Coloring incidence graphs of 2-designs

Anamari Nakic

University of Zagreb

Joint work with Marco Buratti, Francesca Merola, Christian Rubio-Montiel

Combinatorics 2024, Italy Supported by Croatian Science Foundation project IP-2020-02-9752

Extremal Graphs arising from Designs and Configurations

BIRS workshop

"Extremal Graphs arising from Designs and Configurations"

Banff, May 2023, organized by

Gabriela Araujo Marien Abreu Robert Jajcay Alejandra Ramos Jean Paul Zerafa

Definition

A 2- (v, k, λ) design is a pair (V, \mathcal{B}) such that

- V is a set of v points;
- B is a collection of k-subsets of V (called blocks);
- each 2-subset of V is contained exactly in λ blocks.

Figure: The Fano plane is a 2-(7, 3, 1) design.

• A 2-design with $\lambda = 1$ is a Steiner system.

The Levi graph or incidence graph $G_{\mathcal{D}}$ of a 2- (v,k,λ) design (or any incidence structure) is a graph with

- one vertex per point
- one vertex per block
- an edge for any incident point block pair

$$\triangleright$$
 $n = v + b$, $m = bk$

Figure: the Heawood graph is the Levi graph of the Fano plane

Harmonious colorings

- Coloring of a graph G is an assignment of colors to the vertices of G so that adjacent vertices have different colors.
- A coloring is harmonious if each pair of colors appears on at most one pair of adjacent vertices
- The minimum number of colors needed is called the harmonious chromatic number of G, and denoted by h(G)

Araujo-Pardo, Monellano-Ballestreros, Olsen, Rubio-Montiel, On the harmonious chromatic number of graphs, arXiv:2206.04822 ▶ If \mathcal{D} is a 2- (v, k, λ) design, then

$$h(G_{\mathcal{D}}) \ge v$$

For which designs is this lower bound attained?

Definition

A (v,k,λ) design $\mathcal D$ whose Levi graph has harmonious chromatic number equal to v will be called a Banff design.

Figure: Levi graph of the Fano plane

イロト イヨト イヨト イヨト 二日

Nesting of 2 - (7, 3, 1) into a 2 - (7, 4, 2)

The existence of a (v,3,1) Banff design is equivalent to that of a $\operatorname{nesting}$ of a $\operatorname{STS}(v)$ into a (v,4,2) design.

A (v,3,1)-design (V,\mathcal{B}) can be nested if there is a mapping $\varsigma : \mathcal{B} \to V$ such that $(V, \{B \cup \varsigma(B)\} : B \in \mathcal{B})$ is a (v,4,2)-design.

Theorem (Lindner, Rodger, 1987; Stinson, 1985) There exists a (v, 3, 1) Banff design if and only if $v \equiv 1 \pmod{6}$.

Definition

Let G be an additive group of order v. A (v, k, λ) difference family in G is a set \mathcal{F} of k-subsets of G (called *base blocks* of \mathcal{F}) such that the list

$$\Delta \mathcal{F} := \{ x - y : x, y \in B, x \neq y, B \in \mathcal{F} \}$$

contains every element of $G \setminus \{0\}$ exactly λ times.

- When the base blocks are pairwise disjoint we speak of a disjoint difference family.
- When \mathcal{F} consists of a single base block B we say that B is a difference set.

\blacktriangleright D = {1, 2, 4} is	a(7,3,1)	difference set
--	----------	----------------

	1	2	4
1	•	6	4
2	1	•	5
4	3	2	•

The development of a (v, k, λ) difference family \mathcal{F} is the multiset

$$dev\mathcal{F} = \{B + g \mid g \in G; B \in \mathcal{F}\}$$

of all possible translates of its base blocks.

The pair $(G, dev\mathcal{F})$ is a (v, k, λ) design admitting an automorphism group isomorphic to G acting sharply transitively on the points.

The Fano plane is the \mathbb{Z}_7 -development of D

$$\begin{array}{c} \{D+0, D+1, D+2, D+3, D+4, D+5, D+6\} \\ = \\ \{\{1, 2, 4\}, \{2, 3, 5\}, \{3, 4, 6\}, \{4, 5, 0\}, \{5, 6, 1\}, \{6, 0, 2\}, \{0, 1, 3\}\} \end{array}$$

Definition

A Banff difference family is a difference family $\mathcal{F} = \{B_1, \dots, B_n\}$ such that

- ▶ $0 \notin B_i$ for every *i*,
- it is disjoint,
- ▶ and $B_i \cap -B_j = \emptyset$ for every possible pair (i, j).

Theorem Every Banff difference family generates a Banff design.

▶ $D = \{1, 2, 4\}$ is a (7, 3, 1) difference set

	1	2	4
1	•	6	4
2	1	•	5
4	3	2	•

▶ The Fano plane is the \mathbb{Z}_7 -development of D{D + 0, D + 1, D + 2, D + 3, D + 4, D + 5, D + 6} = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}, {0, 1, 3}}

- the set of points \mathbb{Z}_7 is the set of colors
- ▶ D has color 0, D + i has color i

Examples of Banff designs

Start from the cyclic (85, 4, 1) difference family $\mathcal{F} = \{B_1, \dots, B_7\}$

It is not a Banff difference family.

• But translating the blocks appropriately we get it: $\{B_1 + t_1, \ldots, B_7 + t_7\}$

starting DF	t_i	Banff DF
$B_1 = \{0, 2, 41, 42\}$	2	$B_1 + 2 = \{2, 4, 43, 44\}$
$B_2 = \{0, 17, 32, 38\}$	7	$B_2 + 7 = \{7, 24, 39, 45\}$
$B_3 = \{0, 18, 27, 37\}$	10	$B_3 + 10 = \{10, 28, 37, 47\}$
$B_4 = \{0, 13, 29, 36\}$	20	$B_4 + 20 = \{20, 33, 49, 56\}$
$B_5 = \{0, 11, 31, 35\}$	19	$B_5 + 19 = \{19, 30, 50, 54\}$
$B_6 = \{0, 12, 26, 34\}$	60	$B_6 + 60 = \{60, 72, 1, 9\}$
$B_7 = \{0, 5, 30, 33\}$	58	$B_7 + 58 = \{58, 63, 3, 6\}$

▶ 2-(85, 4, 1) generated by this difference family is a Banff design.

Conjecture

For any cyclic (v, k, 1) difference family $\mathcal{F} = \{B_1, \ldots, B_n\}$ there is a suitable *n*-tuple (t_1, \ldots, t_n) of elements of \mathbb{Z}_v such that $\{B_1 + t_1, \ldots, B_n + t_n\}$ is a (v, k, 1) Banff difference family.

The projective plane $\mathsf{PG}(2,q)$ is a $(q^2+q+1,q+1,1)$ design, which is a development of a Singer difference set.

Theorem

Any projective plane PG(2,q) is a $(q^2 + q + 1, q + 1, 1)$ Banff design.

Proof.

- Let $B = \{b_0, b_1, \dots, b_q\}$ be the Singer $(q^2 + q + 1, q + 1, 1)$ difference set.
- Consider the subset X of \mathbb{Z}_{q^2+q+1} defined by

$$X = \{\frac{b_i + b_j}{2} \mid 0 \le i \le j \le q\}.$$

- We have $|X| = \frac{(q+1)(q+2)}{2} < q^2 + q + 1.$
- Take an element $t \in \mathbb{Z}_{q^2+q+1} \setminus X$.
- Show that D := B t is a $(q^2 + q + 1, q + 1, 1)$ Banff difference set.
- ▶ $0 \notin D$. Otherwise we would have $t = b_i$ for some *i*. On the other hand we have $b_i = \frac{b_i + b_i}{2} \in X$ contradicting the choice of *t*.

▶ If $B' \cap -B'$ is not empty there would be a pair (i, j) such that $b_i - t = -(b_j - t)$ and then $t = \frac{b_i + b_j}{2} \in X$ contradicting again the choice of t.

Projective plane PG(2,3)

- ▶ PG(2,3) is a (13,4,1) design, which is the \mathbb{Z}_{13} -development of the Singer difference set $B = \{0, 1, 5, 11\}$
- Compute $X = \{ \frac{b_i + b_j}{2} \mid 0 \le i \le j \le q \} = \{0, 1, 3, 5, 6, 7, 8, 9, 11, 12 \}.$

Let
$$t = 2 \in \mathbb{Z}_{13} \setminus X$$

• Then $D := B - t = \{3, 9, 11, 12\}$ is a Banff difference set

block	color
3, 9, 11, 12	0
4, 10, 12, 0	1
5, 11, 0, 1	2
6, 12, 1, 2	3
7, 0, 2, 3	4
8, 1, 3, 4	5
9, 2, 4, 5	6
10, 3, 5, 6	7
11, 4, 6, 7	8
12, 5, 7, 8	9
0, 6, 8, 9	10
1, 7, 9, 10	11
2, 8, 10, 11	12

Figure: Levi graph of PG(3, 2), shapeways

(日) (部) (注) (注) (三)

Theorem

There exists (q, k, 1) Banff design for any prime power $q \equiv 1 \pmod{k(k-1)}$ sufficiently large.

▶ k = 4

- Applying the above theorem with k = 4 we can say that there exists a (q, 4, 1)Banff set for any prime power q = 12n + 1 > 9, 152, 353.
- Computer search: For any prime power $q \equiv 1 \pmod{12}$, $q \leq 9,152,353$, there exists (q,4,1) Banff design.

Corollary

For any prime power $q \equiv 1 \pmod{12}$, there exists (q, 4, 1) Banff design.

Theorem (Buratti, Kreher, Stinson, 2024) For any $v \equiv 1, 4 \pmod{12}$, there exists (v, 4, 1) Banff design.

Thank you for your attention!