pmod{7}$ and $|Fix(\alpha, \mathcal{H})| \equiv 3 \pmod{7}$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7 and let $|Fix(\alpha)| = 1$, where $Fix(\alpha) = \{c\}$. Then, there are \widetilde{X}_i , $\widetilde{Y}_i \in E_2[E_{2^7}/\langle c \rangle]$ and $\widetilde{\alpha} \in Aut(E_{2^7}/\langle c \rangle)$, given by a rule $(g\langle c \rangle)^{\widetilde{\alpha}} = g^{\alpha}\langle c \rangle$, such that all $\widetilde{X}_i \widetilde{Y}_i \cong E_{2^2}$ are mutually disjoint. Furthermore, the following holds: $\sum_{i=1}^{3} (\widetilde{X}_i \widetilde{Y}_i)^{\langle \widetilde{\alpha} \rangle} = E_{2^7}/\langle c \rangle + 20\langle c \rangle$ and $|Fix(\widetilde{\alpha})| = 0$ and $\widetilde{\alpha}$ is of order 7.

Back Close

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Also

 $|\mathcal{H}_c| = 21 = 3 \cdot 7.$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7, then $|Fix(\alpha)| \in \{1, 15\}$. Furthermore, $|Fix(\alpha, E_{2^3}[E_{2^7}])| \equiv 2 \pmod{7}$ and $|Fix(\alpha, \mathcal{H})| \equiv 3 \pmod{7}$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7 and let $|Fix(\alpha)| = 1$, where $Fix(\alpha) = \{c\}$. Then, there are \widetilde{X}_i , $\widetilde{Y}_i \in E_2[E_{2^7}/\langle c \rangle]$ and $\widetilde{\alpha} \in Aut(E_{2^7}/\langle c \rangle)$, given by a rule $(g\langle c \rangle)^{\widetilde{\alpha}} = g^{\alpha}\langle c \rangle$, such that all $\widetilde{X}_i \widetilde{Y}_i \cong E_{2^2}$ are mutually disjoint. Furthermore, the following holds: $\sum_{i=1}^{3} (\widetilde{X}_i \widetilde{Y}_i)^{\langle \widetilde{\alpha} \rangle} = E_{2^7}/\langle c \rangle + 20\langle c \rangle$ and $|Fix(\widetilde{\alpha})| = 0$ and $\widetilde{\alpha}$ is of order 7. Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7. Then, $|Fix(\alpha)| = 1$.

Back Close

Theorem: Let $\alpha \in Aut(E_{2^6})$ be of order 7 and $Fix(\alpha) = \phi$. If $\langle g^{\langle \alpha \rangle} \rangle < E_{2^6}$, then, $\langle g^{\langle \alpha \rangle} \rangle \cong E_{2^3}$. Furthermore, $Fix(\alpha, E_{2^3}[E_{2^6}]) = \{A, B\}$ and $E_{2^6} = A \times B$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Lemma: If $\alpha \in Aut(E_{2^7})$ is of order 5, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Lemma: If $\alpha \in Aut(E_{2^7})$ is of order 5, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Lemma: If $\alpha \in Aut(E_{2^7})$ is of order 5, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Let's assume the opposite. Then, $|Fix(\alpha)| = 7$, $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H}) = H_0$.

Also, $Fix(\alpha) = H_0^*$. Let $c \in H_0^*$. For $\mathcal{H}_c = \sum H$, the following $c \in H \in \mathcal{H}$ holds: $\mathcal{H}_{c}^{\alpha} = \mathcal{H}_{c^{\alpha}} = \mathcal{H}_{c}$.

Then, there are orbit representatives $H_i \in \mathcal{H}_c$ such that $\mathcal{H}_c = \sum^{-} H_i^{\langle \alpha \rangle} +$

 $H_0 = E_{2^7} + 20\langle c \rangle.$

10/12

i=1

Also, $Fix(\alpha) = H_0^*$. Let $c \in H_0^*$. For $\mathcal{H}_c = \sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_c^{\alpha} = \mathcal{H}_{c^{\alpha}} = \mathcal{H}_c$.

Then, there are orbit representatives $H_i \in \mathcal{H}_c$ such that $\mathcal{H}_c = \sum_{i=1}^{r} H_i^{\langle \alpha \rangle} + H_0 = E_{2^7} + 20 \langle c \rangle$.

We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi : \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.

なる

Also, $Fix(\alpha) = H_0^*$. Let $c \in H_0^*$. For $\mathcal{H}_c = \sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_c^{\alpha} = \mathcal{H}_{c^{\alpha}} = \mathcal{H}_c$.

Then, there are orbit representatives $H_i\in\mathcal{H}_c$ such that $\mathcal{H}_c=\sum_{i=1}H_i^{\langlelpha
angle}+$

 $H_0 = E_{2^7} + 20\langle c \rangle.$

We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi : \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.

Automorphism of order 3

ないない

Also, $Fix(\alpha) = H_0^*$. Let $c \in H_0^*$. For $\mathcal{H}_c = \sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_c^{\alpha} = \mathcal{H}_{c^{\alpha}} = \mathcal{H}_c$.

Then, there are orbit representatives $H_i \in \mathcal{H}_c$ such that $\mathcal{H}_c = \sum_{i=1}^r H_i^{\langle \alpha \rangle} + H_0 = E_{2^7} + 20 \langle c \rangle$.

We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi : \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.

Automorphism of order 3

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 3, then $|Fix(\alpha)| \in \{1, 7, 31\}$.

Image: A triangle of the sector of the s

Also, $Fix(\alpha) = H_0^*$. Let $c \in H_0^*$. For $\mathcal{H}_c = \sum_{c \in H \in \mathcal{H}} H$, the following holds: $\mathcal{H}_c^{\alpha} = \mathcal{H}_{c^{\alpha}} = \mathcal{H}_c$.

Then, there are orbit representatives $H_i \in \mathcal{H}_c$ such that $\mathcal{H}_c = \sum_{i=1}^r H_i^{\langle \alpha \rangle} + H_0 = E_{2^7} + 20 \langle c \rangle$.

We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi : \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.

Automorphism of order 3

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 3, then $|Fix(\alpha)| \in \{1, 7, 31\}$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3, where $Fix(\alpha) = \{c\}$. Then $Fix(\alpha, \mathcal{H}_c) = \{H_i\}_1^{3m}, m \leq 7$, and there are $A_i, i \in [3m], B_j \in$

Back
Close

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^{\beta} = A_i, \ B_j^{\beta} \neq B_j$

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^{\beta} = A_i, \ B_j^{\beta} \neq B_j$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^\beta = A_i, \ B_j^\beta \neq B_j$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 3, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^{\beta} = A_i, \ B_j^{\beta} \neq B_j$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 3, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 4

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^{\beta} = A_i, \ B_j^{\beta} \neq B_j$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 3, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 4

Lemma: Let $\beta \in Aut(E_{2^n})$ be of order 2. Let $F = 1 + Fix(\beta)$. Then $|F| \ge 2^{n/2}$.

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \leq 2^3$ i.e. k = 4 is not possible.

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \leq 2^3$ i.e. k = 4 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \ge 2^2$, i.e. k = 1 is not possible.

where
$$A_i^{\beta} = A_i, \ B_j \cap B_j^{\beta} = 1$$
, and $A_i \cong B_j \cong E_{2^2}$.

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \leq 2^3$ i.e. k = 4 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \ge 2^2$, i.e. k = 1 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^2$, i.e. k = 2 is not possible.

12/12

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^2$, i.e. k = 2 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

12/12

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^2$, i.e. k = 2 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Theorem: If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

12/12

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^2$, i.e. k = 2 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Theorem: If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

So, finally, we have proved the following:

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^2$, i.e. k = 2 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Theorem: If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

So, finally, we have proved the following:

Theorem: If \mathcal{H} is a binary Fano plane, then $|Aut(\mathcal{H})| \leq 2$.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^2$, i.e. k = 2 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Theorem: If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

So, finally, we have proved the following:

Theorem: If \mathcal{H} is a binary Fano plane, then $|Aut(\mathcal{H})| \leq 2$. **Thank You!**

12/12