Coloring incidence graphs of 2-designs

Anamari Nakic

University of Zagreb

Joint work with Marco Buratti, Francesca Merola, Christian Rubio-Montiel

Combinatorics 2024, Italy
Supported by Croatian Science Foundation project IP-2020-02-9752

Extremal Graphs arising from Designs and Configurations

BIRS workshop
"Extremal Graphs arising from Designs and Configurations"

Banff, May 2023, organized by

Gabriela Araujo
Marien Abreu
Robert Jajcay
Alejandra Ramos Jean Paul Zerafa

Definition

A $2-(v, k, \lambda)$ design is a pair (V, \mathcal{B}) such that

- V is a set of v points;
- \mathcal{B} is a collection of k-subsets of V (called blocks);
- each 2-subset of V is contained exactly in λ blocks.

Figure: The Fano plane is a $2-(7,3,1)$ design.

- A 2-design with $\lambda=1$ is a Steiner system.

The Levi graph or incidence graph $G_{\mathcal{D}}$ of a 2- (v, k, λ) design (or any incidence structure) is a graph with

- one vertex per point
- one vertex per block
- an edge for any incident point block pair
- $n=v+b, m=b k$

Figure: the Heawood graph is the Levi graph of the Fano plane

- Coloring of a graph G is an assignment of colors to the vertices of G so that adjacent vertices have different colors.
- A coloring is harmonious if each pair of colors appears on at most one pair of adjacent vertices
- The minimum number of colors needed is called the harmonious chromatic number of G, and denoted by $h(G)$

- Araujo-Pardo, Monellano-Ballestreros, Olsen, Rubio-Montiel, On the harmonious chromatic number of graphs, arXiv:2206.04822

Banff designs

- If \mathcal{D} is a 2- (v, k, λ) design, then

$$
h\left(G_{\mathcal{D}}\right) \geq v
$$

- For which designs is this lower bound attained?

Definition

A (v, k, λ) design \mathcal{D} whose Levi graph has harmonious chromatic number equal to v will be called a Banff design.

Figure: Levi graph of the Fano plane

Figure: The Fano plane is a Banff design

The existence of a $(v, 3,1)$ Banff design is equivalent to that of a nesting of a STS (v) into a $(v, 4,2)$ design.

Nesting of a $2-(7,3,1)$ into a $2-(7,4,2)$ design

Blocks:

0136, 1240, 2351, 3462, 0453, 1654, 0265

A $(v, 3,1)$-design (V, \mathcal{B}) can be nested if there is a mapping $\varsigma: \mathcal{B} \rightarrow V$ such that $(V,\{B \cup \varsigma(B)\}: B \in \mathcal{B})$ is a ($v, 4,2$)-design.

Theorem (Lindner, Rodger, 1987; Stinson, 1985)
There exists a $(v, 3,1)$ Banff design if and only if $v \equiv 1(\bmod 6)$.

Difference families

Definition

Let G be an additive group of order v. A (v, k, λ) difference family in G is a set \mathcal{F} of k-subsets of G (called base blocks of \mathcal{F}) such that the list

$$
\Delta \mathcal{F}:=\{x-y: x, y \in B, x \neq y, B \in \mathcal{F}\}
$$

contains every element of $G \backslash\{0\}$ exactly λ times.

- When the base blocks are pairwise disjoint we speak of a disjoint difference family.
- When \mathcal{F} consists of a single base block B we say that B is a difference set.
- $D=\{1,2,4\}$ is a ($7,3,1$) difference set

	1	2	4
1	\cdot	6	4
2	1	\cdot	5
4	3	2	\cdot

Difference families

The development of a (v, k, λ) difference family \mathcal{F} is the multiset

$$
\operatorname{dev} \mathcal{F}=\{B+g \mid g \in G ; B \in \mathcal{F}\}
$$

of all possible translates of its base blocks.
The pair $(G, \operatorname{dev} \mathcal{F})$ is a (v, k, λ) design admitting an automorphism group isomorphic to G acting sharply transitively on the points.

- The Fano plane is the \mathbb{Z}_{7}-development of D

$$
\begin{aligned}
&\{D+0, D+1, D+2, D+3, D+4, D+5, D+6\} \\
&= \\
&\{\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,0\},\{5,6,1\},\{6,0,2\},\{0,1,3\}\}
\end{aligned}
$$

Banff difference families

Definition

A Banff difference family is a difference family $\mathcal{F}=\left\{B_{1}, \ldots, B_{n}\right\}$ such that

- $0 \notin B_{i}$ for every i,
- it is disjoint,
- and $B_{i} \cap-B_{j}=\emptyset$ for every possible pair (i, j).

Theorem
Every Banff difference family generates a Banff design.

Banff difference families

- $D=\{1,2,4\}$ is a $(7,3,1)$ difference set

	1	2	4
1	\cdot	6	4
2	1	\cdot	5
4	3	2	\cdot

- The Fano plane is the \mathbb{Z}_{7}-development of D

$$
\begin{aligned}
&\{D+0, D+1, D+2, D+3, D+4, D+5, D+6\} \\
&= \\
&\{\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,0\},\{5,6,1\},\{6,0,2\},\{0,1,3\}\}
\end{aligned}
$$

- the set of points \mathbb{Z}_{7} is the set of colors
- D has color $0, D+i$ has color i

Examples of Banff designs

- Start from the cyclic $(85,4,1)$ difference family $\mathcal{F}=\left\{B_{1}, \ldots, B_{7}\right\}$
- It is not a Banff difference family.
- But translating the blocks appropriately we get it: $\left\{B_{1}+t_{1}, \ldots, B_{7}+t_{7}\right\}$

starting DF	t_{i}	Banff DF
$B_{1}=\{0,2,41,42\}$	2	$B_{1}+2=\{2,4,43,44\}$
$B_{2}=\{0,17,32,38\}$	7	$B_{2}+7=\{7,24,39,45\}$
$B_{3}=\{0,18,27,37\}$	10	$B_{3}+10=\{10,28,37,47\}$
$B_{4}=\{0,13,29,36\}$	20	$B_{4}+20=\{20,33,49,56\}$
$B_{5}=\{0,11,31,35\}$	19	$B_{5}+19=\{19,30,50,54\}$
$B_{6}=\{0,12,26,34\}$	60	$B_{6}+60=\{60,72,1,9\}$
$B_{7}=\{0,5,30,33\}$	58	$B_{7}+58=\{58,63,3,6\}$

- 2-(85, 4, 1) generated by this difference family is a Banff design.

Conjecture

For any cyclic $(v, k, 1)$ difference family $\mathcal{F}=\left\{B_{1}, \ldots, B_{n}\right\}$ there is a suitable n-tuple $\left(t_{1}, \ldots, t_{n}\right)$ of elements of \mathbb{Z}_{v} such that $\left\{B_{1}+t_{1}, \ldots, B_{n}+t_{n}\right\}$ is a $(v, k, 1)$ Banff difference family.

The projective plane $\mathrm{PG}(2, q)$ is a $\left(q^{2}+q+1, q+1,1\right)$ design, which is a development of a Singer difference set.

Theorem

Any projective plane $P G(2, q)$ is a $\left(q^{2}+q+1, q+1,1\right)$ Banff design.
Proof.

- Let $B=\left\{b_{0}, b_{1}, \ldots, b_{q}\right\}$ be the Singer $\left(q^{2}+q+1, q+1,1\right)$ difference set.
- Consider the subset X of $\mathbb{Z}_{q^{2}+q+1}$ defined by

$$
X=\left\{\left.\frac{b_{i}+b_{j}}{2} \right\rvert\, 0 \leq i \leq j \leq q\right\}
$$

- We have $|X|=\frac{(q+1)(q+2)}{2}<q^{2}+q+1$.
- Take an element $t \in \mathbb{Z}_{q^{2}+q+1} \backslash X$.
- Show that $D:=B-t$ is a $\left(q^{2}+q+1, q+1,1\right)$ Banff difference set.
- $0 \notin D$. Otherwise we would have $t=b_{i}$ for some i. On the other hand we have $b_{i}=\frac{b_{i}+b_{i}}{2} \in X$ contradicting the choice of t.
- If $B^{\prime} \cap-B^{\prime}$ is not empty there would be a pair (i, j) such that $b_{i}-t=-\left(b_{j}-t\right)$ and then $t=\frac{b_{i}+b_{j}}{2} \in X$ contradicting again the choice of t.
- $\mathrm{PG}(2,3)$ is a $(13,4,1)$ design, which is the \mathbb{Z}_{13}-development of the Singer difference set $B=\{0,1,5,11\}$
- Compute $X=\left\{\left.\frac{b_{i}+b_{j}}{2} \right\rvert\, 0 \leq i \leq j \leq q\right\}=\{0,1,3,5,6,7,8,9,11,12\}$.
- Let $t=2 \in \mathbb{Z}_{13} \backslash X$
- Then $D:=B-t=\{3,9,11,12\}$ is a Banff difference set

block	color
$3,9,11,12$	0
$4,10,12,0$	1
$5,11,0,1$	2
$6,12,1,2$	3
$7,0,2,3$	4
$8,1,3,4$	5
$9,2,4,5$	6
$10,3,5,6$	7
$11,4,6,7$	8
$12,5,7,8$	9
$0,6,8,9$	10
$1,7,9,10$	11
$2,8,10,11$	12

Figure: Levi graph of $\mathrm{PG}(3,2)$, shapeways

Theorem
There exists $(q, k, 1)$ Banff design for any prime power $q \equiv 1(\bmod k(k-1))$ sufficiently large.

- $\mathrm{k}=4$
- Applying the above theorem with $k=4$ we can say that there exists a $(q, 4,1)$ Banff set for any prime power $q=12 n+1>9,152,353$.
- Computer search: For any prime power $q \equiv 1(\bmod 12), q \leq 9,152,353$, there exists ($q, 4,1$) Banff design.

Corollary

For any prime power $q \equiv 1(\bmod 12)$, there exists $(q, 4,1)$ Banff design.

Theorem (Buratti, Kreher, Stinson, 2024)
For any $v \equiv 1,4(\bmod 12)$, there exists $(v, 4,1)$ Banff design.

Thank you for your attention!

