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2-designs

Definition
A 2-(v, k, λ) design is a pair (V,B) such that

I V is a set of v points;

I B is a collection of k-subsets of V (called blocks);

I each 2-subset of V is contained exactly in λ blocks.

Figure: The Fano plane is a 2-(7, 3, 1) design.

I A 2-design with λ = 1 is a Steiner system.
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Levi graphs

The Levi graph or incidence graph GD of a 2-(v, k, λ) design (or any incidence structure)
is a graph with

I one vertex per point

I one vertex per block

I an edge for any incident point block pair

I n = v + b, m = bk

Figure: the Heawood graph is the Levi graph of the Fano plane
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Harmonious colorings

I Coloring of a graph G is an assignment of colors to the vertices of G so that
adjacent vertices have different colors.

I A coloring is harmonious if each pair of colors appears on at most one pair of
adjacent vertices

I The minimum number of colors needed is called the harmonious chromatic
number of G, and denoted by h(G)

I Araujo-Pardo, Monellano-Ballestreros, Olsen, Rubio-Montiel, On the harmonious
chromatic number of graphs, arXiv:2206.04822
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Banff designs

I If D is a 2-(v, k, λ) design, then

h(GD) ≥ v

I For which designs is this lower bound attained?

Definition
A (v, k, λ) design D whose Levi graph has harmonious chromatic number equal to v
will be called a Banff design.

Figure: Levi graph of the Fano plane Figure: The Fano plane is a Banff
design
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Nesting of 2− (7, 3, 1) into a 2− (7, 4, 2)

The existence of a (v, 3, 1) Banff design is equivalent to that of a nesting of a STS(v)
into a (v, 4, 2) design.

Nesting of a 2−(7, 3, 1) into a 2−(7, 4, 2) design

Blocks:

0136, 1240, 2351, 3462, 0453, 1654, 0265

A (v, 3, 1)-design (V,B) can be nested if there is a mapping ς : B → V such that
(V, {B ∪ ς(B)} : B ∈ B) is a (v, 4, 2)-design.

Theorem (Lindner, Rodger, 1987; Stinson, 1985)
There exists a (v, 3, 1) Banff design if and only if v ≡ 1 (mod 6).
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Difference families

Definition
Let G be an additive group of order v. A (v, k, λ) difference family in G is a set F of
k-subsets of G (called base blocks of F) such that the list

∆F := {x− y : x, y ∈ B, x 6= y,B ∈ F}

contains every element of G \ {0} exactly λ times.

I When the base blocks are pairwise disjoint we speak of a disjoint difference family.

I When F consists of a single base block B we say that B is a difference set.

I D = {1, 2, 4} is a (7, 3, 1) difference set

1 2 4

1 · 6 4
2 1 · 5
4 3 2 ·
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Difference families

The development of a (v, k, λ) difference family F is the multiset

devF = {B + g | g ∈ G;B ∈ F}

of all possible translates of its base blocks.

The pair (G, devF) is a (v, k, λ) design admitting an automorphism group isomorphic
to G acting sharply transitively on the points.

I The Fano plane is the Z7-development of D

{D + 0, D + 1, D + 2, D + 3, D + 4, D + 5, D + 6}
=

{{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}, {0, 1, 3}}
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Banff difference families

Definition
A Banff difference family is a difference family F = {B1, . . . , Bn} such that
I 0 /∈ Bi for every i,

I it is disjoint,

I and Bi ∩ −Bj = ∅ for every possible pair (i, j).

Theorem
Every Banff difference family generates a Banff design.
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Banff difference families

I D = {1, 2, 4} is a (7, 3, 1) difference set

1 2 4

1 · 6 4
2 1 · 5
4 3 2 ·

I The Fano plane is the Z7-development of D

{D + 0, D + 1, D + 2, D + 3, D + 4, D + 5, D + 6}
=

{{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}, {0, 1, 3}}

I the set of points Z7 is the set of colors

I D has color 0, D + i has color i
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Examples of Banff designs

I Start from the cyclic (85, 4, 1) difference family F = {B1, . . . , B7}
I It is not a Banff difference family.

I But translating the blocks appropriately we get it: {B1 + t1, . . . , B7 + t7}

starting DF ti Banff DF

B1 = {0, 2, 41, 42} 2 B1 + 2 = {2, 4, 43, 44}
B2 = {0, 17, 32, 38} 7 B2 + 7 = {7, 24, 39, 45}
B3 = {0, 18, 27, 37} 10 B3 + 10 = {10, 28, 37, 47}
B4 = {0, 13, 29, 36} 20 B4 + 20 = {20, 33, 49, 56}
B5 = {0, 11, 31, 35} 19 B5 + 19 = {19, 30, 50, 54}
B6 = {0, 12, 26, 34} 60 B6 + 60 = {60, 72, 1, 9}
B7 = {0, 5, 30, 33} 58 B7 + 58 = {58, 63, 3, 6}

I 2-(85, 4, 1) generated by this difference family is a Banff design.

Conjecture
For any cyclic (v, k, 1) difference family F = {B1, . . . , Bn} there is a suitable n-tuple
(t1, . . . , tn) of elements of Zv such that {B1 + t1, . . . , Bn + tn} is a (v, k, 1) Banff
difference family.

12 / 16



Projective planes

The projective plane PG(2, q) is a (q2 + q + 1, q + 1, 1) design, which is
a development of a Singer difference set.

Theorem
Any projective plane PG(2, q) is a (q2 + q + 1, q + 1, 1) Banff design.

Proof.

I Let B = {b0, b1, . . . , bq} be the Singer (q2 + q + 1, q + 1, 1) difference set.

I Consider the subset X of Zq2+q+1 defined by

X = {
bi + bj

2
| 0 ≤ i ≤ j ≤ q}.

I We have |X| = (q+1)(q+2)
2

< q2 + q + 1.

I Take an element t ∈ Zq2+q+1 \X.

I Show that D := B − t is a (q2 + q + 1, q + 1, 1) Banff difference set.

I 0 6∈ D. Otherwise we would have t = bi for some i. On the other hand we have

bi = bi+bi
2
∈ X contradicting the choice of t.

I If B′ ∩ −B′ is not empty there would be a pair (i, j) such that

bi − t = −(bj − t) and then t =
bi+bj

2
∈ X contradicting again the choice of t.
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Projective plane PG(2, 3)

I PG(2, 3) is a (13, 4, 1) design, which is the Z13-development of the Singer
difference set B = {0, 1, 5, 11}

I Compute X = { bi+bj
2
| 0 ≤ i ≤ j ≤ q} = {0, 1, 3, 5, 6, 7, 8, 9, 11, 12}.

I Let t = 2 ∈ Z13 \X
I Then D := B − t = {3, 9, 11, 12} is a Banff difference set

block color
3, 9, 11, 12 0
4, 10, 12, 0 1
5, 11, 0, 1 2
6, 12, 1, 2 3
7, 0, 2, 3 4
8, 1, 3, 4 5
9, 2, 4, 5 6
10, 3, 5, 6 7
11, 4, 6, 7 8
12, 5, 7, 8 9
0, 6, 8, 9 10
1, 7, 9, 10 11
2, 8, 10, 11 12

Figure: Levi graph of PG(3, 2), shapeways
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https://www.shapeways.com/product/DL74L66XQ/levi-graph-for-pg-2-3


(q, k, 1) Banff designs

Theorem
There exists (q, k, 1) Banff design for any prime power q ≡ 1 (mod k(k − 1))
sufficiently large.

I k = 4

I Applying the above theorem with k = 4 we can say that there exists a (q, 4, 1)
Banff set for any prime power q = 12n+ 1 > 9, 152, 353.

I Computer search: For any prime power q ≡ 1 (mod 12), q ≤ 9, 152, 353, there
exists (q, 4, 1) Banff design.

Corollary
For any prime power q ≡ 1 (mod 12), there exists (q, 4, 1) Banff design.

Theorem (Buratti, Kreher, Stinson, 2024)
For any v ≡ 1, 4 (mod 12), there exists (v, 4, 1) Banff design.

15 / 16



Thank you for your attention!
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